[E 170 Laboratory 6: Hash Tables

Dr. T.K. Ralphs

Due March 13, 2006

1 Laboratory Description and Procedures

1.1 Learning Objectives

You should be able to do the following after completing this laboratory.
1. Understand the use of hash tables.
2. Understand how to implement a hash table using both chaining and open addressing.
3. Understand the time-space tradeoff.

4. Develop an appreciation for the dramatic changes in performance that can result from subtle
changes in implementation.

5. Develop an ability to analyze the tradeoffs between various implementations of the same data
structure.

6. Understand when to use the various implementations of hash tables.

1.2 Key Words

You should be able to define the following key words after completing this laboratory.

1. Hash table
2. Open addressing
3. Chaining

4. Time-space tradeoff

1.3 Scenario

You are an employee in the I'T department of the telephone service provider Phones’R’Us. As part of
the new enhanced caller ID service that Phones’R’Us is planning to roll out, they must implement
an extremely fast reverse lookup procedure by which one can look up the name, address, and
other miscellaneous information of any of any subscriber using just their phone number. This
reverse lookup database will be stored on small local servers in each switching office, so it is not
practical to simply place the information in an array that has one entry for each possible phone
number. It is also not possible to predict what additional exchanges will be used in the future.
The phone numbers themselves are not assigned randomly, but the patterns used for assignment



are not predictable ahead of time. Therefore, it is decided that a hash table is needed to store
the customer information for extremely fast reverse lookup. Because of the unpredictability of the
telecom market, it is not known whether phone numbers will need to be deleted on a regular basis.
This depends on the competitiveness of the company in a tumultuous market. You have therefore
been asked to do a preliminary study of the various implementations of hash tables to determine
the best course of action under various scenarios.

1.4 Design and Analysis

For hash tables, the running time is dominated by comparison operations, so in this lab, we will
study the number of comparisons needed to perform various operations on a hash table using several
implementations. Hash tables illustrate several of the principles that are central to our study of
algorithms, so we will put some effort into analyzing them.

The first principle that we will study in this lab is that of the time-space tradeoff. Hash tables
present a perfect illustration of this important principle. One of the parameters of a hash table is
its size. The size of the table, along with the expected number of elements to be stored, determine
the table’s load factor, which is just the ratio of these two numbers. No matter what the underlying
implementation, the load factor of the table is positively correlated with the number of comparisons
required for basic operations. In other words, the smaller the load factor, the fewer comparisons are
required. If there were no limit on the size of the table, the load factor could always be made small
and all operations could be implemented in constant time. In reality, however, we must decide how
much memory needs to be dedicated to storage of the table in order to achieve desired performance.
This is the time-space tradeoff.

Although this tradeoff exists for all implementations of hash tables, the way in which the
performance varies as a function of the load factor (denoted « from here on) differs significantly
from one implementation to the next. For instance, the number of comparisons for a search miss
varies linearly with « in a chaining implementation, whereas it is inversely proportional to 1 — «
in a linear probing implementation.

Performance also differs significantly with other factors. One of the most important factors to
consider is how often items will have to be deleted from the table. Certain implementations are
only appropriate if very few deletions will occur. We must also consider how accurately we can
estimate the number of items to be inserted into the able.

In this lab, we will be comparing several different implementations of hash tables in order
to determine how they perform in various situations. The two main choices in implementing a
hash table are the hash function and the method of resolving collisions. In this lab, we will use
modular hash functions with collision resolution by either chaining or open addressing, as described
in Lectures 11 and 12. In terms of the time-space tradeoff, it is unclear which method is superior.
Chaining is efficient with load factors bigger than one, so we can expect all table slots to be used.
However, we must store an extra pointer with each item. With open addressing, we must have a
load factor below one, which means we are forced to reserve memory locations for storing pointers
that will not actually be used. To analyze this tradeoff, we must determine the performance for
load factors at which the two algorithms require the same amount of memory. As in previous labs,
we will perform both empirical and theoretical studies to determine these tradeoffs.

The analysis is quite different in the presence of deletions. In this case, the particular method of
open addressing is important. For instance, with linear probing, deletion can be handled efficiently,
whereas with double hashing, it is more difficult. In the analysis section of this lab, we will explore
these tradeoffs as well.



1.5 Program Specifications

You have been provided with a full implementation of a hash table class implemented using both
chaining and linear probing. You have also been given a client program that will generate random
sequences of insertions and deletions in order to test the performance of the two implementations.
The comments in the code should help you understand who to use it. Your job will be to modify
the implementations in various ways, as described in the Programming and Analysis section below
in order to explore the various tradeoffs discussed above.

1.5.1 Algorithms

The algorithms to be implemented in this lab are various hash functions and methods of resolving
collisions supporting the operations on a hash table specified by the interface in hashTable.h.
1.5.2 Data Structures

The basic data structure required for this laboratory is a hash table.

2 Laboratory Test Files

The files for this laboratory are in the zip archive Lab6.zip available on the course Web site. The
archive will unpack into a directory called Lab6 with a shell subdirectory. The shell directory
contains the files

1. main.cpp: the client program used for testing.

2. hashTable.h: the hash table interface.

3. hashOpen.cpp: the implementation file for linear probing.
4. hashChain.cpp: the implementation file for chaining.

5. hashItem.h: A class for storing the items.

Note that ordinarily, we would have a different item class for each implementation (possibly de-
rived from a single base class using C++ inheritance) in order to take advantage of the different
requirements of chaining and open addressing. However, to keep things simple, we are using only
one class here that contains all the fields required for either implementation.

3 Laboratory Assignments

3.1 Programming and Analysis (60 points)

1. (10 points) Compare the performance of chaining to linear probing when performing only
insertions and searches. Keep the number of items at 1000 and vary the table size to achieve
different load factors. For each implementation, create a graph of load factor versus average
time for search hits and misses and display the theoretical average time on the same graph.
Use load factors between .5 and 1 for linear probing and between 1 and 10 for chaining. What
are your observations?



3.2

(10 points) Determine approximately how much smaller the load factor needs to be in linear
probing to achieve the same performance as in chaining. At a similar level of performance,
which one uses more memory (just take into account the pointers, as described above)?

. (10 points) Compare chaining to linear probing when performing insertions, searches, and

deletions. For each implementation, create a graph of load factor versus average time for
search hits and misses, with the load factors in the same range as above. What are your
observations?

(15 points) Try to improve upon the performance of linear probing with deletion by imple-
menting deletion with rehashing. Chart the performance of each method with load factors
in the same range as above on the same graph. Please paste the relevant snippets of code
into your write-up and explain the changes that had to be made to implement your methods.
What are your observations?

(15 points) Please paste the relevant snippets of code into your write-up and explain the
changes that had to be made to implement your methods. Try to improve the performance
of linear probing by implementing double hashing (this can be done with only a few lines of
code). Chart the performance of each method with load factors in the same range as above
on the same graph. Please paste the relevant snippets of code into your write-up and explain
the changes that had to be made to implement your methods. What are your observations?
Note that you cannot use deletion with rehashing with insertion by double hashing.

Follow-up Questions (40 points)

. (10 points) 10-1

. (10 points) 10.4-3

(10 points) CLRS 11.2-2. Do the same for linear probing and analyze the time for search hits
and misses with each implementation on this small example.

(10 points) CLRS 11.2-3



