
Algorithms in Systems Engineering
IE170

Lecture 1

Dr. Ted Ralphs

IE170 Lecture 1 1

References for Today’s Lecture

• Required reading

– CLRS Chapter 10

• References

– R. Sedgewick, Algorithms in C++ (Third Edition), 1998.

1

IE170 Lecture 1 2

Data Types in C++

• A data type is a set of data values and a set of operations that can be
performed on those values.

• Data types are a mechanism by which C++ and other object-oriented
languages allow programmers to define and implement data structures.

• Most of the data types you have probably encountered so far are the
C++ built-in data types.

• What are the operations we perform on these data types?

2

IE170 Lecture 1 3

C++ Classes

• In C++, classes are used to build new data types.

• A class is composed of

• The data members are the values.

• The member functions are the operations to be performed on these
values.

• There are also constructors and destructors, by which objects of the
specified types are created and destroyed.

3

IE170 Lecture 1 4

C++ Classes

• Ideally, we would like to separate the definition of the type from the
implementation.

• Defining a type consists of specifying the data that needs to be stored
and the operations that need to be performed.

• In C++, the definition is contained in a header file that must be included
in any source file that uses the data type.

• The implementation specifies the method by which these operations
should actually be performed.

• What is the main advantage of separating the definition from the
implementation?

4

IE170 Lecture 1 5

The Interface

• The interface defines the way in which clients can actually use the data
type.

• In C++, the interface consists of the public members of the class.

• The private members of the class, along with function implementations
constitute the implementation.

• It is considered good programming style to keep all data members private.

– The data members specify how the data is to be stored and are
therefore part of the implementation.

– Client access to data values should be through provided access
methods.

– This means the client does not have to know anything about how the
data are actually stored or how the operations are implemented.

– It also allows changing the implementation without changing the client
program.

– Finally, it prevents the client from manipulating the data directly.

5

IE170 Lecture 1 6

Example: List Data Type

• Suppose we want a new data type for storing a list of integers.

• What are the values to be stored?

• What operations might we want to perform?

• We could implement this data type in two different ways:

6

IE170 Lecture 1 7

A List Class

class list {
private:
// Here is the implementation-dependent code
// that defines exactly how the list is stored.

public:
// Here is the list of operations to be implemented.
// Create and destroy a list
list();
~list();
// Get the number of items in the list
int getNumItems() const;
// Get the value of item j
bool getValue(const int j, int& value) const;
// Get the value of item j
bool setValue(const int j, const int value);
// Add an item before item j
bool addItem(const int j, const int value);
// Delete item j
bool delItem(const int j);

}

7

IE170 Lecture 1 8

Implementing with Arrays

This source would be put in a file called list.h.

class list {
private:
// Here is the implementation-dependent code.
// We’ll store the data in this array.
int* array_;
// Here is the size of the array.
int size_;
// Here is the number of items in the list.
int numItems_;

public:
list();
~list();
int getNumItems() const;
bool getValue(const int j, int& value) const;
bool setValue(const j, const int value);
bool addItem(const int j, const int value);
bool delItem(const int j);

}

8

IE170 Lecture 1 9

Constructing and Destructing

This source would be put in a file called list.cpp.

#include "list.h"

list::list() :
array_(new int[MAXSIZE]);
size_(MAXSIZE);
numItems_(0);

{}

list::~list() {
delete array_;
size_ = 0;

}

9

IE170 Lecture 1 10

Implementing List Query Operations

int list::getNumItems() const {
return numItems_;

}

const bool list::getItem(const int j, int& value) {
if (j > 0 && j < size_){

value = array_[j];
return true;

}else{
return false;

}
}

10

IE170 Lecture 1 11

Implementing List Modification Operations

bool list::addItem(const int j, const int value){
if (numItems_ == size_ || j < 0 || j > size_){

return false;
}else{

for (int i = size_; i > j; i--)
array_[i] = array_[i-1];

array_[j] = value;
size_++;

}
}

bool list::delItem(const int j){
if (j < 0 || j > size_ - 1){

return false;
}else{

for (int i = j; i < size_ - 1; i++)
array_[i] = array_[i+1];

size_--;
}

}

11

IE170 Lecture 1 12

Implementing with Linked Lists

• For a linked list implementation, we would replace the array with a linked
list.

• To the client, the class would function exactly as before.

• Here is the definition of a node class for a linked list.

• Which implementation should be used?

12

IE170 Lecture 1 13

Stacks and Queues

• A stack is a special kind of list in which items can only be removed in
“last-in, first-out” (LIFO) order.

• A queue is a list in which items can only be removed in “first-in, first-out”
(FIFO) order.

• The basic operations on a stack are

• The basic operations on a queue are

13

IE170 Lecture 1 14

A Stack Class

In Lab 3, you will be asked to implement a stack with the following interface.

14

IE170 Lecture 1 14

A Stack Class

In Lab 3, you will be asked to implement a stack with the following interface.

class stack {
private:
// Implementation-dependent stuff

public:
// Contructor and destructor
stack();
~stack();
// Checks whether the stack is empty
int empty() const;
// Puts an item on the stack
void push(const int value);
// Takes an item off the stack
int pop();

}

14

IE170 Lecture 1 15

STL

• The Standard Template Library or STL is a library of commonly used
data types and algorithms.

• The classes in the STL are highly optimized.

• Most of the algorithms and data structures we will discuss are
implemented in the STL.

• We may use parts of the STL during the semester, but we will also be
developing our own implementations of STL classes.

• You can use the STL to test your code.

15

IE170 Lecture 1 16

Some C++ Style and Implementation Requirements

• All objects should be initialized explicitly using a constructor.

– Incorrect: int i = 0;
– Correct: int i(0);

• Constructors themselves should initialize all data members of the class
they are constructing.

• Be sure to delete any memory you allocate with new.

• Destructors should delete any memory allocated within a class.

• No public data members.

• No executable code in header files.

• No global variables.

• We will try not to have global functions either.

16

