
Algorithms in Systems Engineering
IE170

Lecture 23

Dr. Ted Ralphs

IE170 Lecture 23 1

References for Today’s Lecture

• Required reading

– CLRS Chapter 31

• References

– Koblitz, A Course in Number Theory and Cryptography, Second
Edition (1999).

1

IE170 Lecture 23 2

RSA Public Key Encryption Algorithm

• The RSA algorithm is used almost universally to encrypt data on the
Internet.

• If you have ever visited a secure site on the Internet, you have used RSA
encryption.

• Procedure for creating public and private keys.

– Randomly choose two large prime numbers p and q such that p 6= q.
– Compute n = pq.
– Select an odd integer e that is relatively prime to φ(n) = (p− 1)(q −

1) = n + 1− p− q.
– Compute d as the multiplicative inverse of e modulo φ(n).
– The pair (e, n) is the public key.
– The pair (d, n) is the private key.

• The encoding function is fE(P) = P e mod n.

• The decoding function is fD(C) = Cd mod n.

2

IE170 Lecture 23 3

Some Questions

• Does the RSA algorithm actually yield a cryptosystem (are the encoding
and encoding functions really inverses)?

• How secure is this system, i.e., is the encoding key really a trap door
function?

• Can we compute the keys efficiently?

– Can we find large prime numbers efficiently?
– Does d always exist and can we compute it?

• Can we encode and decode efficiently?

3

IE170 Lecture 23 4

How Secure is RSA Encryption?

• Can RSA encryption be broken?

• To break the scheme, we need to obtain d from e and n.

• The easiest known algorithm for obtaining d is to factor n.

• Hence, the security of the encryption scheme depends entirely on the
difficulty of factoring large numbers.

• So far, no one has discovered a method for factoring large numbers
efficiently.

• However, it also hasn’t been proven that this cannot be done.

• To keep abreast of the current state-of-the-art in factoring, RSA offers
cash prizes for factoring large numbers.

4

IE170 Lecture 23 5

Factoring Algorithms

• The easiest algorithm for factoring an odd integer n is trial division.

– Try dividing n by each odd integer less than
√

n.
– This method works for numbers that have prime factors near

√
n, but

is not practical for most purposes.

• Fermat’s factoring algorithm is based on the observation that that n
is the product of two integers if and only if it is the difference of two
squares.

n = ab = ((a + b)/2)2 − ((a− b)/2)2 = t2 − s2

– If a and b are close together, then s is small and t is near
√

n.
– Start with t = d√ne and check whether t2 − n is a square number.
– There are only 22 combinations of the last two digits of a square

number, so many numbers can be quickly shown not to be square.
– Continue by increasing t by 1.

• There are more efficient and more complex algorithms based on this
general principle, but none are efficient for large numbers.

5

IE170 Lecture 23 6

Generating the Public Key

• Because the security of the system depends on the difficulty of factoring
n, we want n to be as large as possible.

• There are tradeoffs, however, because a large n makes the keys harder
to compute and also makes the encoding and decoding more difficult.

• In addition, generating large prime numbers can be difficult.

• When choosing the factors p and q, we should endeavor to choose them
to be large, but not too close together.

• Large numbers with two prime factors close together are easy to factor
by Fermat’s Algorithm or others.

• To find e, we can just try some random choices.

6

IE170 Lecture 23 7

Generating Large Prime Numbers

• One can systematically find all primes less than n using a sieve.

• This method is not efficient enough to find large primes.

• There really is no efficient direct method for finding large primes.

• In fact, even verifying that a large number is prime can be difficult.

• There are tests that ensure it is highly probable the n is prime, but do
not provide a guarantee.

• The probability that a random integer n is prime is approximately 1/ lnn.

• In practice, we can just try random large integers and try to prove they
are prime.

7

IE170 Lecture 23 8

Proving Primality

• Again, we can try to prove primality by trial division, but this is not
practical for large integers.

• Fermat’s theorem says that if n is prime, then

an−1 ≡ 1(mod n)

for all positive integers a < n.

• In fact, the converse is almost true.

• Checking to see whether this equation is satisfied for a = 2 is a very
accurate test.

• This involves computing 2n−1(mod n).

• This can be done efficiently using repeated squaring (Section 31.6).

8

IE170 Lecture 23 9

Generating the Private Key

• The multiplicative inverse of e modulo φ(n) exists if and only if e is
relatively prime to φ(n) (which we require).

• Then d can be computed by solving a modular equation (Section 31.4).

• This is done using the extended version of Euclid’s Algorithm to find the
gcd of e and φ(n) (which we know is one).

• Extended Euclid’s Algorithm for finding the multiplicative inverse of m
modulo n (assuming m and n are relatively prime).

– Divide m by n and let r be the remainder.
– If r = 0, then return (m, 1, 0).
– Otherwise, recursively call the function with arguments n and r to

obtain (d′, x′, y′).
– Return (d′, y′, x′ − bm/ncy′).

• If the final return values are (d, x, y), where d = gcd(m,n) = 1 and
d = 1 = mx + ny.

• This means that x is the multiplicative inverse of m modulo n.

9

IE170 Lecture 23 10

Some Messy Details

• Note that in this cryptosystem, the ciphertext alphabet is not quite the
same as the plaintext alphabet.

• The ciphertext alphabet depends on the choice of n.

• To take care of this, we need to choose the size of the message units in
the plaintext and the ciphertext alphabets properly.

• Our scheme for digital signatures also breaks down with RSA encryption,
but this can also be taken care of.

10

