Algorithms in Systems Engineering
IE170

Lecture 15

Dr. Ted Ralphs



[E170 Lecture 15

References for Today’s Lecture

e Required reading
— CLRS Chapter 22

e References

— R. Sedgewick, Algorithms in C++ (Third Edition), 1998.



IE170 Lecture 15 2

Searching a Graph

e In the last lecture, we introduced a method of searching a graph using a
technique called depth-first search (DFS).

e Graph search is a generalization of this method that is used to study the
structure of a graph.

e We have already used graph search on several occasions.

e In the next few lectures, we will consider several methods of searching a
graph.

e Each method will reveal something different about the structure of the
graph.

e Many, many algorithms are based on this general framework.

— Finding a (shortest) path between two vertices in a graph.

— Determining whether a graph has a cycle.

— Determining a minimal set of edges that connect all the vertices.

— Determining whether there is a single edge/vertex whose removal
disconnects the graph.



IE170 Lecture 15 3

General Graph Search

Graph search consists of systematically processing the vertices of a graph
to discover some property of the graph.

To search a single component:

— Choose a start vertex and add it to the list of unprocessed vertices.
— Repeat until no vertices remain on the list.

*x Choose a vertex v from the list of unprocessed vertices.

x Process v.

x Add all the neighbors of v to the list of unprocessed vertices.

To search multiple components, we must have a method of finding a
start vertex in each component.

Note that generally each vertex only needs to be processed once, but
may be placed on the list more than once.

Typically, however, we only allow each vertex to be added to the list
once.

What do we need to specify to actually implement graph search?



IE170 Lecture 15 4

Types of Graph Search

e Note that we have left three basic components unspecified in our
description of graph search.

e The way in which these three steps are implemented determines the
overall running time of the algorithm.

e The various options result in a rich class of algorithms that can answer
many interesting questions about a given graph.



IE170 Lecture 15 5

Depth-first Search

e In the last lecture, we introduced the depth-first search algorithm for
determining the components of a graph.

e In DFS, the vertices are processed in last-in, first-out (LIFO) order.

e How do we implement this?

e Recall the maze exploration program from Lab 3.

— The maze can be viewed as a graph (how?).
— We used a stack implementation to explore this graph using DFS.

e To avoid adding a vertex to the list more than once, we can mark it the
first time it is added to the list.

e In order to completely specify the algorithm, we still need to determine
the order in which the neighbors of a vertex are added to the list.



IE170 Lecture 15 6

Running Time of Depth-first Search

e The running time of DFS depends essentially on the running time of the
processing step.

— Assuming that the processing time for one vertex is in O(f(m,n)),
the total processing time is in

— The time spent maintaining the list of unprocessed vertices is

— To determine a starting vertex for each component, we must do a
linear search for a total time in

e This gives a total running time of

e Note that in practice, it is almost always the situation that n = O(m).



IE170 Lecture 15 7

Using DFS

e Determining the components of a graph.

— In the last lecture, we used DFS to determine the components of a
graph.

— The processing step consisted of marking each vertex with a component
number (constant time).

e Finding a path from one vertex to another.

— In this situation, the processing step consists of checking to see
whether the destination vertex has been reached.

— We must also keep track of the path itself.

— The path can be tracked using a stack, as in Lab 3.

e Determining whether a graph has a cycle can be accomplished by trying
to find a path from a vertex to itself.

e The total running time for all these is ©(m + n).



IE170 Lecture 15 8

Trees

e We've already discussed trees in several contexts, but now we can give a
more rigorous definition.

e In graph terminology, a tree is a connected graph with no cycles and a
forest is a graph consisting of a collection of trees.

e Properties of trees

— Every tree has exactly n — 1 edges.
— In a tree, there is a unique path from any given vertex to any other
vertex.

e A tree that has a specified root vertex is called a rooted tree.

— In a rooted tree, there is a unique path from the root to every other
vertex.

— We can therefore uniquely define the parent of a vertex v as the vertex
that immediately precedes it on the path from the root to v.

— Hence, we are justified in thinking of trees in the way that we had
previously, as a set of hierarchical relationships between the vertices.



IE170 Lecture 15 9

Search Trees and Forests

e Consider searching a connected undirected graph G = (V, F).

e The process of searching G can be captured by constructing a tree T
called the search tree.

e 7' is constructed as the search evolves by adding an edge connecting the
vertex currently being processed to any vertex not yet processed.

e This graph must be connected and acyclic, and hence is a tree.
e \We can view it as a rooted tree by taking the root to be the start vertex.

e In graphs with multiple components, we can similarly obtain search
forests.

e The term depth-first search derives from the observation that the next
vertex to be processed is the vertex at maximum depth in this tree.

e DFS tends to produce very deep search trees.

e We can also consider other graph search algorithms.



IE170 Lecture 15 10

Pre-order and Post-order

e The order in which the vertices are encountered and processed can be
used to create a sequence.

e Pre-order is the order in which the vertices are first encountered and
added to the list to be processed.

e Post-order is the order in which the vertices are actually processed.



