
Algorithms in Systems Engineering
IE170

Lecture 3

Dr. Ted Ralphs



IE170 Lecture 3 1

References for Today’s Lecture

• Required reading

– CLRS Chapter 2

• References

– D.E. Knuth, The Art of Computer Programming, Volume 1:
Fundamental Algorithms (Third Edition), 1997.

1



IE170 Lecture 3 2

Designing Algorithms

• We have already motivated the development of algorithms that are both
correct and efficient.

• How do we know if an algorithm is correct and what do we mean by
efficient?

2



IE170 Lecture 3 3

Analyzing Algorithms

• The goal of analyzing an algorithm is to determine how quickly it will
execute in practice.

• This can be done either empirically or theoretically.

• Empirical analysis involves implementing the algorithm and testing it on
various instances.

• The difficulty is knowing which instances to test it on.

• What do we want to know?

3



IE170 Lecture 3 4

Theoretical Analysis

• In general, the speed of execution of an algorithm depends on

• Theoretical analysis allows us to separate the effect of these factors.

• In a basic theoretical analysis, we try to determine how many “steps”
would be necessary to complete the algorithm.

• We assume that each “step” takes a constant amount of time, where
the constant depends on the hardware.

• We might also be interested in other resources required for the algorithm,
such as memory.

4



IE170 Lecture 3 5

Models of Computation

• In order to analyze the number of steps necessary to execute an algorithm,
we have to say what we mean by a “step.”

• To define this precisely is tedious and beyond the scope of this course.

• A precise definition depends on the exact hardware being used.

• Our analysis will assume a very simple model of a computer called a
random access machine (RAM).

• In a RAM, the following operations take one step.

• This is a very idealized model, but it works in practice.

• We will sometimes need to simplify the model even further.

5



IE170 Lecture 3 6

Running Time

• The number of steps required for an algorithm to solve a given instance
of a problem is called the running time for that instance.

• The overall running time of an algorithm is the number of steps required
to solve an instance of the problem in either

• Best case behavior is usually uninteresting.

• Average case behavior can be difficult to define and analyze.

• Worst case is easier to analyze and can yield useful information.

• Unless otherwise specified, running time is in the worst-case.

6



IE170 Lecture 3 7

Evaluating a Polynomial

• Consider the problem of evaluating a polynomial.

Input: The coefficients a0, . . . , an and x ∈ R.
Output: The value

∑n
i=0 aix

i.

• What is the running time of the most obvious algorithm?

• Is there a more efficient algorithm?

7



IE170 Lecture 3 8

The Input Size

• Notice that in the previous example, the worst-case running time
depended only on the number of input values, or the size of the input.

• This is almost always the case.

• In reality, the running time could be affected by the size of the input
values as well, but we’ll ignore this for now.

• We are interested in how the running time grows generally as the input
size grows.

• Any algorithm can be used to solve a small problem.

• It is the really large problems that require efficient algorithms.

8



IE170 Lecture 3 9

Order of Growth

• Because we are mainly interested in how the running time grows as the
instances become larger, we won’t need “exact” running times.

• We will allow some “sloppiness” and ignore constants and low order
terms.

• Because of our many simplifying assumptions, the low order terms may
not be accurate anyway.

• Next time, we’ll define these notions more precisely.

9


