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Objectives

To understand that complex problems that may otherwise
be difficult to solve may have a simple recursive solution.
To learn how to formulate programs recursively.
To understand and apply the three laws of recursion.
To understand recursion as a form of iteration.
To implement the recursive formulation of a problem.
To understand how recursion is implemented by a
computer system.
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Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

The Iterative Sum Function

1 def listsum(l):
2 sum = 0
3 f o r i in l:
4 sum = sum + i
5 re turn sum
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Recursive listSum

1 def listsum(l):
2 i f len(l) == 1:
3 re turn l[0]
4 e l s e:
5 re turn l[0] + listsum(l[1:])
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Series of Recursive Calls Adding a List of Numbers

sum(1,3,5,7,9) 1 +=

sum(3,5,7,9) 3 +=

sum(5,7,9) 5 +=

sum(7,9) 7 +=

sum(9) 9=
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Calculating the Sum of a List of Numbers
The Three Laws of Recursion
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Series of Recursive Returns from Adding a List of
Numbers

sum(1,3,5,7,9) 1 + 24=

sum(3,5,7,9) 3 + 21=

sum(5,7,9) 5 + 16=

sum(7,9) 7 + 9=

sum(9) 9=

25 =
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Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

1 A recursive algorithm must have a base case.
2 A recursive algorithm must change its state and move

toward the base case.
3 A recursive algorithm must call itself, recursively.
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Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

1 Reduce the original number to a series of single-digit
numbers.

2 Convert the single digit-number to a string using a lookup.
3 Concatenate the single-digit strings together to form the

final result.
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Converting an Integer to a String in Base 10

toStr(769) 769 / 10 ‘9'

toStr(76) 76 / 10 ‘6'

toStr(7) 7 < 10 ‘7'

Remainder

+

+
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The Three Laws of Recursion
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Converting an Integer to a String in Base 2–16

1 convertString = "0123456789ABCDEF"
2

3 def toStr(n,base):
4 i f n < base:
5 re turn convertString[n]
6 e l s e:
7 re turn toStr(n / base,base) + convertString[n%base]
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Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

Converting the Number 10 to its Base 2 String
Representation

toStr(10) 10 / 2 ‘0'

toStr(5) 5 / 2 ‘1'

toStr(2) 2 / 2 ‘0'

Remainder

toStr(1) 1 < 2 ‘1'

+

+

+
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Pushing the Strings onto a Stack

1 convertString = "0123456789ABCDEF"
2 rStack = Stack()
3

4 def toStr(n,base):
5 i f n < base:
6 rStack.push(convertString[n])
7 e l s e:
8 rStack.push(convertString[n%base])
9 toStr(n / base,base)
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Strings Placed on the Stack During Conversion

‘0'

‘1'

‘0'

‘1'
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Call Stack Generated from toStr(10,2)

toStr(10,2)
   n = 10
   base = 2

toStr(10/2,2) + convertString[10%2]

toStr(5,2)
   n = 5
   base = 2

toStr(5/2,2) + convertString[5%2]

toStr(2,2)
   n = 5
   base = 2

toStr(2/2,2) + convertString[2%2]

'1'
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An Example Arrangement of Disks for the Tower of
Hanoi

fromPole withPole toPole
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1 Move a tower of height-1 to an intermediate pole, using the
final pole.

2 Move the remaining disk to the final pole.
3 Move the tower of height-1 from the intermediate pole to

the final pole using the original pole.
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Python Code for the Tower of Hanoi

1 def moveTower(height,fromPole, toPole, withPole):
2 i f height >= 1:
3 moveTower(height-1,fromPole,withPole,toPole)
4 moveDisk(fromPole,toPole)
5 moveTower(height-1,withPole,toPole,fromPole)
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Python Code to Move One Disk

1 def moveDisk(fp,tp):
2 p r i n t "moving disk from %d to %d\n" % (fp,tp)
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The Sierpinski Triangle
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Code for the Sierpinski Triangle I

1 def sierpinskiT(points,level,win):
2 colormap = [’blue’,’red’,’green’,’white’,
3 ’yellow’,’violet’,’orange’]
4 p = Polygon(points)
5 p.setFill(colormap[level])
6 p.draw(win)
7 i f level > 0:
8 sierpinskiT([points[0],getMid(points[0],points[1]),
9 getMid(points[0],points[2])],level-1,win)

10 sierpinskiT([points[1],getMid(points[0],points[1]),
11 getMid(points[1],points[2])],level-1,win)
12 sierpinskiT([points[2],getMid(points[2],points[1]),
13 getMid(points[0],points[2])],level-1,win)
14

15
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Code for the Sierpinski Triangle II

16 def getMid(p1,p2):
17 re turn Point( ((p1.getX()+p2.getX()) / 2.0),
18 ((p1.getY()+p2.getY()) / 2.0) )
19

20 i f __name__ == ’__main__’:
21 win = GraphWin(’st’,500,500)
22 win.setCoords(20,-10,80,50)
23 myPoints = [Point(25,0),Point(50,43.3),Point(75,0)]
24 sierpinskiT(myPoints,6,win)
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Building a Sierpinski Triangle

left top right

left top right

left top right
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A Simple Modular Encryption Function

1

2 def encrypt(m):
3 s = ’abcdefghijklmnopqrstuvwxyz’
4 n = ’’
5 f o r i in m:
6 j = (s.find(i)+13)%26
7 n = n + s[j]
8 re turn n
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Decryption Using a Simple Key

1 def decrypt(m,k):
2 s = ’abcdefghijklmnopqrstuvwxyz’
3 n = ’’
4 f o r i in m:
5 j = (s.find(i)26-k)%26
6 n = n + s[j]
7 re turn n
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1 If a ≡ b (mod n) then ∀c, a + c ≡ b + c (mod n).
2 If a ≡ b (mod n) then ∀c, ac ≡ bc (mod n).
3 If a ≡ b (mod n) then ∀p, p > 0, ap ≡ bp (mod n).
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1 Initialize result to 1.
2 Repeat n times:

1 Multiply result by x.
2 Apply modulo operation to result.
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Recursive Definition for xn (mod p)

1 def modexp(x,n,p):
2 i f n == 0:
3 re turn 1
4 t = (x*x)%p
5 tmp = modexp(t,n/2,p)
6 i f n%2 != 0:
7 tmp = (tmp * x) % p
8 re turn tmp
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Euclid’s Algorithm for GCD

1 def gcd(a,b):
2 i f b == 0:
3 re turn a
4 e l i f a < b:
5 re turn gcd(b,a)
6 e l s e:
7 re turn gcd(a-b,b)
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An Improved Euclid’s Algorithm

1 def gcd(a,b):
2 i f b == 0:
3 re turn a
4 e l s e:
5 re turn gcd(b, a % b)
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Extended GCD

1 def ext_gcd(x,y):
2 i f y == 0:
3 re turn(x,1,0)
4 e l s e:
5 (d,a,b) = ext_gcd(y, x%y)
6 re turn(d,b,a-(x/y)*b)
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Call Tree for Extended GCD Algorithm

x,y =25,9

(d,a,b) = gcd(9,7)
return 1,-4,-3-25/9*4

x,y =9,7

(d,a,b) = gcd(7,2)
return 1,-3,1-9/7*-3

x,y =7,2

(d,a,b) = gcd(2,1)
return 1,1,0-7/2*1

x,y =2,1

(d,a,b) = gcd(1,1)
return 1,0,1-2/1*0

x,y =1,1

(d,a,b) = gcd(1,0)
return 1,0,1-1*0

x,y =1,0

return 1,1,0

(1,1,0)

(1,1,0)

(1,0,1)

(1,1,-3)

(1,-3,4)

(1,4,-11)
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RSA KeyGen Algorithm

1 def RSAgenKeys(p,q):
2 n = p * q
3 pqminus = (p-1) * (q-1)
4 e = int(random.random() * n)
5 whi le gcd(pqminus,e) != 1:
6 e = int(random.random() * n)
7 d,a,b = ext_gcd(pqminus,e)
8 i f b < 0:
9 d = pqminus+b

10 e l s e:
11 d = b
12 re turn ((e,d,n))
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RSA Encrypt Algorithm

1 def RSAencrypt(m,e,n):
2 ndigits = len(str(n))
3 chunkSize = ndigits - 1
4 chunks = toChunks(m,chunkSize)
5 encList = []
6 f o r messChunk in chunks:
7 p r i n t messChunk
8 c = modexp(messChunk,e,n)
9 encList.append(c)

10 re turn encList
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RSA Decrypt Algorithm

1 def RSAdecrypt(clist,d,n):
2 rList = []
3 f o r c in clist:
4 m = modexp(c,d,n)
5 rList.append(m)
6 re turn rList
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Recursion Summary

All recursive algorithms must have a base case.
A recursive algorithm must change its state and make
progress toward the base case.
A recursive algorithm must call itself (recursively).
Recursion can take the place of iteration in some cases.
Recursive algorithms often map very naturally to a formal
expression of the problem you are trying to solve.
Recursion is not always the answer. Sometimes a
recursive solution may be more computationally expensive
than an alternative algorithm.
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