
What Is Algorithm Analysis?
Searching

Sorting

Algorithm Analysis
Searching and Sorting

Brad Miller David Ranum

1/25/06

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

Outline
1 What Is Algorithm Analysis?

Big-O Notation
An Anagram Example

2 Searching
The Sequential Search
The Binary Search
Hashing

3 Sorting
The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

Big-O Notation
An Anagram Example

Summation of the First n Integers

1 def sumOfN(n):
2 sum = 0
3 f o r i in range(1,n+1):
4 sum = sum + i
5

6 re turn sum

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

Big-O Notation
An Anagram Example

Another Summation of the First n Integers

1 def foo(tom):
2 fred = 0
3 f o r bill in range(1,tom+1):
4 barney = bill
5 fred = fred + barney
6

7 re turn fred

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

Big-O Notation
An Anagram Example

Timing the Summation

1 import time
2

3 def sumOfN(n):
4 start = time.clock()
5

6 sum = 0
7 f o r i in range(1,n+1):
8 sum = sum + i
9

10 end = time.clock()
11

12 re turn sum,end-start

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

Big-O Notation
An Anagram Example

Summation Without Iteration

1 def sumOfN3(n):
2 re turn (n*(n+1))/2

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

Big-O Notation
An Anagram Example

Outline
1 What Is Algorithm Analysis?

Big-O Notation
An Anagram Example

2 Searching
The Sequential Search
The Binary Search
Hashing

3 Sorting
The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

Big-O Notation
An Anagram Example

Plot of Common Big-O Functions

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

Order of Magnitude Functions

logarithmic

linear

log linear

quadratic

cubic

exponential

logarithmic

linear

log linear

quadratic

cubic

exponential

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

Big-O Notation
An Anagram Example

Example Python Code

1 a=5
2 b=6
3 c=10
4 f o r i in range(n):
5 f o r j in range(n):
6 x = i * i
7 y = j * j
8 z = i * j
9 f o r k in range(n):

10 w = a*k + 45
11 v = b*b
12 d = 33

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

Big-O Notation
An Anagram Example

Outline
1 What Is Algorithm Analysis?

Big-O Notation
An Anagram Example

2 Searching
The Sequential Search
The Binary Search
Hashing

3 Sorting
The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

Big-O Notation
An Anagram Example

Checking Off I

1 def anagramSolution1(s1,s2):
2 alist = list(s2)
3

4 pos1 = 0
5 stillOK = True
6

7 whi le pos1 < len(s1) and stillOK:
8 pos2 = 0
9 found = False

10 whi le pos2 < len(alist) and not found:
11 i f s1[pos1] == alist[pos2]:
12 found = True
13 e l s e:
14 pos2 = pos2 + 1
15

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

Big-O Notation
An Anagram Example

Checking Off II

16 i f found:
17 alist[pos2] = None
18 e l s e:
19 stillOK = False
20

21 pos1 = pos1 + 1
22

23 re turn stillOK

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

Big-O Notation
An Anagram Example

Sort and Compare

1 def anagramSolution2(s1,s2):
2 alist1 = list(s1)
3 alist2 = list(s2)
4 alist1.sort()
5 alist2.sort()
6 pos = 0
7 matches = True
8

9 whi le pos < len(s1) and matches:
10 i f alist1[pos]==alist2[pos]:
11 pos = pos + 1
12 e l s e:
13 matches = False
14 re turn matches

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

Big-O Notation
An Anagram Example

Count and Compare I

1 def anagramSolution4(s1,s2):
2 c1 = [0]*26
3 c2 = [0]*26
4

5 f o r i in range(len(s1)):
6 pos = ord(s1[i])-ord(’a’)
7 c1[pos] = c1[pos] + 1
8

9 f o r i in range(len(s2)):
10 pos = ord(s2[i])-ord(’a’)
11 c2[pos] = c2[pos] + 1
12

13

14

15

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

Big-O Notation
An Anagram Example

Count and Compare II

16 j = 0
17 stillOK = True
18 whi le j<26 and stillOK:
19 i f c1[j]==c2[j]:
20 j = j + 1
21 e l s e:
22 stillOK = False
23

24 re turn stillOK

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Outline
1 What Is Algorithm Analysis?

Big-O Notation
An Anagram Example

2 Searching
The Sequential Search
The Binary Search
Hashing

3 Sorting
The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Sequential Search of a List of Integers

54 26 93 17 77 31 44 55 20 65

Start

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Sequential Search of an Unordered List

1 def sequentialSearch(alist, item):
2 pos = 0
3 found = False
4 stop = False
5 whi le pos < len(alist) and not found:
6 i f alist[pos] == item:
7 found = True
8 e l s e:
9 pos = pos+1

10

11 re turn found

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Sequential Search of an Ordered List of Integers

17 20 26 31 44 54 55 65 77 93

Start

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Sequential Search of an Ordered List

1 def orderedSequentialSearch(alist, item):
2 pos = 0
3 found = False
4 stop = False
5 whi le pos < len(alist) and not found and not stop:
6 i f alist[pos] == item:
7 found = True
8 e l s e:
9 i f alist[pos] > item:

10 stop = True
11 e l s e:
12 pos = pos+1
13

14 re turn found

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Outline
1 What Is Algorithm Analysis?

Big-O Notation
An Anagram Example

2 Searching
The Sequential Search
The Binary Search
Hashing

3 Sorting
The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Binary search of an ordered list of integers

17 20 26 31 44 54 55 65 77 93

Start

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Binary Search of an Ordered List

1 def binarySearch(alist, item):
2 first = 0
3 last = len(alist)-1
4 found = False
5 whi le first<=last and not found:
6 midpoint = (first + last)/2
7 i f alist[midpoint] == item:
8 found = True
9 e l s e:

10 i f item < alist[midpoint]:
11 last = midpoint-1
12 e l s e:
13 first = midpoint+1
14

15 re turn found

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

A Binary Search–Recursive Version

1 def binarySearch(alist, item):
2 i f len(alist) == 0:
3 re turn False
4 e l s e:
5 midpoint = len(alist)/2
6 i f alist[midpoint]==item:
7 re turn True
8 e l s e:
9 i f item<alist[midpoint]:

10 re turn binarySearch(alist[:midpoint],item)
11 e l s e:
12 re turn binarySearch(alist[midpoint+1:],item)

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Outline
1 What Is Algorithm Analysis?

Big-O Notation
An Anagram Example

2 Searching
The Sequential Search
The Binary Search
Hashing

3 Sorting
The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Hash Table with 11 Empty Slots

None

0

None

1

None

2

None

3

None

4

None

5

None

6

None

7

None

8

None

9

None

10

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Hash Table with Six Items

77

0

None

1

None

2

None

3

26

4

93

5

17

6

None

7

None

8

31

9

54

10

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Hashing a String Using Ordinal Values

c a t

99 97 116+ + =

312 % 11 4

312

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Simple Hash Function for Strings

1 def hash(astring, tablesize):
2 sum = 0
3 f o r pos in range(len(astring)):
4 sum = sum + ord(astring[pos])
5

6 re turn sum%tablesize

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Hashing a String Using Ordinal Values with Weighting

c a t

99*1 97*2 116*3+ + =

641 % 11 3

641

1 2 3

position

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Collision Resolution with Linear Probing

77

0

44

1

55

2

20

3

26

4

93

5

17

6

None

7

None

8

31

9

54

10

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

A Cluster of Items for Slot 0

77

0

44

1

55

2

20

3

26

4

93

5

17

6

None

7

None

8

31

9

54

10

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Collision Resolution Using “Plus 3”

77

0

55

1

None

2

44

3

26

4

93

5

17

6

20

7

None

8

31

9

54

10

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Collision Resolution with Quadratic Probing

77

0

44

1

20

2

55

3

26

4

93

5

17

6

None

7

None

8

31

9

54

10

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

Collision Resolution with Chaining

0

None

1

None

2

None

3 4 5 6

None

7

None

8 9 10

5426 93 1777 31

44

55

20

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

HashTable(size) creates a new hash table. It needs
the size and returns a hash table with size empty slots
named 0 through size-1.
store(item, data) stores a new piece of data in the
hash table using the item as the key location. It needs the
item and the associated data. It returns nothing.
search(item) returns the data value associated with the
key item. It returns None if the key is not in the hash table.

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

HashTable Implementation in Python–Constructor

1 c l a s s HashTable:
2 def __init__(self,size):
3 self.slots = [None] * size
4 self.data = [None] * size

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

HashTable Implementation in Python–Store Method I

1 def store(self,item,data):
2 hashvalue = self.hashfunction(item,len(self.slots))
3

4 i f self.slots[hashvalue] == None:
5 self.slots[hashvalue] = item
6 self.data[hashvalue] = data
7 e l s e:
8 nextslot = self.rehash(hashvalue,len(self.slots))
9 whi le self.slots[nextslot] != None:

10 nextslot = self.rehash(nextslot,len(self.slots))
11

12 self.slots[nextslot]=item
13 self.data[nextslot]=data
14

15

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Sequential Search
The Binary Search
Hashing

HashTable Implementation in Python–Store Method
II

16

17 def hashfunction(self,item,size):
18 re turn item%size
19

20 def rehash(self,oldhash,size):
21 re turn (oldhash+1)%size

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Outline
1 What Is Algorithm Analysis?

Big-O Notation
An Anagram Example

2 Searching
The Sequential Search
The Binary Search
Hashing

3 Sorting
The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

bubbleSort: The First Pass

54 26 93 17 77 31 44 55 20

26 54 93 17 77 31 44 55 20

26 54 93 17 77 31 44 55 20

26 54 17 93 77 31 44 55 20

26 54 17 77 93 31 44 55 20

26 54 17 77 31 93 44 55 20

26 54 17 77 31 44 93 55 20

26 54 17 77 31 44 55 93 20

Exchange

No Exchange

Exchange

Exchange

Exchange

Exchange

Exchange

Exchange

26 54 17 77 31 44 55 20 93 93 in place
after first pass

First pass

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Exchanging Two Values in Python

93 44

i j

temp

1st 3rd

2nd

93 44

Most programming languages require a 3-step
process with an extra storage location.

In Python, exchange can be done as
two simultaneous assignments.

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

A Bubble Sort

1 def bubbleSort(alist):
2 f o r passnum in range(len(alist)-1,0,-1):
3 f o r i in range(passnum):
4 i f alist[i]>alist[i+1]:
5 alist[i],alist[i+1]=alist[i+1],alist[i]

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

A Modified Bubble Sort

1 def shortBubbleSort(alist):
2 exchanges = True
3 passnum = len(alist)-1
4 whi le passnum > 0 and exchanges:
5 exchanges = False
6 f o r i in range(passnum):
7 i f alist[i]>alist[i+1]:
8 exchanges = True
9 alist[i],alist[i+1]=alist[i+1],alist[i]

10 passnum = passnum-1

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Outline
1 What Is Algorithm Analysis?

Big-O Notation
An Anagram Example

2 Searching
The Sequential Search
The Binary Search
Hashing

3 Sorting
The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

selectionSort

54 26 93 17 77 31 44 55 20

26 54 20 17 77 31 44 55 93

93 is largest

77 is largest

26 54 20 17 55 31 44 77 93 55 is largest

26 54 20 17 44 31 55 77 93 54 is largest

26 31 20 17 44 54 55 77 93 44 is largest
stays in place

26 31 20 17 44 54 55 77 93 31 is largest

26 17 20 31 44 54 55 77 93 26 is largest

20 17 26 31 44 54 55 77 93 20 is largest

17 20 26 31 44 54 55 77 93 17 ok
list is sorted

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

A Selection Sort

1 def selectionSort(alist):
2 f o r fillslot in range(len(alist)-1,0,-1):
3 positionOfMax=0
4 f o r location in range(1,fillslot+1):
5 i f alist[location]>alist[positionOfMax]:
6 positionOfMax = location
7

8 alist[positionOfMax],alist[fillslot] = \
9 alist[fillslot],alist[positionOfMax]

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Outline
1 What Is Algorithm Analysis?

Big-O Notation
An Anagram Example

2 Searching
The Sequential Search
The Binary Search
Hashing

3 Sorting
The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

insertionSort

54 26 93 17 77 31 44 55 20

26 54 93 17 77 31 44 55 20

26 54 93 17 77 31 44 55 20

17 26 54 93 77 31 44 55 20

17 26 54 77 93 31 44 55 20

17 26 31 54 77 93 44 55 20

17 26 31 44 54 77 93 55 20

17 26 31 44 54 55 77 93 20

17 20 26 31 44 54 55 77 93

Assume 54 is a sorted
list of 1 item

inserted 26

inserted 93

inserted 17

inserted 77

inserted 31

inserted 44

inserted 55

inserted 20

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

insertionSort: Fifth Pass of the Sort

17 26 54 77 93 31 44 55 20

17 26 54 77 93 44 55 20

Need to insert 31
back into the sorted list

93>31 so shift it
to the right

17 26 54 77 93 44 55 20 77>31 so shift it
to the right

17 26 54 77 93 44 55 20 54>31 so shift it
to the right

17 26 31 54 77 93 44 55 20 26<31 so insert 31
in this position

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

insertionSort

1 def insertionSort(alist):
2 f o r index in range(1,len(alist)):
3

4 currentvalue = alist[index]
5 position = index
6

7 whi le position>0 and alist[position-1]>currentvalue:
8 alist[position]=alist[position-1]
9 position = position-1

10

11 alist[position]=currentvalue

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Outline
1 What Is Algorithm Analysis?

Big-O Notation
An Anagram Example

2 Searching
The Sequential Search
The Binary Search
Hashing

3 Sorting
The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

A Shell Sort with Increments of Three

54 26 93 17 77 31 44 55 20

54 26 93 17 77 31 44 55 20

54 26 93 17 77 31 44 55 20

sublist 1

sublist 2

sublist 3

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

A Shell Sort after Sorting Each Sublist

17 26 93 44 77 31 54 55 20

54 26 93 17 55 31 44 77 20

54 26 20 17 77 31 44 55 93

sublist 1 sorted

sublist 2 sorted

sublist 3 sorted

17 26 20 44 55 31 54 77 93 after sorting sublists
at increment 3

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

ShellSort: A Final Insertion Sort with Increment of 1

17 26 20 44 55 31 54 77 93 1 shift for 20

17 20 26 44 55 31 54 77 93 2 shifts for 31

17 20 26 31 44 55 54 77 93 1 shift for 54

17 20 26 31 44 54 55 77 93 sorted

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Initial Sublists for a Shell Sort

54 26 93 17 77 31 44 55 20

54 26 93 17 77 31 44 55 20

54 26 93 17 77 31 44 55 20

sublist 1

sublist 2

sublist 3

54 26 93 17 77 31 44 55 20 sublist 4

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

shellSort I

1 def shellSort(alist):
2 sublistcount = len(alist)/2
3 whi le sublistcount > 0:
4

5 f o r startposition in range(sublistcount):
6 gapInsertionSort(alist,startposition,sublistcount)
7

8 p r i n t "After increments of size",sublistcount,
9 "The list is",alist

10

11 sublistcount = sublistcount / 2
12

13

14

15

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

shellSort II

16 def gapInsertionSort(alist,start,gap):
17 f o r i in range(start+gap,len(alist),gap):
18

19 currentvalue = alist[i]
20 position = i
21

22 whi le position>=gap and \
23 alist[position-gap]>currentvalue:
24 alist[position]=alist[position-gap]
25 position = position-gap
26

27 alist[position]=currentvalue

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Outline
1 What Is Algorithm Analysis?

Big-O Notation
An Anagram Example

2 Searching
The Sequential Search
The Binary Search
Hashing

3 Sorting
The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Splitting and Merging in a Merge Sort

54 26 93 17 77 31 44 55 20

54 26 93 17 77 31 44 55 20

54 26 93 17 77 31 44 55 20

54 26 93 17 77 31 44 55 20

55 20

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Splitting and Merging in a Merge Sort

17 20 26 31 44 54 55 77 93

17 26 54 93

20 31 44 55 77

26 54 17 93 31 77

20 44 55

54 26 93 17 77 31 44

20 55

55 20

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

mergeSort I

1 def mergeSort(alist):
2 p r i n t "Splitting ",alist
3 i f len(alist)>1:
4 mid = len(alist)/2
5 lefthalf = alist[:mid]
6 righthalf = alist[mid:]
7

8 mergeSort(lefthalf)
9 mergeSort(righthalf)

10

11

12

13

14

15

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

mergeSort II

16 i=0
17 j=0
18 k=0
19 whi le i<len(lefthalf) and j<len(righthalf):
20 i f lefthalf[i]<righthalf[j]:
21 alist[k]=lefthalf[i]
22 i=i+1
23 e l s e:
24 alist[k]=righthalf[j]
25 j=j+1
26 k=k+1
27

28

29

30

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

mergeSort III

31

32 whi le i<len(lefthalf):
33 alist[k]=lefthalf[i]
34 i=i+1
35 k=k+1
36

37 whi le j<len(righthalf):
38 alist[k]=righthalf[j]
39 j=j+1
40 k=k+1
41 p r i n t "Merging ",alist

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Outline
1 What Is Algorithm Analysis?

Big-O Notation
An Anagram Example

2 Searching
The Sequential Search
The Binary Search
Hashing

3 Sorting
The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

The First Pivot Value for a Quick Sort

54 26 93 17 77 31 44 55 20 54 will be the
first pivot value

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Finding the Split Point for 54

54 26 93 17 77 31 44 55 20

leftmark rightmark

54 26 93 17 77 31 44 55 20

leftmark rightmark

54 26 93 17 77 31 44 55 20

leftmark rightmark

54 26 20 17 77 31 44 55 93

leftmark rightmark

54 26 20 17 44 31 77 55 93

leftmarkrightmark

26<54 move to right
93>54 stop

now rightmark
20<54 stop

54 26 20 17 77 31 44 55 93

leftmark rightmark

exchange 20 and 93

77>54 stop
44<54 stop

exchange 77 and 44

77>54 stop
31<54 stop

rightmark<leftmark
split point found

exchange 54 and 31

leftmark and rightmark
will converge on split point

now continue moving leftmark and rightmark

until they cross

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

Completing the Partition Process to Find the Split
Point for 54

31 26 20 17 44 54 77 55 93 54 is in place

<54 >54

31 26 20 17 44 77 55 93

quicksort left half quicksort right half

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

A Quick Sort I

1 def quickSort(alist):
2 quickSortHelper(alist,0,len(alist)-1)
3

4 def quickSortHelper(alist,first,last):
5 i f first<last:
6

7 splitpoint = partition(alist,first,last)
8

9 quickSortHelper(alist,first,splitpoint-1)
10 quickSortHelper(alist,splitpoint+1,last)
11

12

13

14

15

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

A Quick Sort II

16 def partition(alist,first,last):
17 pivotvalue = alist[first]
18

19 leftmark = first+1
20 rightmark = last
21

22 done = False
23 whi le not done:
24 whi le leftmark <= rightmark and \
25 alist[leftmark] < pivotvalue:
26 leftmark = leftmark + 1
27

28 whi le alist[rightmark] > pivotvalue and \
29 rightmark >= leftmark:
30 rightmark = rightmark -1

Algorithm Analysis

What Is Algorithm Analysis?
Searching

Sorting

The Bubble Sort
The Selection Sort
The Insertion Sort
The Shell Sort
The Merge Sort
The Quick Sort

A Quick Sort III

31

32 i f rightmark < leftmark:
33 done = True
34 e l s e:
35 alist[leftmark],alist[rightmark]= \
36 alist[rightmark],alist[leftmark]
37

38 alist[first],alist[rightmark]= \
39 alist[rightmark],alist[first]
40

41 re turn rightmark

Algorithm Analysis

	What Is Algorithm Analysis?
	Big-O Notation
	An Anagram Example

	Searching
	The Sequential Search
	The Binary Search
	Hashing

	Sorting
	The Bubble Sort
	The Selection Sort
	The Insertion Sort
	The Shell Sort
	The Merge Sort
	The Quick Sort

