
Algorithms in Systems Engineering
IE170

Lecture 15

Dr. Ted Ralphs



IE170 Lecture 15 1

References for Today’s Lecture

• Required reading

– CLRS Chapter 22

• References

– R. Sedgewick, Algorithms in C++ (Third Edition), 1998.

1



IE170 Lecture 15 2

Searching a Graph

• In the last lecture, we introduced a method of searching a graph using a
technique called depth-first search (DFS).

• Graph search is a generalization of this method that is used to study the
structure of a graph.

• We have already used graph search on several occasions.

• In the next few lectures, we will consider several methods of searching a
graph.

• Each method will reveal something different about the structure of the
graph.

• Many, many algorithms are based on this general framework.

– Finding a (shortest) path between two vertices in a graph.
– Determining whether a graph has a cycle.
– Determining a minimal set of edges that connect all the vertices.
– Determining whether there is a single edge/vertex whose removal

disconnects the graph.

2



IE170 Lecture 15 3

General Graph Search

• Graph search consists of systematically processing the vertices of a graph
to discover some property of the graph.

• To search a single component:

– Choose a start vertex and add it to the list of unprocessed vertices.
– Repeat until no vertices remain on the list.
∗ Choose a vertex v from the list of unprocessed vertices.
∗ Process v.
∗ Add all the neighbors of v to the list of unprocessed vertices.

• To search multiple components, we must have a method of finding a
start vertex in each component.

• Note that generally each vertex only needs to be processed once, but
may be placed on the list more than once.

• Typically, however, we only allow each vertex to be added to the list
once.

• What do we need to specify to actually implement graph search?

3



IE170 Lecture 15 4

Types of Graph Search

• Note that we have left three basic components unspecified in our
description of graph search.

• The way in which these three steps are implemented determines the
overall running time of the algorithm.

• The various options result in a rich class of algorithms that can answer
many interesting questions about a given graph.

4



IE170 Lecture 15 5

Depth-first Search

• In the last lecture, we introduced the depth-first search algorithm for
determining the components of a graph.

• In DFS, the vertices are processed in last-in, first-out (LIFO) order.

• How do we implement this?

• Recall the maze exploration program from Lab 3.

– The maze can be viewed as a graph (how?).
– We used a stack implementation to explore this graph using DFS.

• To avoid adding a vertex to the list more than once, we can mark it the
first time it is added to the list.

• In order to completely specify the algorithm, we still need to determine
the order in which the neighbors of a vertex are added to the list.

5



IE170 Lecture 15 6

Running Time of Depth-first Search

• The running time of DFS depends essentially on the running time of the
processing step.

– Assuming that the processing time for one vertex is in Θ(f(m,n)),
the total processing time is in

– The time spent maintaining the list of unprocessed vertices is
– To determine a starting vertex for each component, we must do a

linear search for a total time in

• This gives a total running time of

• Note that in practice, it is almost always the situation that n = O(m).

6



IE170 Lecture 15 7

Using DFS

• Determining the components of a graph.

– In the last lecture, we used DFS to determine the components of a
graph.

– The processing step consisted of marking each vertex with a component
number (constant time).

• Finding a path from one vertex to another.

– In this situation, the processing step consists of checking to see
whether the destination vertex has been reached.

– We must also keep track of the path itself.
– The path can be tracked using a stack, as in Lab 3.

• Determining whether a graph has a cycle can be accomplished by trying
to find a path from a vertex to itself.

• The total running time for all these is Θ(m + n).

7



IE170 Lecture 15 8

Trees

• We’ve already discussed trees in several contexts, but now we can give a
more rigorous definition.

• In graph terminology, a tree is a connected graph with no cycles and a
forest is a graph consisting of a collection of trees.

• Properties of trees

– Every tree has exactly n− 1 edges.
– In a tree, there is a unique path from any given vertex to any other

vertex.

• A tree that has a specified root vertex is called a rooted tree.

– In a rooted tree, there is a unique path from the root to every other
vertex.

– We can therefore uniquely define the parent of a vertex v as the vertex
that immediately precedes it on the path from the root to v.

– Hence, we are justified in thinking of trees in the way that we had
previously, as a set of hierarchical relationships between the vertices.

8



IE170 Lecture 15 9

Search Trees and Forests

• Consider searching a connected undirected graph G = (V, E).

• The process of searching G can be captured by constructing a tree T
called the search tree.

• T is constructed as the search evolves by adding an edge connecting the
vertex currently being processed to any vertex not yet processed.

• This graph must be connected and acyclic, and hence is a tree.

• We can view it as a rooted tree by taking the root to be the start vertex.

• In graphs with multiple components, we can similarly obtain search
forests.

• The term depth-first search derives from the observation that the next
vertex to be processed is the vertex at maximum depth in this tree.

• DFS tends to produce very deep search trees.

• We can also consider other graph search algorithms.

9



IE170 Lecture 15 10

Pre-order and Post-order

• The order in which the vertices are encountered and processed can be
used to create a sequence.

• Pre-order is the order in which the vertices are first encountered and
added to the list to be processed.

• Post-order is the order in which the vertices are actually processed.

10


