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References for Today’s Lecture

• Required reading

– CLRS Chapter 28
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Systems of Equations

• In some applications, we must determine values for a given set of
unknowns, or variables, that satisfy one or more equations.

• Example:
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Linear Equations

• A linear equation in n variables x1, . . . , xn is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b

where a1, a2, . . . , an and b are constants.

• A solution to the equation is an assignment of values to the variables
such that the equation is satisfied.

• Suppose we interpret the constants a1, a2, . . . an as the entries of an
n-dimensional vector a.

• Let’s also make a vector x out of the variables x1, x2, . . . , xn.

• Then we can rewire the above equation as simply aTx = b.
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Systems of Linear Equations

• Suppose we are given a set of n variables whose values must satisfy more
than one equation.

• In this case, we have a system of equations, such as

a11x1 + a12x2 + · · ·+ a1nxn = b1 (1)

a21x1 + a22x2 + · · ·+ a2nxn = b2 (2)

... ... (3)

am1x1 + am2x2 + · · ·+ amnxn = bm (4)

where aij is a constant for all 1 ≤ i ≤ m and 1 ≤ j ≤ n and b1, . . . , bm

are constants.

• As before, a solution to this system of equations is an assignment of
values to the variables such that all equations are satisfied.

• Now we can interpret the constants aij as the entries of a matrix A and
the constants b1, . . . , bm as the entries of a vector b.

• Interpreting the variables x1, . . . , xn as a vector, we can again write the
system of equation simply as Ax = b.
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Solving Systems of Linear Equations

• From linear algebra, we know that the system of equations Ax = b has
a unique solution if and only if the matrix A is square and invertible.

• From now on, we will consider only such systems.

• How do we solve a systems of equations?
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Special Matrices

• A square matrix D is diagonal if dij = 0 whenever i 6= j.

• A square matrix L is lower triangular if lij = 0 whenever j > i.

• A square matrix U is upper triangular if uij = 0 whenever j < i.

• A square matrix P is a permutation matrix if there is a single 1 in each
row and column.

• The identity matrix, usually denoted I is a diagonal matrix that is also a
permutation matrix.

• What effect does multiplying by a permutation matrix have?
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The LUP Decomposition

• Let’s suppose that we are able to find three n× n matrices L, U , and P
such that

PA = LU

where

– L is upper triangular.
– U is lower triangular with 1’s on the diagonal.
– P is a permutation matrix.

• This is called an LUP decomposition of A.

• How could use such a decomposition to solve the system Ax = b?
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Using the LUP Decomposition

• Once we have an LUP decomposition, we can use it to easily solve the
system Ax = b.

• Note that the system PAx = Pb is equivalent to the original system,
which is then equivalent to LUx = Pb.

• We can solve the system in two steps:

– First solve the system Ly = Pb (forward substitution).
– Then solve the system Ux = y (backward substitution).

• Note the similarity to Gaussian elimination.

• What is the running time of this solution method, once we know the
factorization?
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Finding the LU Decomposition

• Let’s assume for now that P = I and concentrate on finding L and U .

• We can find the these two matrices using a procedure similar to Gaussian
elimination.

• In fact, we will implement the algorithm recursively.

• First we’ll divide the matrix A into four pieces, as follows:

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
... ... ...

an1 an2 · · · ann


 (5)

=
[

a11 wT

v A′

]
(6)

• Next, we’ll use use row operations to change v into the zero vector and
record the operations in another matrix.
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Finding the LU Decomposition (cont.)

• Using the method on the previous slide, we can obtain the following
factorization of A.

A =
[

a11 wT

v A′

]
(7)

=
[

1 0
v/a11 I

] [
a11 wT

0 A′ − vwT/a11

]
(8)

• We can show that if A is nonsingular, then so is A′ − vwT/a11.

• So we can recursively call the method to factor the (n − 1) × (n − 1)
matrix A′ − vwT/a11.

• Applying this recursion n times yields the desired factorization, as
explained on the next slide.
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Finding the LU Decomposition (cont.)

• To see how to get the factorization from the recursive application of the
algorithm, we have the following.

A =
[

1 0
v/a11 I

] [
a11 wT

0 A′ − vwT/a11

]
(9)

=
[

1 0
v/a11 I

] [
a11 wT

0 L′U ′

]
(10)

=
[

1 0
v/a11 L′

] [
a11 wT

0 U ′

]
(11)

• This shows how to obtain the factorization recursively.

• Notice that this can also be done iteratively and “in place.”
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Finding the LUP Decomposition

• The element a11 is called the pivot element.

• Note that the above decomposition method fails whenever the pivot
element is zero.

• In this case, we can permute the rows of A to obtain a new pivot element.

• In fact, for numerical stability, it is desirable to have the pivot element
be as large as possible in absolute value.

• If no nonzero pivot is available, A is singular.

• This leads to the following modified factorization.

QA =
[

ak1 wT

v A′

]
(12)

=
[

1 0
v/ak1 I

] [
ak1 wT

0 A′ − vwT/ak1

]
(13)
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Finding the LUP Decomposition (cont.)

• Again, we can recursively call the method to factor the (n− 1)× (n− 1)
matrix A′ − vwT/a11.

• As before, we obtain L′, U ′, and P ′ and we get

PA =
[

1 0
0 P ′

]
QA (14)

=
[

1 0
0 P ′

] [
1 0

v/ak1 I

] [
ak1 wT

0 A′ − vwT/ak1

]
(15)

=
[

1 0
P ′v/ak1 I

] [
ak1 wT

0 P ′(A′ − vwT/ak1)

]
(16)

=
[

1 0
P ′v/ak1 I

] [
ak1 wT

0 L′U ′

]
(17)

=
[

1 0
P ′v/ak1 L′

] [
ak1 wT

0 U ′

]
(18)

• What is the running time of finding the LUP decomposition?
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Using the LUP Decomposition

• Note that finding the decomposition has the same running time as
Gaussian elimination.

• The decomposition can be stored in almost the same space as the original
matrix.

• Once we have an LUP decomposition, we can solve Ax = b with various
right hand sides in time Θ(n2).
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