Algorithms in Systems Engineering
IE170

Lecture 8

Dr. Ted Ralphs



IE170 Lecture 8 1
References for Today’s Lecture

e Required reading
— CLRS Chapter 7

e References

— D.E. Knuth, The Art of Computer Programming, Volume 3: Sorting
and Searching (Third Edition), 1998.
— R. Sedgewick, Algorithms in C++ (Third Edition), 1998.



[E170 Lecture 8 2

Quicksort

e We now discuss a sorting algorithm called quicksort similar to one that
we saw in Lab 2.

e The basic quicksort algorithm is as follows.

— (Choose a partition element.
— Partition the input array around that element to obtain two subarrays.
— Recursively call quick sort on the two subarrrays.

e Here is code for the basic algorithm.

void quicksort(Item* data, const int 1, const int r)
{

if (r <= 1) return;

int i = partition(data, 1, r);

quicksort(data, 1, i-1);

quicksort(data, i+1, r);



IE170 Lecture 8 3

Partitioning

e One big advantage of quicksort is that the partitioning (and hence the
entire algorithm) can be performed in place.

e Here is an in place implementation of the partitioning function.



IE170 Lecture 8 4

Analyzing Quicksort

e Questions to be answered

— How do we prove the correctness of quick sort?

— Does quicksort always terminate?

— Can we do some simple optimization to improve performance?

— What are the best case, worst case, and average case running times?

— How does quicksort perform on special files, such as those that are
almost sorted?



IE170 Lecture 8 5

Importance of the Partitioning Element

e Note that the performance of the algorithm depends primarily on the
chosen partition element.

e Some questions

— What is the “best” partition element to select?

— What is the running time if we always select the “best” partition
element?

— What is the “worst” partition element to select?

— What is the running time in the worst case?

— What is the running time in the average case?



IE170 Lecture 8 6

Choosing the Partitioning Element

e We would like the partition element to be as close to the middle of the
array as possible.

e However, we have no way to ensure this in general.

e |If the array is randomly ordered, any element will do, so choose the last
element (this was our original implementation).

e |f the array is almost sorted, this will be disastrous!

e To even the playing field, we can simply choose the partition element
randomly.

e How can we improve on this?



IE170 Lecture 8 7

More Simple Optimization

e Note that the check if (j == 1) in the partition function can be a
significant portion of the running time.

e This check is only there in case the partition element is the smallest
element in the array.

e Here again, we can use the concept of a sentinel, introduced in Lecture
4.

e |f we place a sentinel at the beginning of the array, we avoid this check.

e Another approach is to ensure that the pivot element is never the smallest
element of the array.

e If we use median-of-three partitioning, then the partition element can
never be the smallest element in the array.



IE170 Lecture 8 8

Average Case Analysis

e Assuming the partition element is chosen randomly, we can perform
average case analysis.

e The average case running time is the solution to the following recurrence.
1
T(n) = 14+ — Tk—1)+T(n—k
(n) n++n§ (k—=1)+T(n—k)

1<k<n
along with T'(0) = T'(1) = 1.

e Although this recurrence looks complicated, it's not too hard to solve.

e First, we simplify as follows.

2
T(n) = z -
(M) =n+14+= % T(k-1)
1<k<n



IE170 Lecture 8 9

Average Case Analysis (cont.)

e \We can eliminate the sum by multiplying both sides by n and subtracting
the formula for T(n-1).

nT'(n)—(n—1DTn—-1)=n(n+1)—(n—1)n+2T(n—1)

e [his results in the recurrence

nT(n)=mn+1)T(n—-1)+2n

e The solution to this is in O(nlgn).
e In fact, the exact solution is more like 1.39n g n.

e This means that the average case is only about 40% slower than the best
case!



IE170 Lecture 8 10

Duplicate Keys

Quicksort can be inefficient in the case that the file contains many
duplicate keys.

In fact, if the file consists entirely of records with identical keys, our
implementation so far will still perform the same amount of work.

The easiest way to handle this is to do three-way partitioning.

Instead of splitting the file into only two pieces, we have a third piece
consisting of the elements equal to the partition element.

Implementing this idea requires a little creativity.

How would you do it?



IE170 Lecture 8 11

Small Subarrays

e Another way in which quicksort, as well as other recursive algorithms can
be optimized is by sorting small subarrays directly using insertion sort.

e Empirically, subarrays of approximately 10 elements or smaller should be
sorted directly.

e An even better approach is to simply ignore the small subarrays and then
insertion sort the entire array once quick sort has finished.



IE170 Lecture 8 12

Stack Depth

e An important consideration with any recursive algorithm is the depth of
the call stack.

e Each recursive call means additional memory devoted to storing the
values of local variables and other information.

e In the worst case, quicksort can have a stack as deep as the number of
elements in the array.

e One way to deal with this is to ensure that the smaller of the two
subarrays is processed first.

e This does not affect the correctness.

e Even this idea will not work in a truly recursive implementation without
compiler optimization.

e The most memory-efficient implementation is a non-recursive one that
explicitly maintains the stack of subarrays to be sorted.



I[E170 Lecture 8

13

A Nonrecursive Quicksort

#include <stack>
void quicksort(Item* data, int 1, int r)
{
stack<int> s();
int m(0), n(0);
s.push(l); s.push(xr);
while (!s.empty()){
m = s.pop; n = s.popQ);
if (n <= m) continue;
int i = partition(data, m, n);
if (m-1 > n-i){
s.push(m); s.push(i-1); s.push(i+l); s.push(n);
telseq
s.push(i+1); s.push(n); s.push(m); s.push(i-1);
+



