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Represent the legal moves of a knight on a chessboard as
a graph.
Use a graph algorithm to find a path through the graph of
length rows × columns where every vertex on the path is
visited exactly once.
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Legal Moves for a Knight on Square 12, and the
Corresponding Graph
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Create a Graph Corresponding to All Legal Knight
Moves I

1 def knightGraph(bdSize):
2 ktGraph = Graph()
3 # Build the graph
4 f o r row in range(bdSize):
5 f o r col in range(bdSize):
6 nodeId = posToNodeId(row,col,bdSize)
7 newPositions = genLegalMoves(row,col,bdSize)
8 f o r e in newPositions:
9 nid = posToNodeId(e[0],e[1])

10 ktGraph.addEdge(nodeId,nid)
11 re turn ktGraph
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Generate a List of Legal Moves for a Chess Board
Position I

1 def genLegalMoves(x,y,bdSize):
2 newMoves = []
3 moveOffsets = [(-1,-2),(-1,2),(-2,-1),(-2,1),
4 ( 1,-2),( 1,2),( 2,-1),( 2,1)]:
5 f o r i in moveOffsets:
6 newX = x + i[0]
7 newY = y + i[1]
8 i f legalCoord(newX,bdSize) and \
9 legalCoord(newY,bdSize):

10 newMoves.append((newX,newY))
11 re turn newMoves
12

13 def legalCoord(x,bdSize):
14 i f x >= 0 and x < bdSize:
15 re turn True
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Generate a List of Legal Moves for a Chess Board
Position II

16 e l s e:
17 re turn False
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All Legal Moves for a Knight on an 8× 8 Chessboard
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Depth First Search Algorithm for Knights Tour I

1 def knightTour(n,path,u,limit):
2 u.setColor(’gray’)
3 path.append(u)
4 i f n < limit:
5 nbrList = orderByAvail(u)
6 i = 0
7 done = False
8 whi le i < len(nbrList) and not done:
9 i f nbrList[i].getColor() == ’white’:

10 done = knightTour(n+1,
11 path,
12 nbrList[i],
13 limit)
14 i f not done: # prepare to backtrack
15 path.remove(u)
16 u.setColor(’white’)
17 e l s e:
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Depth First Search Algorithm for Knights Tour II

18 done = True
19 re turn done
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Finding a Path Through a Graph with knightTour
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A Complete Tour of the Board
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Selecting the Next Vertex to Visit Is Critical

1 def orderByAvail(n):
2 resList = []
3 f o r v in n.getAdj():
4 i f v.getColor() == ’white’:
5 c = 0
6 f o r w in v.getAdj():
7 i f w.getColor() == ’white’:
8 c = c + 1
9 resList.append((c,v))

10 resList.sort()
11 re turn [y[1] f o r y in resList]
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General Depth First Search I

1 def dfs(theGraph):
2 f o r u in theGraph:
3 u.setColor(’white’)
4 u.setPred(-1)
5 time = 0
6 f o r u in theGraph:
7 i f u.getColor() == ’white’:
8 dfsvisit(u)
9

10 def dfsvisit(s):
11 s.setDistance(0)
12 s.setPred(None)
13 S = Stack()
14 S.push(s)
15 whi le (S.size() > 0):
16 w = S.pop()
17 w.setColor(’gray’)
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General Depth First Search II

18 f o r v in w.getAdj():""
19 i f (v.getColor() == ’white’):
20 v.setDistance( w.getDistance() + 1 )
21 v.setPred(w)
22 S.push(v)
23 w.setColor(’black’)

Graphs



Depth First Search
Strongly Connected Components
Topological Sorting

Constructing the Depth First Search Tree
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The Resulting Depth First Search Tree
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The Graph Produced by Links from the Luther
Computer Science Home Page
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A Directed Graph with Three Strongly Connected
Components
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The Reduced Graph
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A Graph G and Its Transpose GT
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SCC Algorithm

1 Call dfs for the graph G to compute the finish times for
each vertex.

2 Compute GT .
3 Call dfs for the graph GT but in the main loop of DFS

explore each vertex in decreasing order of finish time.
4 Each tree in the forest computed in step 3 is a strongly

connected component. Output the vertex ids for each
vertex in each tree in the forest to identify the component.
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Computing the Strongly Connected Components
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The Strongly Connected Components as a Forest of
Trees
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The Steps for Making Pancakes

heat griddle3/4 cup milk

1 egg

1 Tbl Oil

1 cup mix pour 1/4 cup

turn when  
bubbly

eatheat syrup
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Topological Sort Algorithm

1 Call dfs(g) for some graph g. The main reason we want
to call depth first search is to compute the finish times for
each of the vertices.

2 Order the vertices to a list in decreasing order of finish
time.

3 Return the ordered list as the result of the topological sort.
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Result of Depth First Search on the Pancake Graph
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Result of Topological Sort on Directed Acyclic Graph
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