Algorithms in Systems Engineering
IE170

Lecture 2

Dr. Ted Ralphs

IE170 Lecture 2 1
References for Today’s Lecture

e Required reading
— CLRS Chapter 1

e References

— D.E. Knuth, The Art of Computer Programming, Volume 1:

Fundamental Algorithms (Third Edition), 1997.
— On-line dictionary www.onelook.com, and a few other on-line

dictionaries.

[E170 Lecture 2

What is an Algorithm?

IE170 Lecture 2 3

An Interesting Quote

“Here is your book, the one your thousands of letter have
asked us to publish. |t has taken us years to do, checking and
rechecking countless recipes to bring you only the best, only
the interesting, only the perfect. Now we can say, without a
shadow of a doubt, that every single one of them, if you follow
the directions to the letter, will work for you exactly as it did
for us, even if you have never cooked before.”

—McCall's Cookbook (1963)

IE170 Lecture 2 4

A Brief History of Algorithms

e According to the Oxford English Dictionary, the word algorithm is a
combination of the Middle English word algorism with arithmetic.

e This word probably did not enter common usage in the English language
until sometime last century.

e The word algorism derives from the name of an Arabic mathematician
circa A.D. 825, whose surname was Al-Khwarizmi.

e Al-Khwarizmi wrote a book on solving equations from whose title the
word algebra derives.

e |t is commonly believed that the first algorithm was Euclid's Algorithm for
finding the greatest common divisor of two integers, m and n (m > n).

— Divide m by n and let r be the remainder.
— If r =0, then ged(m,n) = n.
— Otherwise, ged(m,n) = ged(n,).

[E170 Lecture 2

Show Me the Algorithms

e Algorithms are literally everywhere you look.

e What are some common applications of algorithms?

e Why is it important that algorithms execute quickly?

IE170 Lecture 2 6

What is a Problem?

e Roughly, a problem specifies what set of outputs is desired for each given
set of inputs.

e A problem instance is just a specific set of inputs.

e Example: The Sorting Problem

e Solving a problem instance consists of specifying a procedure for
converting the inputs to an output of the desired form (called a solution).

e An algorithm that is guaranteed to result in a solution for every instance
is said to be correct.

e Note that a given instance may have either no solutions or more than
one solution.

[E170 Lecture 2

Simple Example

e Consider the following simple problem:

Input: x € R and n € Z.

Output: z™.

e What is the simplest algorithm for solving this problem?

e |s there a better algorithm?

[E170 Lecture 2

A More Efficient Algorithm

e Let's assume that n = 2™ for m € Z.
e Repeated squaring
for (y =1, 1 = 0; i < m; i++)
y *= Vs
e Is this algorithm correct?
e How much more efficient is it?
e What do we mean by efficiency?

e Why don't we call it speed?

e How do we modify it for the general case?

[E170 Lecture 2

Aside: Pseudo-code

e We will use pseudo-code to specify algorithms.

e The syntax will be similar to C/C++, but with departures for clarity.
e We will use descriptions in English to specify certain operations.

e The pseudo-code used in lecture may differ from that in the book.

e Check the book for a detailed list of its pseudo-code conventions.

[E170 Lecture 2 10

Importance of Algorithms

e We have just seen two different algorithms for solving the same problem.
e The second algorithm was much more efficient than the first.

e Would you rather have a faster computer or a better algorithm?

[E170 Lecture 2 11

Another Example: Fibonacci Numbers

Thanks to David Eppstein

e Another simple example of the importance of efficient algorithms arises
in the calculation of Fibonacci numbers.

e Fibonacci numbers arise in population genetics, as well as a host of other
applications.

e The n'™ Fibonacci number is defined recursively as follows:

F(1) = 1, (1)
F(2) = 1, (2)
Fin) = Fn—1)4+F(n—-2)VneNn>2. (3)

e How do we calculate F'(n) for a given n € N7

[E170 Lecture 2

12

Calculating Fibonacci Numbers

e Obvious Solution: Recursive function Fibonacci ().

fibonacci(int n)

{
if (n == || n == 2){
return 1;
telseq
return fibonacci(n-1) + fibonacci(n-2);
+
+

e How efficient is this?

e |s there a more efficient algorithm?

[E170 Lecture 2 13

What is a Data Structure?

e Computers operate on tables of numbers (the data).
e Within the context of solving a given problem, this data has structure.

e Data structures are schemes for storing and manipulating data that allow
us to more easily see the structure of the data.

e Data structures allow us to perform certain operations on the data more
easily.

e The data structure that is most appropriate depends on how the algorithm
needs to manipulate the data.

[E170 Lecture 2 14

Example

e Consider the two implementations of the list class from last lecture.

e An array is a simple data structure that allows us to store a sequence of
numbers.

e A linked list does the same thing.

e What is the difference?

[E170 Lecture 2

15

Comparing List Data Structures

e To compare the two data structures, we must analyze the running time

of each operation.

e This table compares the running times of the operations.

Array

Linked List

getNumItems

getValue

setValue

addItem

delltem

[E170 Lecture 2 16

Importance of Data Structures

e Specifying an algorithm completely includes specifying the data structures
to be used (sometimes this is the hardest part).

e |t is possible for the same basic algorithm to have several different
implementations with different data structures.

e Which data structure is best depends on what operations have to be
performed on the data.

[E170 Lecture 2 17

Summing Up

e Algorithms that are both efficient and correct are a technology that must
be developed.

e Data structures allow us to represent relationships between various data
and allow us to manipulate them effectively during an algorithm.

e Efficient algorithms enable us to solve important problems more quickly,
which is critical for many applications.

e This is the focus of this class.

