Algorithms in Systems Engineering
ISE 172

Lecture 17

Dr. Ted Ralphs

ISE 172 Lecture 17

References for Today’s Lecture

e Required reading
— Sections 7.1-7.3

e References

— CLRS Chapter 21 and 22
— R. Sedgewick, Algorithms in C++ (Third Edition), 1998.

ISE 172 Lecture 17 2

Connectivity Relations

e So far, we have only considered sets of items that are related to each
other through some kind of ordering (if at all).

e In other words, two items x and y are only related by their relative
positions in the ordered list.

e \We will now generalize this idea by considering additional connectivity
relationships between items.

e To do so, we will specify that there is a direct link between certain pairs
of items.

e This will allow us to ask questions such as the following.

— Is £ connected “directly” to y?

— Is x connected to y “indirectly,” i.e., through a sequence of direct
connections?

— What is the set of of all items connected to x, directly or indirectly?

— What is the shortest number of connections needed to get from x to

y?

ISE 172 Lecture 17 3

Graphs

A graph is an abstract object used to model such connectivity relations.

A graph consists of a list of items, along with a set of connections
between the items.

The study of such graphs and their properties, called graph theory, is
hundreds of years old.

Graphs can be visualized easily by creating a physical manifestation.
There are several variations on this theme.

— The connections in the graph may or may not have an orientation or
a direction.

— We may not allow more than one connection between a pair of items.

— We may not allow an item to be connected to itself.

For now, we consider graphs that are

— undirected, i.e., the connections do not have an orientation, and
— simple, i.e., we allow only one connection between each pair of items
and no connections from an item to itself.

ISE 172 Lecture 17

Applications of Graphs

e Maps

e Social Networks

e World Wide Web

e Circuits

e Scheduling

e Communication Networks

e Matching and Assignment

ISE 172 Lecture 17

Graphs from Social Networks

. Ted Ralphs's Professional Network
LlnkEdm' MaPS as of August 28, 2012

~@2011 LinkedIn - Get your network map at inmaps.linkedinlabs.com

ISE 172 Lecture 17

A Facebook Graph

ISE 172 Lecture 17

Hanover
Township
S Northwest X1
Club
quh River.
v
S
<
&
S

Graphs from Map Data

SHIMER

Cree,

Monocy

Monocaty TRk

Paint Mill Pond

UTZTOWN

stakk Popl’

AIRivg
wig! 7
5

\Jr_
burg
| S
o
&
]
I
o
end
tsicie Aol .
enighiRiver
| Jenigh R er
ARiver
enig
= - =
T {1
2
5y
W'/ aucoff ParfTEy
Fountain Hill

ool

z
LT
ivey

Bethlehem
Township Poc

ISE 172 Lecture 17

Graphs for Fun

Erich von Stroheim

oo st >
(s s> ™

Sterling Hayden
Peter Sellers '

Laurence Fishbume

Heath Ledger

Leonardo DiCaprio

Beverly D'Angelo

Robert De Niro .

Dorothy Comingore

Donna Reed

Tennifer Connelly
Ellen Burstyn '

Orson Welles @y
Humphrey Bogart
‘ Ingiid Bergman

Herbert Gmemeyer I Klaus Wennemann
Nicoletta Braschi
Roberto Benigi '

Gomran> Comomm>

Adolphe Menjou

ISE 172 Lecture 17

Example of an Abstract Graph

ISE 172 Lecture 17 10

Graph Terminology and Notation

e In an undirected graph, the “items” are usually called vertices (sometimes
also called nodes).

e [he set of vertices is denoted VV and the vertices are indexed from 0O to
n — 1, where n = |V|.

e T[he connections between the vertices are unordered pairs called edges.
e The set of edges is denoted E and m = |E| <n(n —1)/2.

e An undirected graph G = (V, E) is then composed of a set of vertices V
and a set of edges E C V x V.

o Ife=1{i,j} € F, then

— ¢ and j are called the endpoints of e,
— e Is said to be incident to ¢ and j, and
— 72 and j are said to be adjacent vertices and are also called neighbors.

ISE 172 Lecture 17 11

A Tour of a Graph Made from Map Data

ST \)
P :L. Neareth . g Washington Mn_d’p Satellne|

P Basking—
ipoli 5to Ridge PR

£ > NewTripoli _Easton
v Whitehall 1 2020] ‘H = r/ ___,—-W
‘ | ton Flainfiel
Allentown Erldgewater
& N 7 e
) Ji :
Emmaus 132 b
e el Kutztown €

Wﬁlﬁﬁ New./

Belle Mead ~ Brunswick

-.!.-' £ Fleetwood

LE=

/ Kendall Park ';l-'_
¥ d! & _ 3 |
1 : -3 Princeton
F]B'a:llng — /
g = | 5
B 11
W g s
{| Cream Ridge
lolland || = Chester Ja
- Ll bus NewE
— [' & LT gypt
% Wayné Philadelphia Philadelphia
lle & e P 2 .
==Coatesville We . o : Bﬁm;la
2018 12 t Laurel '
. Evesham @
205 :
%, j#Z 2 i - Township o,
o : e Gloucester % ' ey
HO’CkE‘SSII‘I ,—3 awnship '%:, iy
I tun Y = i
Wilming ' mullie
: Chy Wharton -
i3 Telegraph Rd (2) ﬂ F 13 BRGNS ¥ Ry @s:ateFurest
Brookside Winslow i dnmed oy
F'-Ennswlle “Township . 55 fiiver (4)

Tuwnshlp g i g
Elktnn. o . Ftanklin _Wh '-?ﬂ# g N Tue
| alem 2 R -
f AS008 .l| R D) g : _ .) Ay L

Map data 2014 Google Terms of Use Report a map emor

ISE 172 Lecture 17 12

More Terminology

o Let G = (V, E) be an undirected graph.

e A subgraph of GG is a graph composed of an edge set &/ C E along with
all incident vertices.

e A subset V'’ of V, along with all incident edges is called an induced
subgraph.

e A path in G is a sequence of vertices such that each vertex is adjacent
to the vertex preceding it in the sequence.

e A path is simple if no vertex occurs more than once in the sequence.

e A cycleis a path that is simple except that the first and last vertices are
the same.

e A touris a cycle that includes all the vertices.

ISE 172 Lecture 17

13

Operations on Graphs

e What are the basic operations we might want to perform on a graph?

ISE 172 Lecture 17

14

Graph API

class Graph:

def

def
def
def
def
def
def
def
def
def
def
def
def
get
def

__init__(self, **xattr):
for a in attr:

self.attr[a] = attr[a]
self .nodes = {}
self .neighbors = {}
self .edge_attrs = {}
get_node(self, name)
get_node_list(self)
get_edge_list(self)
add_node(self, name, **attr)
del_node(self, name)
add_edge(self, namel, name2, **attr)
del_edge(self, namel, name2)
check_edge(self, namel, name?2)
get_node_attr(self, name, attr)
get_edge_attr(self, namel, name2, attr)
set_node_attr(self, name, attr, value)
set_node_attr(self, namel, name2, attr, value)
neighbors(self, name)
_repr__(self)

ISE 172 Lecture 17 15

Node Class

class Node:
def __init__(self, name, **attr):

self .name = name

self.attr = copy.deepcopy (DEFAULT_NODE_ATTRIBUTES)
for a in attr:

self.attr[a]l = attr[a]
def set_attr(self, attr, value)
__repr__(self)

e This is a generalization of the Node class from linked lists in which we
have not just a single “next” node, but a collection of them.

e |n other words, a linked list is a special kind of graph.

e What other places have we already seen graphs?

ISE 172 Lecture 17 16

The Maze Lab

e |n the maze lab, we were actually working with a graph.

e The “nodes” were the empty cells (the ones without walls).

e We had an “edge” anywhere there was two adjacent empty cells.

e We tried to find a path from the “entrance node” to the “exit node”.

e This is very similar to the kinds of problem we will want to solve on more
general graphs.

e Note that we stored the graph in the maze lab implicitly by storing the
location of the nodes.

e The existence of edges was checked by applying rules about which nodes
are connected according their location on the grid.

_: g |
AR

ISE 172 Lecture 17 18

Trees as Graphs

e |n graph terminology, a tree is a connected graph with no cycles and a
forest is a graph consisting of a collection of trees.

e Properties of trees

— Every tree has exactly n — 1 edges.
— In a tree, there is a unique path from any given vertex to any other

vertex.
e A tree that has a specified root vertex is called a rooted tree.

— In a rooted tree, there is a unique path from the root to every other
vertex.

— We can therefore uniquely define the parent of a vertex v as the vertex
that immediately precedes it on the path from the root to v.

— Hence, we are justified in thinking of trees in the way that we had
previously, as a set of hierarchical relationships between the vertices.

ISE 172 Lecture 17 19

Data Structures for Undirected Graphs

e To support these basic graph operations, we need a data structure to
store the graph.

e As with many previous data structures, there are generally two different
ways to compactly represent a graph (with many variations).

— Ajacency matrix: An implementation based on arrays.
— Adjacency lists: An implementation based on linked lists.

e \We have to analyze the tradeoffs between these two representations, as
we have before.

ISE 172 Lecture 17 20

Adjacency Matrix Implementation

e Consider an undirected graph G = (V, F).

e The adjacency matrix A of G is an n X n symmetric 0 — 1 matrix
constructed as follows:

0 otherwise.

Aij = Aj = {1 if {¢,j} € E, and

e How do we implement the Graph class using an adjacency matrix?

ISE 172 Lecture 17 21

Efficiency of Adjacency Matrices

e A fundamental operation we will to be able to perform efficiently is to
find out which nodes are neighbors of a particular given node.

e How easily can we do this with an adjacency matrix?
e What is the running time of this basic operation?

e Can we do better?

ISE 172 Lecture 17 22

Adjacency Lists Implementation

e The adjacency list for node ¢ is a linked list of all other nodes adjacent
to 7 in the graph.

e What we are essentially doing is compressing one row of the adjacency
matrix by storing just the locations of the nonzero entries.

e Since most rows are extremely sparse, this is very advantageous.
e Note that adjacency lists do not have to be in any particular order.

e An adjacency list representation of a graph consists of an adjacency list
for each node in the graph.

e How do we implement the Graph class using an adjacency lists?

ISE 172 Lecture 17 23

Comparing the Implementations

e How does the adjacency list implementation compare to the adjacency
matrix implementation?

— Efficiency of basic operations
— Memory requirements

ISE 172 Lecture 17 24

A Client Function for Printing a Graph

e Here's an example of a standard way in which the graph interface class
is used.

e Here, we print out a graph by enumerating all the edges incident to each
vertex.

def print(G):
for n in G.get_node_list():
print(n, ":")
for i in G.get_neighbors(n):
print (i)
print ()

