
Algorithms in Systems Engineering
ISE 172

Lecture 17

Dr. Ted Ralphs

ISE 172 Lecture 17 1

References for Today’s Lecture

• Required reading

– Sections 7.1-7.3

• References

– CLRS Chapter 21 and 22
– R. Sedgewick, Algorithms in C++ (Third Edition), 1998.

1

ISE 172 Lecture 17 2

Connectivity Relations

• So far, we have only considered sets of items that are related to each
other through some kind of ordering (if at all).

• In other words, two items x and y are only related by their relative
positions in the ordered list.

• We will now generalize this idea by considering additional connectivity
relationships between items.

• To do so, we will specify that there is a direct link between certain pairs
of items.

• This will allow us to ask questions such as the following.

– Is x connected “directly” to y?
– Is x connected to y “indirectly,” i.e., through a sequence of direct

connections?
– What is the set of of all items connected to x, directly or indirectly?
– What is the shortest number of connections needed to get from x to

y?

2

ISE 172 Lecture 17 3

Graphs

• A graph is an abstract object used to model such connectivity relations.

• A graph consists of a list of items, along with a set of connections
between the items.

• The study of such graphs and their properties, called graph theory, is
hundreds of years old.

• Graphs can be visualized easily by creating a physical manifestation.

• There are several variations on this theme.

– The connections in the graph may or may not have an orientation or
a direction.

– We may not allow more than one connection between a pair of items.
– We may not allow an item to be connected to itself.

• For now, we consider graphs that are

– undirected, i.e., the connections do not have an orientation, and
– simple, i.e., we allow only one connection between each pair of items

and no connections from an item to itself.

3

ISE 172 Lecture 17 4

Applications of Graphs

• Maps

• Social Networks

• World Wide Web

• Circuits

• Scheduling

• Communication Networks

• Matching and Assignment

4

ISE 172 Lecture 17 5

Graphs from Social Networks

5

ISE 172 Lecture 17 6

A Facebook Graph

6

ISE 172 Lecture 17 7

Graphs from Map Data

7

ISE 172 Lecture 17 8

Graphs for Fun

8

ISE 172 Lecture 17 9

Example of an Abstract Graph

9

ISE 172 Lecture 17 10

Graph Terminology and Notation

• In an undirected graph, the “items” are usually called vertices (sometimes
also called nodes).

• The set of vertices is denoted V and the vertices are indexed from 0 to
n− 1, where n = |V |.

• The connections between the vertices are unordered pairs called edges.

• The set of edges is denoted E and m = |E| ≤ n(n− 1)/2.

• An undirected graph G = (V,E) is then composed of a set of vertices V
and a set of edges E ⊆ V × V .

• If e = {i, j} ∈ E, then

– i and j are called the endpoints of e,
– e is said to be incident to i and j, and
– i and j are said to be adjacent vertices and are also called neighbors.

10

ISE 172 Lecture 17 11

A Tour of a Graph Made from Map Data

11

ISE 172 Lecture 17 12

More Terminology

• Let G = (V,E) be an undirected graph.

• A subgraph of G is a graph composed of an edge set E′ ⊆ E along with
all incident vertices.

• A subset V ′ of V , along with all incident edges is called an induced
subgraph.

• A path in G is a sequence of vertices such that each vertex is adjacent
to the vertex preceding it in the sequence.

• A path is simple if no vertex occurs more than once in the sequence.

• A cycle is a path that is simple except that the first and last vertices are
the same.

• A tour is a cycle that includes all the vertices.

12

ISE 172 Lecture 17 13

Operations on Graphs

• What are the basic operations we might want to perform on a graph?

13

ISE 172 Lecture 17 14

Graph API

class Graph:

def __init__(self, **attr):

for a in attr:

self.attr[a] = attr[a]

self.nodes = {}

self.neighbors = {}

self.edge_attrs = {}

def get_node(self, name)

def get_node_list(self)

def get_edge_list(self)

def add_node(self, name, **attr)

def del_node(self, name)

def add_edge(self, name1, name2, **attr)

def del_edge(self, name1, name2)

def check_edge(self, name1, name2)

def get_node_attr(self, name, attr)

def get_edge_attr(self, name1, name2, attr)

def set_node_attr(self, name, attr, value)

def set_node_attr(self, name1, name2, attr, value)

get_neighbors(self, name)

def __repr__(self)

14

ISE 172 Lecture 17 15

Node Class

class Node:

def __init__(self, name, **attr):

self.name = name

self.attr = copy.deepcopy(DEFAULT_NODE_ATTRIBUTES)

for a in attr:

self.attr[a] = attr[a]

def set_attr(self, attr, value)

__repr__(self)

• This is a generalization of the Node class from linked lists in which we
have not just a single “next” node, but a collection of them.

• In other words, a linked list is a special kind of graph.

• What other places have we already seen graphs?

15

ISE 172 Lecture 17 16

The Maze Lab

• In the maze lab, we were actually working with a graph.

• The “nodes” were the empty cells (the ones without walls).

• We had an “edge” anywhere there was two adjacent empty cells.

• We tried to find a path from the “entrance node” to the “exit node”.

• This is very similar to the kinds of problem we will want to solve on more
general graphs.

• Note that we stored the graph in the maze lab implicitly by storing the
location of the nodes.

• The existence of edges was checked by applying rules about which nodes
are connected according their location on the grid.

16

ISE 172 Lecture 17 17

A Graph from a Maze

17

ISE 172 Lecture 17 18

Trees as Graphs

• In graph terminology, a tree is a connected graph with no cycles and a
forest is a graph consisting of a collection of trees.

• Properties of trees

– Every tree has exactly n− 1 edges.
– In a tree, there is a unique path from any given vertex to any other

vertex.

• A tree that has a specified root vertex is called a rooted tree.

– In a rooted tree, there is a unique path from the root to every other
vertex.

– We can therefore uniquely define the parent of a vertex v as the vertex
that immediately precedes it on the path from the root to v.

– Hence, we are justified in thinking of trees in the way that we had
previously, as a set of hierarchical relationships between the vertices.

18

ISE 172 Lecture 17 19

Data Structures for Undirected Graphs

• To support these basic graph operations, we need a data structure to
store the graph.

• As with many previous data structures, there are generally two different
ways to compactly represent a graph (with many variations).

– Ajacency matrix: An implementation based on arrays.
– Adjacency lists: An implementation based on linked lists.

• We have to analyze the tradeoffs between these two representations, as
we have before.

19

ISE 172 Lecture 17 20

Adjacency Matrix Implementation

• Consider an undirected graph G = (V,E).

• The adjacency matrix A of G is an n × n symmetric 0 − 1 matrix
constructed as follows:

Aij = Aji =

{
1 if {i, j} ∈ E, and

0 otherwise.

• How do we implement the Graph class using an adjacency matrix?

20

ISE 172 Lecture 17 21

Efficiency of Adjacency Matrices

• A fundamental operation we will to be able to perform efficiently is to
find out which nodes are neighbors of a particular given node.

• How easily can we do this with an adjacency matrix?

• What is the running time of this basic operation?

• Can we do better?

21

ISE 172 Lecture 17 22

Adjacency Lists Implementation

• The adjacency list for node i is a linked list of all other nodes adjacent
to i in the graph.

• What we are essentially doing is compressing one row of the adjacency
matrix by storing just the locations of the nonzero entries.

• Since most rows are extremely sparse, this is very advantageous.

• Note that adjacency lists do not have to be in any particular order.

• An adjacency list representation of a graph consists of an adjacency list
for each node in the graph.

• How do we implement the Graph class using an adjacency lists?

22

ISE 172 Lecture 17 23

Comparing the Implementations

• How does the adjacency list implementation compare to the adjacency
matrix implementation?

– Efficiency of basic operations
– Memory requirements

23

ISE 172 Lecture 17 24

A Client Function for Printing a Graph

• Here’s an example of a standard way in which the graph interface class
is used.

• Here, we print out a graph by enumerating all the edges incident to each
vertex.

def print(G):

for n in G.get_node_list():

print(n, ":")

for i in G.get_neighbors(n):

print(i)

print()

24

