Algorithms in Systems Engineering
IE170

Lecture 26

Dr. Ted Ralphs

[E170 Lecture 26

References for Today’s Lecture

e Required reading
— CLRS Chapter 28

IE170 Lecture 26 2

Systems of Equations

e In some applications, we must determine values for a given set of
unknowns, or variables, that satisfy one or more equations.

e Example:

IE170 Lecture 26 3

Linear Equations

e A linear equation in n variables xz1,...,x, is an equation of the form
a1x1 + aoxo + - +a,xr, =0

where aq,as,...,a, and b are constants.

e A solution to the equation is an assignment of values to the variables
such that the equation is satisfied.

e Suppose we interpret the constants aq,as,...a, as the entries of an
n-dimensional vector a.

e Let's also make a vector x out of the variables x1, x5, ..., x,.

e Then we can rewire the above equation as simply a’z = b.

IE170 Lecture 26 4

Systems of Linear Equations

e Suppose we are given a set of n variables whose values must satisfy more
than one equation.

e In this case, we have a system of equations, such as

aj1x1 + ae®ra + -+ apr, = b (1)

211 + aooTo + - -+ + aonxn, = bo (2)

(3)

Am1T1 + QGm2T2 + -+ + AmpTy = bm (4)

where a;; is a constant forall 1 << <mand1<j <mnandby,...,b,

are constants.

e As before, a solution to this system of equations is an assignment of
values to the variables such that all equations are satisfied.

e Now we can interpret the constants a;; as the entries of a matrix A and
the constants b4, ...,0b,, as the entries of a vector b.

e Interpreting the variables x1,...,x, as a vector, we can again write the
system of equation simply as Ax = b.

IE170 Lecture 26 5

Solving Systems of Linear Equations

e From linear algebra, we know that the system of equations Ax = b has
a unique solution if and only if the matrix A is square and invertible.

e From now on, we will consider only such systems.

e How do we solve a systems of equations?

IE170 Lecture 26 6

Special Matrices

e A square matrix D is diagonal if d;; = 0 whenever i # j.
e A square matrix L is lower triangular if [;; = 0 whenever 7 > 3.
e A square matrix U is upper triangular if u;; = 0 whenever j < 1.

e A square matrix P is a permutation matrix if there is a single 1 in each
row and column.

e The identity matrix, usually denoted I is a diagonal matrix that is also a
permutation matrix.

e What effect does multiplying by a permutation matrix have?

IE170 Lecture 26 7

The LUP Decomposition

e Let's suppose that we are able to find three n x n matrices L, U, and P

such that
PA = LU

where

— L is upper triangular.
— U is lower triangular with 1's on the diagonal.
— P is a permutation matrix.

e This is called an LUP decomposition of A.

e How could use such a decomposition to solve the system Ax = b7

IE170 Lecture 26 8

Using the LUP Decomposition

e Once we have an LUP decomposition, we can use it to easily solve the
system Ax = b.

e Note that the system PAx = Pb is equivalent to the original system,
which is then equivalent to LUx = Pb.

e We can solve the system in two steps:

— First solve the system Ly = Pb (forward substitution).
— Then solve the system Ux = y (backward substitution).

e Note the similarity to Gaussian elimination.

e What is the running time of this solution method, once we know the
factorization?

[E170 Lecture 26

Finding the LU Decomposition

Let's assume for now that P = I and concentrate on finding L and U.

We can find the these two matrices using a procedure similar to Gaussian

elimination.

In fact, we will implement the algorithm recursively.

First we'll divide the matrix A into four pieces, as follows:

ail | a2 -+ Qin
azi1 | @22 -+ Q2n (5)
Anl | Gn2 Ann |
T
ail w (6)
v A

e Next, we'll use use row operations to change v into the zero vector and
record the operations in another matrix.

IE170 Lecture 26 10

Finding the LU Decomposition (cont.)

e Using the method on the previous slide, we can obtain the following
factorization of A.

a1 w?t
A= (7)
. I 1 0 aill ’UJT (8)
| v/ann I 0 A —ovw!/an

e We can show that if A is nonsingular, then so is A’ — vw?! /a;.

e So we can recursively call the method to factor the (n — 1) x (n — 1)
matrix A’ — vw?! /aq;.

e Applying this recursion n times yields the desired factorization, as
explained on the next slide.

[E170 Lecture 26

11

Finding the LU Decomposition (cont.)

e To see how to get the factorization from the recursive application of the

algorithm, we have the following.

1
v/aiq
1
v/aiq
1
| v/an

A =

N o ~NO ~NO

T
ai w
0 A" —vw! Jay,] (9)
a w?t
o f (10
a;; wl
o (11)

e This shows how to obtain the factorization recursively.

e Notice that this can also be done iteratively and “in place.”

[E170 Lecture 26

12

Finding the LUP Decomposition

e The element a;; is called the pivot element.

e Note that the above decomposition method fails whenever the pivot

element iIs zero.

e In this case, we can permute the rows of A to obtain a new pivot element.

e In fact, for numerical stability, it is desirable to have the pivot element
be as large as possible in absolute value.

e If no nonzero pivot is available, A is singular.

e This leads to the following modified factorization.

QA

a1 ’UJT]

v A

(12)

(13)

IE170 Lecture 26 13

Finding the LUP Decomposition (cont.)

e Again, we can recursively call the method to factor the (n—1) x (n — 1)
matrix A’ — vw?! /aq;.

e As before, we obtain L/, U’, and P’ and we get

o
PA = 0P QA (14)
B 1 0 | 1 0 ar1 w! (15)
L0 P | vag I 0 A —ovwl/ay
_ | o1 0] am w (16)
| Pv/ag I 0 P(A —vw!/a)
B 1 0] apy w?
| Pv/ain I || O L’U’] (17)
B 1 0 ary wl
| Plv/ap L’] [o U] (18)

e What is the running time of finding the LUP decomposition?

[E170 Lecture 26 14

Using the LUP Decomposition

e Note that finding the decomposition has the same running time as
Gaussian elimination.

e T[he decomposition can be stored in almost the same space as the original
matrix.

e Once we have an LUP decomposition, we can solve Ax = b with various
right hand sides in time ©(n?).

