Algorithms in Systems Engineering IE170

Lecture 23

Dr. Ted Ralphs

References for Today's Lecture

- Required reading
 - CLRS Chapter 31
- References
 - Koblitz, A Course in Number Theory and Cryptography, Second Edition (1999).

RSA Public Key Encryption Algorithm

- The RSA algorithm is used almost universally to encrypt data on the Internet.
- If you have ever visited a secure site on the Internet, you have used RSA encryption.
- Procedure for creating public and private keys.
 - Randomly choose two large prime numbers p and q such that $p \neq q$.
 - Compute n = pq.
 - Select an odd integer e that is relatively prime to $\phi(n) = (p-1)(q-1) = n+1-p-q$.
 - Compute d as the multiplicative inverse of e modulo $\phi(n)$.
 - The pair (e, n) is the public key.
 - The pair (d, n) is the private key.
- The encoding function is $f_E(P) = P^e \mod n$.
- The decoding function is $f_D(C) = C^d \mod n$.

Some Questions

- Does the RSA algorithm actually yield a cryptosystem (are the encoding and encoding functions really inverses)?
- How secure is this system, i.e., is the encoding key really a trap door function?
- Can we compute the keys efficiently?
 - Can we find large prime numbers efficiently?
 - Does d always exist and can we compute it?
- Can we encode and decode efficiently?

IE170 Lecture 23 4

How Secure is RSA Encryption?

- Can RSA encryption be broken?
- ullet To break the scheme, we need to obtain d from e and n.
- The easiest known algorithm for obtaining d is to factor n.
- Hence, the security of the encryption scheme depends entirely on the difficulty of factoring large numbers.
- So far, no one has discovered a method for factoring large numbers efficiently.
- However, it also hasn't been proven that this cannot be done.
- To keep abreast of the current state-of-the-art in factoring, RSA offers cash prizes for factoring large numbers.

Factoring Algorithms

- The easiest algorithm for factoring an odd integer n is *trial division*.
 - Try dividing n by each odd integer less than \sqrt{n} .
 - This method works for numbers that have prime factors near \sqrt{n} , but is not practical for most purposes.
- Fermat's factoring algorithm is based on the observation that that n is the product of two integers if and only if it is the difference of two squares.

$$n = ab = ((a+b)/2)^2 - ((a-b)/2)^2 = t^2 - s^2$$

- If a and b are close together, then s is small and t is near \sqrt{n} .
- Start with $t = \lceil \sqrt{n} \rceil$ and check whether $t^2 n$ is a square number.
- There are only 22 combinations of the last two digits of a square number, so many numbers can be quickly shown not to be square.
- Continue by increasing t by 1.
- There are more efficient and more complex algorithms based on this general principle, but none are efficient for large numbers.

Generating the Public Key

- Because the security of the system depends on the difficulty of factoring n, we want n to be as large as possible.
- There are tradeoffs, however, because a large n makes the keys harder to compute and also makes the encoding and decoding more difficult.
- In addition, generating large prime numbers can be difficult.
- When choosing the factors p and q, we should endeavor to choose them to be large, but not too close together.
- Large numbers with two prime factors close together are easy to factor by Fermat's Algorithm or others.
- \bullet To find e, we can just try some random choices.

Generating Large Prime Numbers

- One can systematically find all primes less than n using a *sieve*.
- This method is not efficient enough to find large primes.
- There really is no efficient direct method for finding large primes.
- In fact, even verifying that a large number *is* prime can be difficult.
- There are tests that ensure it is *highly probable* the *n* is prime, but do not provide a guarantee.
- The probability that a random integer n is prime is approximately $1/\ln n$.
- In practice, we can just try random large integers and try to prove they are prime.

Proving Primality

 Again, we can try to prove primality by trial division, but this is not practical for large integers.

ullet Fermat's theorem says that if n is prime, then

$$a^{n-1} \equiv 1 \pmod{n}$$

for all positive integers a < n.

- In fact, the converse is *almost* true.
- Checking to see whether this equation is satisfied for a=2 is a very accurate test.
- This involves computing $2^{n-1} \pmod{n}$.
- This can be done efficiently using *repeated squaring* (Section 31.6).

Generating the Private Key

- The multiplicative inverse of e modulo $\phi(n)$ exists if and only if e is relatively prime to $\phi(n)$ (which we require).
- Then d can be computed by solving a modular equation (Section 31.4).
- This is done using the extended version of Euclid's Algorithm to find the gcd of e and $\phi(n)$ (which we know is one).
- Extended Euclid's Algorithm for finding the multiplicative inverse of m modulo n (assuming m and n are relatively prime).
 - Divide m by n and let r be the remainder.
 - If r=0, then return (m,1,0).
 - Otherwise, recursively call the function with arguments n and r to obtain (d', x', y').
 - Return $(d', y', x' \lfloor m/n \rfloor y')$.
- If the final return values are (d, x, y), where $d = \gcd(m, n) = 1$ and d = 1 = mx + ny.
- This means that x is the multiplicative inverse of m modulo n.

Some Messy Details

- Note that in this cryptosystem, the ciphertext alphabet is not quite the same as the plaintext alphabet.
- The ciphertext alphabet depends on the choice of n.
- To take care of this, we need to choose the size of the message units in the plaintext and the ciphertext alphabets properly.
- Our scheme for digital signatures also breaks down with RSA encryption, but this can also be taken care of.