
Algorithms in Systems Engineering
IE170

Lecture 9

Dr. Ted Ralphs

IE170 Lecture 9 1

References for Today’s Lecture

• Required reading

– CLRS Chapter 12

• References

– D.E. Knuth, The Art of Computer Programming, Volume 3: Sorting
and Searching (Third Edition), 1998.

– R. Sedgewick, Algorithms in C++ (Third Edition), 1998.

1

IE170 Lecture 9 2

Symbol Tables and Dictionaries

• In the last few lectures, we discussed various methods for sorting a list
of items by a specified key.

• We now consider further operations on such lists.

• A symbol table is a data structure for storing a list of items, each with a
key and satellite data, supporting the following basic operations.

– Construct a symbol table.
– Search for an item (or items) having a specified key.
– Insert an item.
– Remove a specified item.
– Count the number of items.
– Print the list of items.

• Symbol tables are also called dictionaries because of the obvious
comparison with looking up entries in a dictionary.

• Note that the keys may not have an ordering.

2

IE170 Lecture 9 3

Additional Operations on Symbol Tables

• If the items can be ordered, e.g., by operator< and operator ==, we
may support the following additional operations.

– Sort the items (print them in sorted order).
– Return the maximum or minimum item.
– Select the kth item.
– Return the successor or predecessor of a given item.

• We may also want to be able to join two symbol tables into one.

• These operations may or may not be supported in various
implementations.

3

IE170 Lecture 9 4

Applications of Symbol Tables

• What are some applications of symbol tables?

4

IE170 Lecture 9 5

Symbol Tables with Integer Keys

• Consider a list of items whose keys are small positive integers.

• Assuming no duplicate keys, we can implement such a symbol table using
an array.

class sybmolTable
{

private:
symbolTable(); \\ Disable the default constructor
Item** st_; \\ An array of pointers to the items
const int maxKey_; \\ The maximum allowed value of a key

public:
symbolTable (const int M); \\ Constructor
~symbolTable (); \\ Destructor
int getNumItems() const;
Item* search (const int k) const;
Item* select (int k) const;
void insert (Item* it);
void remove (Item* it);
void sort (ostream& os);

}

5

IE170 Lecture 9 6

Implementation

symbolTable::symbolTable (const int M)
{

maxKey_ = M;
st_ = new Item* [M];
for (int i = 0; i < M; i++) { st_[i] = 0; }

}

void symbolTable::insert(Item* it)
{ st_[it.getKey()] = it; }

void symbolTable::remove(Item* it)
{ delete st_[it.getKey()]; st_[it.getKey()] = 0; }

Item* symbolTable::search(const int k) const
{ return st_[k]; }

6

IE170 Lecture 9 7

Implementation (cont.)

Item* select(int k)
{

for (int i = 0; i < maxKey_; i++)
if (st_[i])

if (k-- == 0) return st_[i];
}

Item sort(ostream& os)
{

for (int i = 0; i < maxKey_; i++)
if (st_[i])

os << *st_[i];
}

int getNumItems() const
{

int j(0);
for (int i = 0; i<maxKey_; i++) { if (st_[i]) j++; }
return j;

}

7

IE170 Lecture 9 8

Arbitrary Keys

• Note that with arrays, most operations are constant time.

• What if the keys are not integers or have arbitrary value?

• We could still use an array or a linear linked list to store the items.

• However, some of the operations would become inefficient.

• Recall Lab 1

– If we keep the items in order, searching would be efficient (binary
search), but inserting would be inefficient.

– If we kept the items unordered, inserting would be efficient, but
searching would be inefficient (sequential search).

• A binary search tree (BST) is a more efficient data structure for
implementing symbol tables where the keys are an arbitrary data type.

8

IE170 Lecture 9 9

Binary Search Trees

• To use the BST data structure, the keys must have an order.

• As with heaps, a binary search tree is a binary tree with additional
structure.

• In a binary tree, the key value of any node is

– greater than or equal to the key value of all nodes in its left subtree;
– less than or equal to the key value of all nodes in its right subtree.

• For now, we will assume that all keys are unique.

• With this simple structure, we can implement all functions efficiently.

9

IE170 Lecture 9 10

Searching

• Search in a BST can be implemented recursively in a fashion similar to
binary search, starting with the root as the current node.

– If the pointer to the current node is 0, then return 0.
– Otherwise, compare the search key to the current node’s key, if it

exists.
– If the keys are equal, then return a pointer to the current node.
– If the search key is smaller, recursively search in the left subtree.
– If the search key is larger, recursively search in the right subtree.

• What is the running time of this operation?

10

IE170 Lecture 9 11

Inserting a Node

• The procedure for inserting a node is similar to that for searching.

• As before, we will assume there is no item with an identical key already
in the tree.

• We simply perform an unsuccessful search and insert the node in place
of the final 0 pointer at the end of the search path.

• This places it where we would expect to find it the next time we look.

• The running time is the same as searching.

• Constructing a BST from a given list of elements can be done by
iteratively inserting each element.

11

IE170 Lecture 9 12

Finding the Minimum and Maximum

• Finding the minimum and maximum is a simple procedure.

• The minimum is the leftmost node in the tree.

• The maximum is the rightmost node in the tree.

12

IE170 Lecture 9 13

Sorting

• We can easily read off the items from a BST in sorted order.

• This involves walking the tree in a specified way.

• Walking the tree is done recursively by first walking the left subtree and
then the right subtree.

• This leads to three different orders in which we can display the key values
in the tree.

– To display the values in preorder, print the value of the current node
before recursively walking the two subtrees.

– To display the values in inorder, print the value of the current node
after walking the left subtree, but before walking the right subtree.

– To display the values in postorder, print the value of the current node
after walking both subtrees.

• Which display order will result in the printing of a sorted list?

13

IE170 Lecture 9 14

Finding the Predecessor and Successor

• To find the successor of a node x, think of an inorder tree walk.

• After visiting a given node, what is the next value to get printed out?

• We need to examine two cases.

– If x has a right child, then the successor is the node with the minimum
key in the right subtree (easy to find).

– Otherwise, the successor is the lowest ancestor of x whose left child is
also an ancestor of x (why?).

– To find such a node, we follow the path to the root until we reach a
node that is the left child of its parent.

– Note that if a node has two children, its successor cannot have a left
child (why not?).

• Finding the predecessor works the same way.

14

IE170 Lecture 9 15

Deleting a Node

• Deleting a node z from a BST is more complicated than other operations
because of the rigid structure that must be maintained.

• There are a number of algorithms for doing this.

• The most straightforward implementation considers three cases.

– If z has no children, then simply set the pointer to z in the parent to
be 0.

– If z has one child, then replace z with its child.
– If z has two children, then delete either the predecessor or the successor

and then replace z with it.

• Why does this work?

15

IE170 Lecture 9 16

Performance of BSTs

• Efficiency of the basic operations depends on the depth of the tree.

• Consider the search operation: what is the best case?

• The best case is to make the same comparisons as in binary search.

• However, this can only happen if the root of each subtree is the median
element of that subtree, i.e., the tree is balanced.

• Fortunately, if keys are added at random, this should be the case “on
average.”

– Like quicksort, the average performance is very good, but worst case
behavior is easy to find (where?).

– In fact, quicksort and BSTs exhibit worst case behavior on the same
inputs!

– As with quicksort, one can show that for a random sequence of keys,
the average depth of the tree is 2 ln n ≈ 1.39 lg n.

– Again, the average depth is only 40% higher than the best possible.
– Building a binary search tree has the same running time as quicksort!

16

IE170 Lecture 9 17

Handling Duplicate Keys

• What happens when the tree may contain duplicate keys?

• To make things easier, we can always insert items with duplicate keys in
the right subtree.

• To find all items with the same key, search for the first item and then
recursively search for the same item in the right subtree.

• Alternatively, we could maintain a linked list of items with the same key
at each node in the tree.

17

