
Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Recursion
Basic and Complex Recursion

Brad Miller David Ranum

12/19/2005

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Outline

1 Objectives

2 What Is Recursion?
Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

3 Stack Frames: Implementing Recursion

4 Complex Recursive Problems
Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

5 Summary

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Objectives

To understand that complex problems that may otherwise
be difficult to solve may have a simple recursive solution.
To learn how to formulate programs recursively.
To understand and apply the three laws of recursion.
To understand recursion as a form of iteration.
To implement the recursive formulation of a problem.
To understand how recursion is implemented by a
computer system.

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

Outline

1 Objectives

2 What Is Recursion?
Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

3 Stack Frames: Implementing Recursion

4 Complex Recursive Problems
Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

5 Summary

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

The Iterative Sum Function

1 def listsum(l):
2 sum = 0
3 f o r i in l:
4 sum = sum + i
5 re turn sum

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

Recursive listSum

1 def listsum(l):
2 i f len(l) == 1:
3 re turn l[0]
4 e l s e:
5 re turn l[0] + listsum(l[1:])

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

Series of Recursive Calls Adding a List of Numbers

sum(1,3,5,7,9) 1 +=

sum(3,5,7,9) 3 +=

sum(5,7,9) 5 +=

sum(7,9) 7 +=

sum(9) 9=

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

Series of Recursive Returns from Adding a List of
Numbers

sum(1,3,5,7,9) 1 + 24=

sum(3,5,7,9) 3 + 21=

sum(5,7,9) 5 + 16=

sum(7,9) 7 + 9=

sum(9) 9=

25 =

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

Outline

1 Objectives

2 What Is Recursion?
Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

3 Stack Frames: Implementing Recursion

4 Complex Recursive Problems
Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

5 Summary

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

1 A recursive algorithm must have a base case.
2 A recursive algorithm must change its state and move

toward the base case.
3 A recursive algorithm must call itself, recursively.

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

Outline

1 Objectives

2 What Is Recursion?
Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

3 Stack Frames: Implementing Recursion

4 Complex Recursive Problems
Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

5 Summary

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

1 Reduce the original number to a series of single-digit
numbers.

2 Convert the single digit-number to a string using a lookup.
3 Concatenate the single-digit strings together to form the

final result.

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

Converting an Integer to a String in Base 10

toStr(769) 769 / 10 ‘9'

toStr(76) 76 / 10 ‘6'

toStr(7) 7 < 10 ‘7'

Remainder

+

+

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

Converting an Integer to a String in Base 2–16

1 convertString = "0123456789ABCDEF"
2

3 def toStr(n,base):
4 i f n < base:
5 re turn convertString[n]
6 e l s e:
7 re turn toStr(n / base,base) + convertString[n%base]

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

Converting the Number 10 to its Base 2 String
Representation

toStr(10) 10 / 2 ‘0'

toStr(5) 5 / 2 ‘1'

toStr(2) 2 / 2 ‘0'

Remainder

toStr(1) 1 < 2 ‘1'

+

+

+

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Pushing the Strings onto a Stack

1 convertString = "0123456789ABCDEF"
2 rStack = Stack()
3

4 def toStr(n,base):
5 i f n < base:
6 rStack.push(convertString[n])
7 e l s e:
8 rStack.push(convertString[n%base])
9 toStr(n / base,base)

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Strings Placed on the Stack During Conversion

‘0'

‘1'

‘0'

‘1'

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Call Stack Generated from toStr(10,2)

toStr(10,2)
 n = 10
 base = 2

toStr(10/2,2) + convertString[10%2]

toStr(5,2)
 n = 5
 base = 2

toStr(5/2,2) + convertString[5%2]

toStr(2,2)
 n = 5
 base = 2

toStr(2/2,2) + convertString[2%2]

'1'

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

Outline

1 Objectives

2 What Is Recursion?
Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

3 Stack Frames: Implementing Recursion

4 Complex Recursive Problems
Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

5 Summary

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

An Example Arrangement of Disks for the Tower of
Hanoi

fromPole withPole toPole

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

1 Move a tower of height-1 to an intermediate pole, using the
final pole.

2 Move the remaining disk to the final pole.
3 Move the tower of height-1 from the intermediate pole to

the final pole using the original pole.

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

Python Code for the Tower of Hanoi

1 def moveTower(height,fromPole, toPole, withPole):
2 i f height >= 1:
3 moveTower(height-1,fromPole,withPole,toPole)
4 moveDisk(fromPole,toPole)
5 moveTower(height-1,withPole,toPole,fromPole)

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

Python Code to Move One Disk

1 def moveDisk(fp,tp):
2 p r i n t "moving disk from %d to %d\n" % (fp,tp)

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

Outline

1 Objectives

2 What Is Recursion?
Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

3 Stack Frames: Implementing Recursion

4 Complex Recursive Problems
Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

5 Summary

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

The Sierpinski Triangle

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

Code for the Sierpinski Triangle I

1 def sierpinskiT(points,level,win):
2 colormap = [’blue’,’red’,’green’,’white’,
3 ’yellow’,’violet’,’orange’]
4 p = Polygon(points)
5 p.setFill(colormap[level])
6 p.draw(win)
7 i f level > 0:
8 sierpinskiT([points[0],getMid(points[0],points[1]),
9 getMid(points[0],points[2])],level-1,win)

10 sierpinskiT([points[1],getMid(points[0],points[1]),
11 getMid(points[1],points[2])],level-1,win)
12 sierpinskiT([points[2],getMid(points[2],points[1]),
13 getMid(points[0],points[2])],level-1,win)
14

15

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

Code for the Sierpinski Triangle II

16 def getMid(p1,p2):
17 re turn Point(((p1.getX()+p2.getX()) / 2.0),
18 ((p1.getY()+p2.getY()) / 2.0))
19

20 i f __name__ == ’__main__’:
21 win = GraphWin(’st’,500,500)
22 win.setCoords(20,-10,80,50)
23 myPoints = [Point(25,0),Point(50,43.3),Point(75,0)]
24 sierpinskiT(myPoints,6,win)

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

Building a Sierpinski Triangle

left top right

left top right

left top right

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

Outline

1 Objectives

2 What Is Recursion?
Calculating the Sum of a List of Numbers
The Three Laws of Recursion
Converting an Integer to a String in Any Base

3 Stack Frames: Implementing Recursion

4 Complex Recursive Problems
Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

5 Summary

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

A Simple Modular Encryption Function

1

2 def encrypt(m):
3 s = ’abcdefghijklmnopqrstuvwxyz’
4 n = ’’
5 f o r i in m:
6 j = (s.find(i)+13)%26
7 n = n + s[j]
8 re turn n

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

Decryption Using a Simple Key

1 def decrypt(m,k):
2 s = ’abcdefghijklmnopqrstuvwxyz’
3 n = ’’
4 f o r i in m:
5 j = (s.find(i)26-k)%26
6 n = n + s[j]
7 re turn n

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

1 If a ≡ b (mod n) then ∀c, a + c ≡ b + c (mod n).
2 If a ≡ b (mod n) then ∀c, ac ≡ bc (mod n).
3 If a ≡ b (mod n) then ∀p, p > 0, ap ≡ bp (mod n).

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

1 Initialize result to 1.
2 Repeat n times:

1 Multiply result by x.
2 Apply modulo operation to result.

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

Recursive Definition for xn (mod p)

1 def modexp(x,n,p):
2 i f n == 0:
3 re turn 1
4 t = (x*x)%p
5 tmp = modexp(t,n/2,p)
6 i f n%2 != 0:
7 tmp = (tmp * x) % p
8 re turn tmp

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

Euclid’s Algorithm for GCD

1 def gcd(a,b):
2 i f b == 0:
3 re turn a
4 e l i f a < b:
5 re turn gcd(b,a)
6 e l s e:
7 re turn gcd(a-b,b)

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

An Improved Euclid’s Algorithm

1 def gcd(a,b):
2 i f b == 0:
3 re turn a
4 e l s e:
5 re turn gcd(b, a % b)

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

Extended GCD

1 def ext_gcd(x,y):
2 i f y == 0:
3 re turn(x,1,0)
4 e l s e:
5 (d,a,b) = ext_gcd(y, x%y)
6 re turn(d,b,a-(x/y)*b)

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

Call Tree for Extended GCD Algorithm

x,y =25,9

(d,a,b) = gcd(9,7)
return 1,-4,-3-25/9*4

x,y =9,7

(d,a,b) = gcd(7,2)
return 1,-3,1-9/7*-3

x,y =7,2

(d,a,b) = gcd(2,1)
return 1,1,0-7/2*1

x,y =2,1

(d,a,b) = gcd(1,1)
return 1,0,1-2/1*0

x,y =1,1

(d,a,b) = gcd(1,0)
return 1,0,1-1*0

x,y =1,0

return 1,1,0

(1,1,0)

(1,1,0)

(1,0,1)

(1,1,-3)

(1,-3,4)

(1,4,-11)

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

RSA KeyGen Algorithm

1 def RSAgenKeys(p,q):
2 n = p * q
3 pqminus = (p-1) * (q-1)
4 e = int(random.random() * n)
5 whi le gcd(pqminus,e) != 1:
6 e = int(random.random() * n)
7 d,a,b = ext_gcd(pqminus,e)
8 i f b < 0:
9 d = pqminus+b

10 e l s e:
11 d = b
12 re turn ((e,d,n))

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

RSA Encrypt Algorithm

1 def RSAencrypt(m,e,n):
2 ndigits = len(str(n))
3 chunkSize = ndigits - 1
4 chunks = toChunks(m,chunkSize)
5 encList = []
6 f o r messChunk in chunks:
7 p r i n t messChunk
8 c = modexp(messChunk,e,n)
9 encList.append(c)

10 re turn encList

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Tower of Hanoi
Sierpinski Triangle
Cryptography and Modular Arithmetic

RSA Decrypt Algorithm

1 def RSAdecrypt(clist,d,n):
2 rList = []
3 f o r c in clist:
4 m = modexp(c,d,n)
5 rList.append(m)
6 re turn rList

Recursion

Objectives
What Is Recursion?

Stack Frames: Implementing Recursion
Complex Recursive Problems

Summary

Recursion Summary

All recursive algorithms must have a base case.
A recursive algorithm must change its state and make
progress toward the base case.
A recursive algorithm must call itself (recursively).
Recursion can take the place of iteration in some cases.
Recursive algorithms often map very naturally to a formal
expression of the problem you are trying to solve.
Recursion is not always the answer. Sometimes a
recursive solution may be more computationally expensive
than an alternative algorithm.

Recursion

	Objectives
	What Is Recursion?
	Calculating the Sum of a List of Numbers
	The Three Laws of Recursion
	Converting an Integer to a String in Any Base

	Stack Frames: Implementing Recursion
	Complex Recursive Problems
	Tower of Hanoi
	Sierpinski Triangle
	Cryptography and Modular Arithmetic

	Summary

