
Depth First Search
Strongly Connected Components
Topological Sorting

Graphs
DFS and Friends

Brad Miller David Ranum1

1Department of Computer Science
Luther College

12/19/2005

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Outline

Depth First Search
Strongly Connected Components
Topological Sorting

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Outline

Depth First Search
Strongly Connected Components
Topological Sorting

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Represent the legal moves of a knight on a chessboard as
a graph.
Use a graph algorithm to find a path through the graph of
length rows × columns where every vertex on the path is
visited exactly once.

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Legal Moves for a Knight on Square 12, and the
Corresponding Graph

20 21 22 23 24

15 16 17 18 19

10 11 13 14

5 6 7 8 9

0 1 2 3 4

21 23

15 19

12

9

3

5

1

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Create a Graph Corresponding to All Legal Knight
Moves I

1 def knightGraph(bdSize):
2 ktGraph = Graph()
3 # Build the graph
4 f o r row in range(bdSize):
5 f o r col in range(bdSize):
6 nodeId = posToNodeId(row,col,bdSize)
7 newPositions = genLegalMoves(row,col,bdSize)
8 f o r e in newPositions:
9 nid = posToNodeId(e[0],e[1])

10 ktGraph.addEdge(nodeId,nid)
11 re turn ktGraph

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Generate a List of Legal Moves for a Chess Board
Position I

1 def genLegalMoves(x,y,bdSize):
2 newMoves = []
3 moveOffsets = [(-1,-2),(-1,2),(-2,-1),(-2,1),
4 (1,-2),(1,2),(2,-1),(2,1)]:
5 f o r i in moveOffsets:
6 newX = x + i[0]
7 newY = y + i[1]
8 i f legalCoord(newX,bdSize) and \
9 legalCoord(newY,bdSize):

10 newMoves.append((newX,newY))
11 re turn newMoves
12

13 def legalCoord(x,bdSize):
14 i f x >= 0 and x < bdSize:
15 re turn True

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Generate a List of Legal Moves for a Chess Board
Position II

16 e l s e:
17 re turn False

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

All Legal Moves for a Knight on an 8× 8 Chessboard

0

10

1716
20

4

25
27

11

2

32
34

1

18
21

5

26
28

33

8

12

3

24

35

19
22

6

29

9

13

36

23

7

30

14

37

31

15

38 39

40
4241

43 44 45
46 47

48
5049

51 52 53 54 55

56

5857
59 60 61 62 63

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Depth First Search Algorithm for Knights Tour I

1 def knightTour(n,path,u,limit):
2 u.setColor(’gray’)
3 path.append(u)
4 i f n < limit:
5 nbrList = orderByAvail(u)
6 i = 0
7 done = False
8 whi le i < len(nbrList) and not done:
9 i f nbrList[i].getColor() == ’white’:

10 done = knightTour(n+1,
11 path,
12 nbrList[i],
13 limit)
14 i f not done: # prepare to backtrack
15 path.remove(u)
16 u.setColor(’white’)
17 e l s e:

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Depth First Search Algorithm for Knights Tour II

18 done = True
19 re turn done

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Finding a Path Through a Graph with knightTour

A

D

B

E

C

F

(a) Start with node A

A

D

B

E

C

F

(b) Explore B

A

D

B

E

C

F

(c) node C is a dead end

A

D

B

E

C

F

(d) backtrack to B

A

D

B

E

C

F

(e)

A

D

B

E

C

F

(f)

A

D

B

E

C

F

(g)

A

D

B

E

C

F

(h) finish
Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

A Complete Tour of the Board

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Selecting the Next Vertex to Visit Is Critical

1 def orderByAvail(n):
2 resList = []
3 f o r v in n.getAdj():
4 i f v.getColor() == ’white’:
5 c = 0
6 f o r w in v.getAdj():
7 i f w.getColor() == ’white’:
8 c = c + 1
9 resList.append((c,v))

10 resList.sort()
11 re turn [y[1] f o r y in resList]

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

General Depth First Search I

1 def dfs(theGraph):
2 f o r u in theGraph:
3 u.setColor(’white’)
4 u.setPred(-1)
5 time = 0
6 f o r u in theGraph:
7 i f u.getColor() == ’white’:
8 dfsvisit(u)
9

10 def dfsvisit(s):
11 s.setDistance(0)
12 s.setPred(None)
13 S = Stack()
14 S.push(s)
15 whi le (S.size() > 0):
16 w = S.pop()
17 w.setColor(’gray’)

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

General Depth First Search II

18 f o r v in w.getAdj():""
19 i f (v.getColor() == ’white’):
20 v.setDistance(w.getDistance() + 1)
21 v.setPred(w)
22 S.push(v)
23 w.setColor(’black’)

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Constructing the Depth First Search Tree

A
1/

D

B

E

C

F

(a)

A
1/

D

B
2/

E

C

F

(b)

A
1/

D

B
2/

E

C
3/

F

(c)

A
1/

D

B
2/

E

C
3/4

F

(d)

A
1/

D
5/

B
2/

E

C
3/4

F

(e)

A
1/

D
5/

B
2/

E
6/

C
3/4

F

(f)

A
1/

D
5/

B
2/

E
6/

C
3/4

F
7/

(g)

A
1/

D
5/

B
2/

E
6/

C
3/4

F
7/8

(h)

A
1/

D
5/

B
2/

E
6/9

C
3/4

F
7/8

(i)

A
1/

D
5/10

B
2/

E
6/9

C
3/4

F
7/8

(j)

A

1/

D

5/10

B

2/11

E

6/9

C

3/4

F

7/8

(k)

A

1/12

D

5/10

B

2/11

E

6/9

C

3/4

F

7/8

(l)

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

The Resulting Depth First Search Tree

A
1/12

D
5/10

B
2/11

E
6/9

C
3/4

F
7/8

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Outline

Depth First Search
Strongly Connected Components
Topological Sorting

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

The Graph Produced by Links from the Luther
Computer Science Home Page

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

A Directed Graph with Three Strongly Connected
Components

A B C

D E F

G H I

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

The Reduced Graph

ABDEG C

FHI

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

A Graph G and Its Transpose GT

A B

C D

(m) a graph G

A B

C D

(n) the transposition of G, GT

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

SCC Algorithm

1 Call dfs for the graph G to compute the finish times for
each vertex.

2 Compute GT .
3 Call dfs for the graph GT but in the main loop of DFS

explore each vertex in decreasing order of finish time.
4 Each tree in the forest computed in step 3 is a strongly

connected component. Output the vertex ids for each
vertex in each tree in the forest to identify the component.

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Computing the Strongly Connected Components

A
1/18

B
2/17

C
3/10

D
12/15

E
11/16

F
4/9

G
13/14

H
5/8

I
6/7

(o) finishing times for the original graph
G

A
1/10

B
7/8

C
11/12

D
4/5

E
2/9

F
13/18

G
3/6

H
15/16

I
14/17

(p) finishing times for GT

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

The Strongly Connected Components as a Forest of
Trees

A
1/10

B
7/8

C
11/12

D
4/5

E
2/9

F
13/18

G
3/6

H
15/16

I
14/17

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Outline

Depth First Search
Strongly Connected Components
Topological Sorting

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

The Steps for Making Pancakes

heat griddle3/4 cup milk

1 egg

1 Tbl Oil

1 cup mix pour 1/4 cup

turn when
bubbly

eatheat syrup

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Topological Sort Algorithm

1 Call dfs(g) for some graph g. The main reason we want
to call depth first search is to compute the finish times for
each of the vertices.

2 Order the vertices to a list in decreasing order of finish
time.

3 Return the ordered list as the result of the topological sort.

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Result of Depth First Search on the Pancake Graph

heat griddle
13/14

3/4 cup milk
1/12

1 egg
15/16

1 Tbl Oil
17/18

1 cup mix
2/11

pour 1/4 cup
3/8

turn when
bubbly

4/7

eat
5/6

heat syrup
9/10

Graphs

Depth First Search
Strongly Connected Components
Topological Sorting

Result of Topological Sort on Directed Acyclic Graph

heat griddle
13/14

3/4 cup milk
1/12

1 egg
15/16

1 Tbl Oil
17/18

1 cup mix
2/11

pour 1/4 cup
3/8

turn when
bubbly

4/7

eat
5/6

heat syrup
9/10

Graphs

	Depth First Search
	Strongly Connected Components
	Topological Sorting

