
Algorithms in Systems Engineering
IE170

Lecture 25

Dr. Ted Ralphs



IE170 Lecture 25 1

References for Today’s Lecture

• Required reading

– CLRS Chapter 28

1



IE170 Lecture 25 2

Vectors and Matrices

• Vectors and matrices are constructs that arise naturally in many
applications.

• Operating on vectors and matrices requires numerical algorithms.

• An m× n matrix is an array of mn real numbers:

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
... ... ...

am1 am2 · · · amn




• A is said to have n columns and m rows.

• An n-dimensional column vector is a matrix with one column.

• An n-dimensional row vector is a matrix with one row .

• By default, a vector will be considered a column vector.

• The set of all n-dimensional vectors will be denoted Rn.

• The set of all m× n matrices will be denoted Rm×n.

2



IE170 Lecture 25 3

Matrices

• The transpose of a matrix A is

AT =




a11 a21 · · · am1

a12 a22 · · · am2
... ... ...

a1n a2n · · · amn




• If x, y ∈ Rn, then xTy =
∑n

i=1 xiyi.

• This is called the inner product of x and y.

• If A ∈ Rm×n, then Aj is the jth column, and aj is the jth row.

• If A ∈ Rm×k, B ∈ Rk×n, then [AB]ij = aT
i Bj.

• A square matrix is one for which the number of columns equals the
number of rows.

3



IE170 Lecture 25 4

Storing Vectors and Matrices

• The density of a matrix is the percentage of entries that are nonzero.

• Dense vectors can simply be stored in an array.

• Dense matrices can be stored in a 2-dimensional array.

• Matrices that arise in practice, however, are typically sparse.

• Sparse matrices can be stored using a strategy similar adjacency lists
using three vectors:

– The first vector stores the locations of the nonzero entries in each
column.

– The second vector stores the actual values corresponding to each one
of those locations.

– The third vector stores the location in the first two matrices of the
entries corresponding to each column.

4



IE170 Lecture 25 5

Multiplying Matrices

• In many numerical algorithms, we are faced with the problem of
multiplying two matrices together.

• Multiplication of square matrices can be accomplished either using the
obvious iterative algorithm or a recursive divide and conquer algorithm.

• Algorithm for multiplying 2× 2 matrices

[
r s
t u

]
=

[
a b
c d

] [
e f
g h

]

• To calculate the answer, we have:

r = ae + bg

s = af + bh

t = ce + dg

u = cf + dh

5



IE170 Lecture 25 6

Generalizing

• The algorithm for 2× 2 matrices can be generalized.

• Simply divide each matrix into n
2 × n

2 submatrices.

[
R S
T U

]
=

[
A B
C D

] [
E F
G H

]

• To calculate the answer, we have:

R = AE + BG

S = AF + BH

T = CE + DG

U = CF + DH

6



IE170 Lecture 25 7

Running Time for Matrix Multiplication

• The obvious iterative algorithm involves Θ(n3) multiplications and Θ(n3)
additions.

• In the recursive method, each call has two steps:

– 8 recursive calls to multiply square matrices of size n/2.
– A recombine step involving 4 matrix additions.

• The running time is hence the solution to the recursion T (n) = 8T (n
2) +

Θ(n2).

• The solution to this by the Master Theorem is T (n) ∈ Θ(n3), so it is no
better than the iterative method.

• Surprisingly, there is a recursive method discovered by Strassen that
involves multiplying only 7 pairs of matrices of size n/2.

• This results in a running time T (n) ∈ Θ(nlg 7) = Θ(n2.81).

7


