[E 170 Laboratory 7: Graph Search

Dr. T.K. Ralphs

Due April 3, 2006

1 Laboratory Description and Procedures

1.1 Learning Objectives

You should be able to do the following after completing this laboratory.
1. Understand the concept and use of a graph.
2. Understand how to construct a graph and the two basic data structures for storing a graph.
3. Understand how to implement a basic graph search.

4. Understand the importance of object-oriented design and code re-use.

1.2 Key Words

You should be able to define the following key words after completing this laboratory.
1. graph
2. vertex

edge

adjacency list

adjacency matrix

graph search

R

depth-first search

1.3 Scenario

You have been hired by NeverLost, Inc, a designer and retailer of travel maps. As part of their
effort to introduce a new custom map service for members of their travel club, they would like to
design a data base for storing map data in the form of a graph, from which various information,
such as the shortest route between two given cities, could be extracted. Your immediate task is to
implement a data structure that could be used to read in and store a list of destination pairs, as
well perform a basic search of the graph once it is constructed. In future work, you may be asked
to implement more sophisticated algorithms, such as that of finding the shortest path between
two locations. Since you have performed work for other clients and have some code for basic data
structures already written, you should try to re-use as much code as possible for this project.



1.4 Design and Analysis

This lab will be focused primarily on design and implementation of a basic graph data structure.
Performance analysis will be part of the series of laboratories that follow this one. One of the goals
of this lab is to illustrate the efficiencies that can be gained through re-use of object-oriented code.
Therefore, we will attempt to re-use two data structures we coded earlier in the course—a linked
list and a stack.

1.5 Program Specifications

Your task is to implement a graph class using adjacency lists. The interface for the data structure
is contained in the file graph.h. To implement the search function, you will need to provide a stack
data structure. You can re-use your stack implementation from Laboratory 3 for this purpose.

1.5.1 Program Function

Your graph class should support the interface given in the file graph.h. Part of the implemen-
tation has been done for you already and is contained in the file graph.cpp. Your graph class
should include a constructor that reads in a graph from a file and constructs an adjacency list
representation.

1.5.2 Algorithms

The algorithm exemplified in this lab is graph search, as described in Lecture 15. The code for
the graph search is given to you as part of the lab. However, you will have to provide the stack
implementation using your code from Laboratory 3.

1.5.3 Data Structures

The data structures used in this lab are linked lists (for implementing the adjacency lists), a stack
(for implementing depth-first search), and an adjacency list representation of a graph.

2 Laboratory Files

The files for this laboratory are in the zip archive Lab7.zip available on the course Web site. The
archive will unpack into a directory called Lab7 with shell and data subdirectories. The shell
directory contains the files

1. main.cpp: the client program used for testing.
2. graph.h: the interface for the graph class and other necessary classes.
3. graph.cpp: the implementation file.

The data subdirectory contains two test files containing graphs that can be read in and searched
to test your code.



3 Laboratory Assignments

3.1

1.

2.

3.2

Programming (50 points)
Implement a graph class supporting the given interface.

Verify that your program compiles and runs correctly using the test files provided for the lab.

Follow-up Questions (50 points)

(10 points) Illustrate the union-find algorithm by constructing the union-find tree for the
graph in the file inputl.txt. Show the result both with the standard quick union algorithm
and with the use of compression by halving. What is the difference in performance of the two
algorithms on this example?

. (15 points) 21-1

(5 points) CLRS 22.4-1.

(10 points) Consider a graph data structure implemented using adjacency lists. Suppose that
instead of a linked list, the adjacency list for each vertex is stored as a hash table. Assuming
that all edge lookups are equally likely, what is the expected time to determine whether an
edge is in the graph using this scheme? What are the advantages and disadvantages of this
data structure?

(10 points) 22.4-3



