
Algorithms in Systems Engineering
IE170

Lecture 8

Dr. Ted Ralphs



IE170 Lecture 8 1

References for Today’s Lecture

• Required reading

– CLRS Chapter 7

• References

– D.E. Knuth, The Art of Computer Programming, Volume 3: Sorting
and Searching (Third Edition), 1998.

– R. Sedgewick, Algorithms in C++ (Third Edition), 1998.

1



IE170 Lecture 8 2

Quicksort

• We now discuss a sorting algorithm called quicksort similar to one that
we saw in Lab 2.

• The basic quicksort algorithm is as follows.

– Choose a partition element.
– Partition the input array around that element to obtain two subarrays.
– Recursively call quick sort on the two subarrrays.

• Here is code for the basic algorithm.

void quicksort(Item* data, const int l, const int r)
{

if (r <= l) return;
int i = partition(data, l, r);
quicksort(data, l, i-1);
quicksort(data, i+1, r);

}

2



IE170 Lecture 8 3

Partitioning

• One big advantage of quicksort is that the partitioning (and hence the
entire algorithm) can be performed in place.

• Here is an in place implementation of the partitioning function.

3



IE170 Lecture 8 4

Analyzing Quicksort

• Questions to be answered

– How do we prove the correctness of quick sort?
– Does quicksort always terminate?
– Can we do some simple optimization to improve performance?
– What are the best case, worst case, and average case running times?
– How does quicksort perform on special files, such as those that are

almost sorted?

4



IE170 Lecture 8 5

Importance of the Partitioning Element

• Note that the performance of the algorithm depends primarily on the
chosen partition element.

• Some questions

– What is the “best” partition element to select?
– What is the running time if we always select the “best” partition

element?
– What is the “worst” partition element to select?
– What is the running time in the worst case?
– What is the running time in the average case?

5



IE170 Lecture 8 6

Choosing the Partitioning Element

• We would like the partition element to be as close to the middle of the
array as possible.

• However, we have no way to ensure this in general.

• If the array is randomly ordered, any element will do, so choose the last
element (this was our original implementation).

• If the array is almost sorted, this will be disastrous!

• To even the playing field, we can simply choose the partition element
randomly.

• How can we improve on this?

6



IE170 Lecture 8 7

More Simple Optimization

• Note that the check if (j == l) in the partition function can be a
significant portion of the running time.

• This check is only there in case the partition element is the smallest
element in the array.

• Here again, we can use the concept of a sentinel, introduced in Lecture
4.

• If we place a sentinel at the beginning of the array, we avoid this check.

• Another approach is to ensure that the pivot element is never the smallest
element of the array.

• If we use median-of-three partitioning, then the partition element can
never be the smallest element in the array.

7



IE170 Lecture 8 8

Average Case Analysis

• Assuming the partition element is chosen randomly, we can perform
average case analysis.

• The average case running time is the solution to the following recurrence.

T (n) = n + 1 +
1
n

∑

1≤k≤n

T (k − 1) + T (n− k)

along with T (0) = T (1) = 1.

• Although this recurrence looks complicated, it’s not too hard to solve.

• First, we simplify as follows.

T (n) = n + 1 +
2
n

∑

1≤k≤n

T (k − 1)

8



IE170 Lecture 8 9

Average Case Analysis (cont.)

• We can eliminate the sum by multiplying both sides by n and subtracting
the formula for T(n-1).

nT (n)− (n− 1)T (n− 1) = n(n + 1)− (n− 1)n + 2T (n− 1)

• This results in the recurrence

nT (n) = (n + 1)T (n− 1) + 2n

• The solution to this is in Θ(n lg n).

• In fact, the exact solution is more like 1.39n lg n.

• This means that the average case is only about 40% slower than the best
case!

9



IE170 Lecture 8 10

Duplicate Keys

• Quicksort can be inefficient in the case that the file contains many
duplicate keys.

• In fact, if the file consists entirely of records with identical keys, our
implementation so far will still perform the same amount of work.

• The easiest way to handle this is to do three-way partitioning.

• Instead of splitting the file into only two pieces, we have a third piece
consisting of the elements equal to the partition element.

• Implementing this idea requires a little creativity.

• How would you do it?

10



IE170 Lecture 8 11

Small Subarrays

• Another way in which quicksort, as well as other recursive algorithms can
be optimized is by sorting small subarrays directly using insertion sort.

• Empirically, subarrays of approximately 10 elements or smaller should be
sorted directly.

• An even better approach is to simply ignore the small subarrays and then
insertion sort the entire array once quick sort has finished.

11



IE170 Lecture 8 12

Stack Depth

• An important consideration with any recursive algorithm is the depth of
the call stack.

• Each recursive call means additional memory devoted to storing the
values of local variables and other information.

• In the worst case, quicksort can have a stack as deep as the number of
elements in the array.

• One way to deal with this is to ensure that the smaller of the two
subarrays is processed first.

• This does not affect the correctness.

• Even this idea will not work in a truly recursive implementation without
compiler optimization.

• The most memory-efficient implementation is a non-recursive one that
explicitly maintains the stack of subarrays to be sorted.

12



IE170 Lecture 8 13

A Nonrecursive Quicksort

#include <stack>
void quicksort(Item* data, int l, int r)
{

stack<int> s();
int m(0), n(0);
s.push(l); s.push(r);
while (!s.empty()){

m = s.pop(); n = s.pop();
if (n <= m) continue;
int i = partition(data, m, n);
if (m-1 > n-i){

s.push(m); s.push(i-1); s.push(i+1); s.push(n);
}else{

s.push(i+1); s.push(n); s.push(m); s.push(i-1);
}

}
}

13


