Computational Integer Programming

Lecture 8: Branch and Bound

Dr. Ted Ralphs



Reading for This Lecture

- Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4
- Wolsey Chapter 7

Computational Integer Optimization

- We now turn to the details of how integer optimization problems are solved in practice.
- Computationally, the most important aspects of solving integer optimization problems are
 - A method for obtaining good bounds on the value of the optimal solution (usually by solving a relaxation or dual; and
 - A method for generating valid disjunctions violated by a given (infeasible) solution.
- In this lecture, we will motivate this fact by introducing the branch and bound algorithm.
- We will then look at various methods of obtaining bounds.
- Later, we will examine branch and bound in more detail.

Integer Optimization and Disjunction

- As we know, the difficulty in solving an integer optimization problem arises from the requirement that certain variables take on integer values.
- Such requirements can be described in terms of logical disjunctions, constraints of the form

$$x \in \bigcup_{1 \le i \le k} X_i$$

for
$$X_i \subseteq \mathbb{R}^n, i \in 1, \ldots, k$$
.

- The integer variables in a given formulation may represent logical conditions that were originally expressed in terms of disjunction.
- In fact, the MILP Representability Theorem tells us that any MILP can be re-formulated as an optimization problem whose feasible region is

$$\mathcal{F} = \bigcup_{i=1}^{k} \mathcal{P}_i + \text{intcone}\{r^1, \dots, r^t\}$$

is the *disjunctive set* \mathcal{F} defined above, for some appropriately chosen polytopes $\mathcal{P}_1, \ldots, \mathcal{P}_k$ and vectors $r^1, \ldots, r^t \in \mathbb{Z}^n$.

Two Conceptual Reformulations

- From what we have seen so far, we have to two conceptual reformulations of a given integer optimization problem.
- The first is in terms of *disjunction*:

$$\max \left\{ c^{\top} x \mid x \in \left(\bigcup_{i=1}^{k} \mathcal{P}_i + \text{intcone}\{r^1, \dots, r^t\} \right) \right\}$$
 (DIS)

• The second is in terms of *valid inequalities*:

$$\max \left\{ c^{\top} x \mid x \in \text{conv}(\mathcal{S}) \right\} \tag{CP}$$

where S is the feasible region.

- In principle, if we had a method for generating either of these reformulations, this would lead to a practical method of solution.
- Unfortunately, these reformulations are necessarily of exponential size in general, so there can be no way of generating them efficiently.

Valid Disjunctions

- In practice, we dynamically generate parts of the reformulations (CP) and (DIS) in order to obtain a proof of optimality for a particular instance.
- The concept of *valid disjunction*, arises from a desire to approximate the feasible region of (DIS).

Definition 1. Let $\{X_i\}_{i=1}^k$ be a collection of subset of \mathbb{R}^n . Then if $\bigcup_{1 \leq i \leq k} X_i \supseteq \mathcal{S}$, the disjunction associated with $\{X_i\}_{i=1}^k$ is said to be valid for an MILP with feasible set \mathcal{S} .

Definition 2. If $\{X_i\}_{i=1}^k$ is a disjunction valid for S and X_i is polyhedral for all $i \in \{1, ..., k\}$, then we say the disjunction is linear.

Definition 3. If $\{X_i\}_{i=1}^k$ is a disjunction valid for S and $X_i \cap X_j = \emptyset$ for all $i, j \in \{1, ..., k\}$, we say the disjunction is partitive.

Definition 4. If $\{X_i\}_{i=1}^k$ is a disjunction valid for S that is both linear and partitive, we call it admissible.

Valid Inequalities

- Likewise, we can think of the concept of a *valid inequality* as arising from our desire to approximate conv(S) (the feasible region of (CP)).
- The inequality denoted by (π, π_0) is called a *valid inequality* for S if $\pi^\top x \leq \pi_0 \ \forall x \in S$.
- Note (π, π_0) is a valid inequality if and only if $S \subseteq \{x \in \mathbb{R}^n \mid \pi^\top x \leq \pi_0\}$.

Optimality Conditions

- Let us now consider an MILP (A, b, c, p) with feasible set $S = \mathcal{P} \cap (\mathbb{Z}_+^p \times \mathbb{R}_+^{n-p})$, where \mathcal{P} is the given formulation.
- Further, let $\{X_i\}_{i=1}^k$ be a linear disjunction valid for this MILP so that $X_i \cap \mathcal{P} \subseteq \mathbb{R}^n$ is polyhedral.
- Then $\max_{X_i \cap S} c^{\top} x$ is an MILP for all $i \in 1, ..., k$.
- For each i = 1, ..., k, let \mathcal{P}_i be a polyhedron such that $X_i \cap \mathcal{S} \subseteq \mathcal{P}_i \subseteq \mathcal{P} \cap X_i$.
- In other words, \mathcal{P}_i is a valid formulation for subproblem i, possibly strengthened by additional valid inequalities.
- Note that $\{\mathcal{P}_i\}_{i=1}^k$ is itself a valid linear disjunction.
- We will see why there is a distinction between X_i and \mathcal{P}_i later on.
- Conceptually, we are combining and relaxing the formulations (CP) and (DIS).

Optimality Conditions (cont'd)

- From the disjunction on the previous slide, we obtain a relaxation of a general MILP.
- This relaxation yields a practical set of optimality conditions.
- In particular,

$$\max_{i \in 1, \dots, k} \max_{x \in \mathcal{P}_i \cap \mathbb{R}^n_+} c^\top x \ge z_{IP}, \tag{1}$$

which implies that if we have $x^* \in \mathcal{S}$ such that

$$\max_{i \in 1, \dots, k} \max_{x \in \mathcal{P}_i \cap \mathbb{R}^n_+} c^\top x = c^\top x^*, \tag{OPT}$$

then x^* must be optimal.

More on Optimality Conditions

- Although it is not obvious, these optimality conditions can be seen as a generalization of those from LP.
- They are also the optimality conditions implicitly underlying many advanced algorithms.
- There is an associated duality theory that we will see later.
- By parameterizing (1), we obtain a "dual function" that is the solution to a dual that generalizes the LP dual.

Branch and Bound

- Branch and bound is the most commonly-used algorithm for solving MILPs.
- It is a recursive, divide-and-conquer approach.
- Suppose S is the feasible set for an MILP and we wish to compute $\max_{x \in S} c^{\top}x$.
- Consider a partition of S into subsets $S_1, \ldots S_k$. Then

$$\max_{x \in \mathcal{S}} c^{\top} x = \max_{\{1 \le i \le k\}} \{ \max_{x \in \mathcal{S}_i} c^{\top} x \}$$

.

- In other words, we can optimize over each subset separately.
- <u>Idea</u>: If we can't solve the original problem directly, we might be able to solve the smaller *subproblems* recursively.
- Dividing the original problem into subproblems is called branching.
- Taken to the extreme, this scheme is equivalent to complete enumeration.

Branching in Branch and Bound

- Branching is achieved by selecting an admissible disjunction $\{X_i\}_{i=1}^k$ and using it to partition \mathcal{S} , e.g., $\mathcal{S}_i = \mathcal{S} \cap X_i$.
- We only consider linear disjunctions so that the subproblem remain MILPs after branching.
- The reason for choosing partitive disjunctions is self-evident.
- The way this disjunction is selected is called the *branching method* and is a topic we will examine in some depth.
- Generally speaking, we want $x^* \notin \bigcup_{1 \leq i \leq k} X_i$, where x^* is the (infeasible) solution produced by solving the *bounding problem* associated with a given subproblem.
- A typical disjunction is

$$X_1 = \{x_j \le \lfloor x_j^* \rfloor\}, \tag{2}$$

$$X_2 = \{x_j \ge \lceil x_i^* \rceil \}, \tag{3}$$

where $x^* \in \operatorname{argmax}_{x \in \mathcal{P}} c^\top x$.

Bounding in Branch and Bound

- The bounding problem is a problem solved to obtain a bound on the optimal solution value of a subproblem $\max_{S_i} c^{\top} x$.
- Typically, the bounding problem is either a relaxation or a dual of the subproblem (these concepts will be defined formally in Lecture 7).
- Solving the bounding problem serves two purposes.
 - In some cases, the solution x^* to the relaxation may actually be a feasible solution $(x^* \in \mathcal{S}, \text{ in which case } c^\top x^* \text{ is a global lower bound } l(\mathcal{S}).$
 - Bounding enables us to inexpensively a bound $b(S_i)$ on the optimal solution value of subproblem i.
- If $b(S_i) \leq l(S)$, then S_i can't contain a solution strictly better than the best one found so far.
- Thus, we may discard or *prune* subproblem i.

Constructing a Bounding Problem

- There are many ways to construct a bounding problem and this will be the topic of later lectures.
- The easiest of the these is to form the *LP relaxation* $\max_{\mathcal{P} \cap \mathbb{R}^n_+ \cap X_i}$, obtained by dropping the integrality constraints.
- For the rest of the lecture, assume all variables have finite upper and lower bounds.

LP-based Branch and Bound: Initial Subproblem

- In LP-based branch and bound, we first solve the LP relaxation of the original problem. The result is one of the following:
 - 1. The LP is infeasible \Rightarrow MILP is infeasible.
 - 2. We obtain a feasible solution for the MILP \Rightarrow optimal solution.
 - 3. We obtain an optimal solution to the LP that is not feasible for the MILP \Rightarrow upper bound.
- In the first two cases, we are finished.
- In the third case, we must branch and recursively solve the resulting subproblems.

Branching in LP-based Branch and Bound

- In LP-based branch and bound, the most commonly used disjunctions are the *variable disjunctions*, imposed as follows:
 - Select a variable i whose value \hat{x}_i is fractional in the LP solution.
 - Create two subproblems.
 - * In one subproblem, impose the constraint $x_i \leq \lfloor \hat{x}_i \rfloor$.
 - * In the other subproblem, impose the constraint $x_i \geq \lceil \hat{x}_i \rceil$.
- What does it mean in a 0-1 problem?

The Geometry of Branching

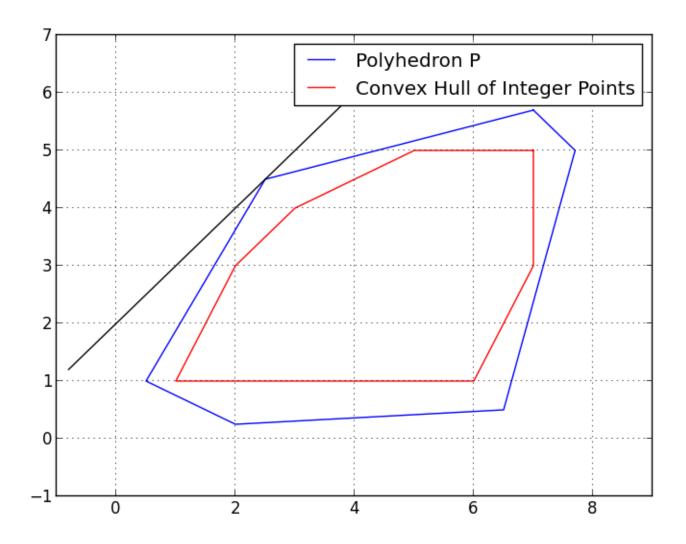


Figure 1: The original feasible region

The Geometry of Branching (cont'd)

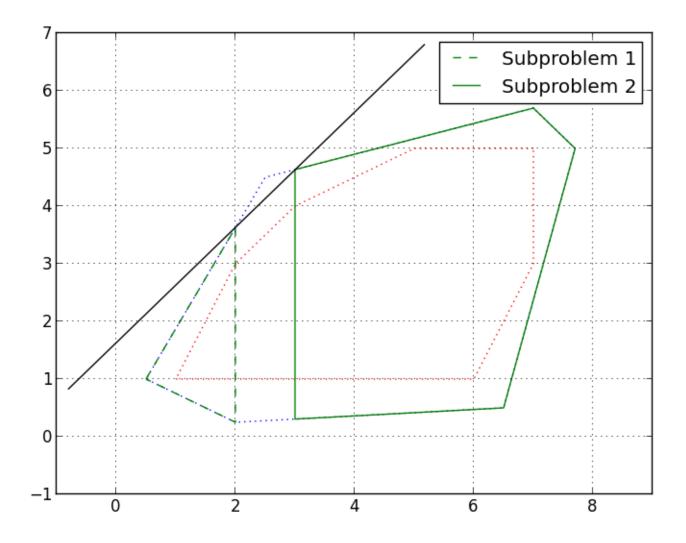


Figure 2: Branching on disjunction $x_1 \leq 2$ OR $x_1 \geq 3$

Continuing the Algorithm After Branching

- After branching, we solve each of the subproblems recursively.
- Now we have an additional factor to consider.
- As mentioned earlier, if the optimal solution value to the LP relaxation is smaller than the current lower bound, we need not consider the subproblem further.
- This is the key to the efficiency of the algorithm.

Terminology

- If we picture the subproblems graphically, they form a search tree.
- Each subproblem is linked to its parent and eventually to its children.
- Eliminating a problem from further consideration is called *pruning*.
- The act of bounding and then branching is called processing.
- A subproblem that has not yet been considered is called a candidate for processing.
- The set of candidates for processing is called the candidate list.

The Geometry of Branching

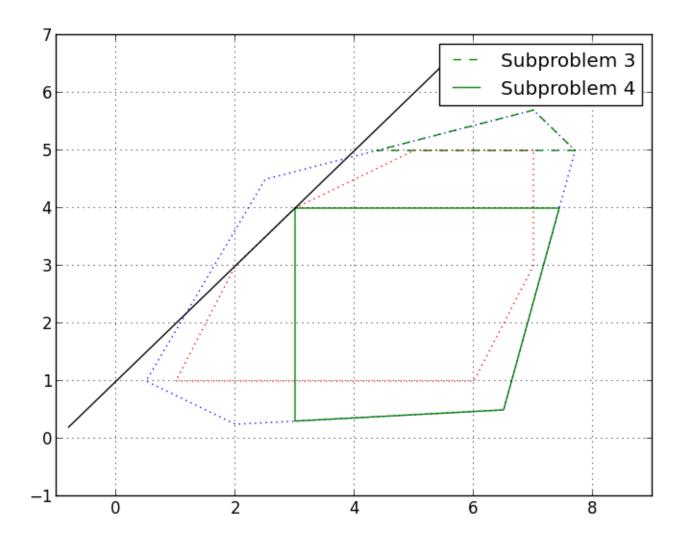
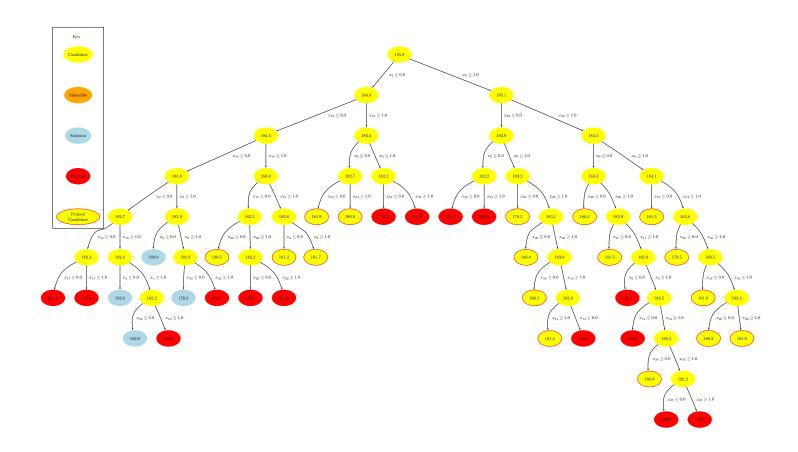


Figure 3: Branching on disjunction $x_1 \le 4$ OR $x_1 \ge 5$ in Subproblem 2

LP-based Branch and Bound Algorithm

- 1. To start, derive a lower bound L using a heuristic method.
- 2. Put the original problem on the candidate list.
- 3. Select a problem S from the candidate list and solve the LP relaxation to obtain the bound b(S).
 - If the LP is infeasible ⇒ node can be pruned.
 - Otherwise, if $b(S) \leq L \Rightarrow \text{node can be pruned}$.
 - Otherwise, if b(S) > L and the solution is feasible for the MILP \Rightarrow set $L \leftarrow b(S)$.
 - Otherwise, branch and add the new subproblem to the candidate list.
- 4. If the candidate list in nonempty, go to Step 2. Otherwise, the algorithm is completed.

Branch and Bound Tree



Termination Conditions

- Note that although we use multiple disjunctions to branch during the algorithm, the tree can still be seen as encoding a single disjunction.
- ullet To see this, consider the set ${\mathcal T}$ of subproblems associated with the leaf nodes in the tree.
 - Provided that we use admissible disjunctions for branching, the feasible regions of these subproblems are a partition of S.
 - Furthermore, we will see that there exists a collection of polyhedra $\{\mathcal{P}_i\}_{i\in\mathcal{T}}$, where
 - * \mathcal{P}_i is a formulation for subproblem i; and
 - * $\{\mathcal{P}_i\}_{i=1}^k$ is admissible with respect to \mathcal{S} .
- When this disjunction, along with the best solution found so far satisfies the optimality conditions (OPT), the algorithm terminates.
- We will revisit this more formally as we further develop the supporting theory.

Ensuring Finite Convergence

- For LP-based branch and bound, ensuring convergence requires a convergent branching method.
- Roughly speaking, a convergent branching method is one which will
 - produce a violated admissible disjunction whenever the solution to the bounding problem is infeasible; and
 - if applied recursively, guarantee that at some finite depth, any resulting bounding problem will either
 - * produce a feasible solution (to the original MILP); or
 - * be proven infeasible; or
 - * be pruned by bound.
- Typically, we achieve this by ensuring that at some finite depth, the feasible region of the bounding problem contains at most one feasible solution.
- We will also revisit this result more formally as we develop the supporting theory.

Algorithmic Choices in Branch and Bound

- Although the basic algorithm is straightforward, the efficiency of it in practice depends strongly on making good algorithmic choices.
- These algorithmic choices are made largely by heuristics that guide the algorithm.
- Basic decisions to be made include
 - The bounding method(s).
 - The method of selecting the next candidate to process.
 - * "Best-first" always chooses the candidate with the highest upper bound.
 - * This rule minimizes the size of the tree (why?).
 - * There may be practical reasons to deviate from this rule.
 - The method of branching.
 - * Branching wisely is extremely important.
 - * A "poor" branching can slow the algorithm significantly.
- We will cover the last two topics in more detail in later lectures.

A Thousand Words

B&B tree (None 0.38s)

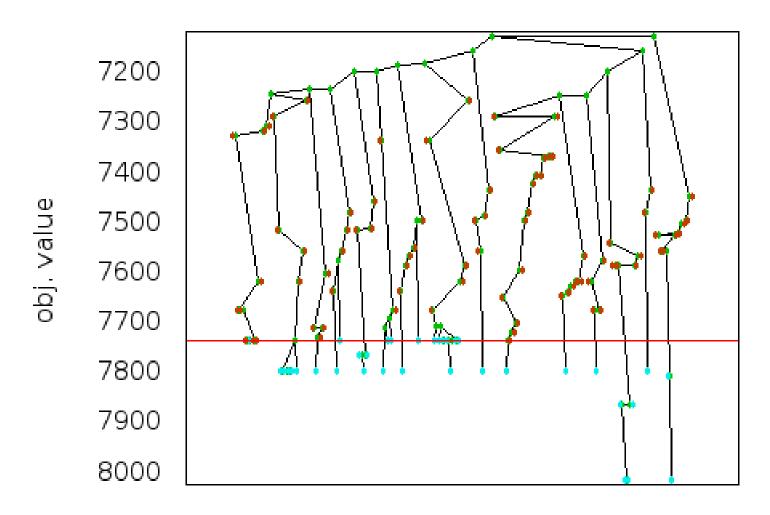


Figure 4: Tree after 400 nodes

Note that we are minimizing here!

A Thousand Words

B&B tree (None 1.46s)

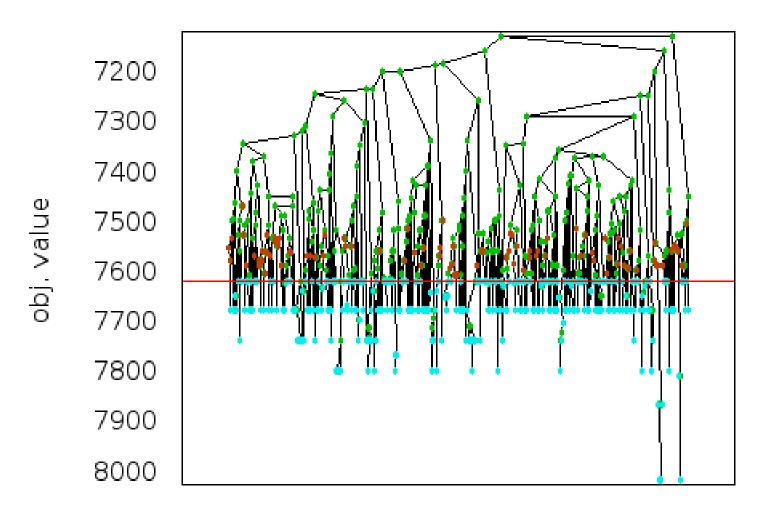


Figure 5: Tree after 1200 nodes

A Thousand Words

B&B tree (None 1.65s)

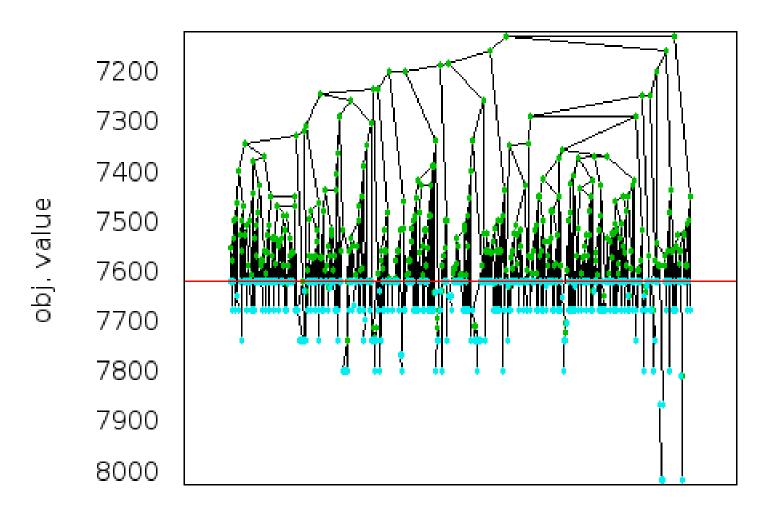


Figure 6: Final tree

Global Bounds

- The pictures show the evolution of the branch and bound process.
- Nodes are pictured at a height equal to that of their lower bound (we are minimizing in this case!!).
 - Red: candidates for processing/branching
 - Green: branched or infeasible
 - <u>Turquoise</u>: pruned by bound (possibly having produced a feasible solution) or infeasible.
- The red line is the level of the current best solution (global upper bound).
- The level of the highest red node is the global lower bound.
- As the procedure evolves, the two bounds grow together.
- The goal is for this to happen as quickly as possible.

Tradeoffs

- We will see that there are many tradeoffs to be managed in branch and bound.
- Note that in the final tree:
 - Nodes below the line were pruned by bound (and may or may not have generated a feasible solution) or were infeasible.
 - Nodes above the line were either branched or were infeasible or generated an optimal solution.
- There is a tradeoff between the goals of moving the upper and lower bounds
 - The nodes below the line serve to move the upper bound.
 - The nodes above the line serve to move the lower bound.
- It is clear that these two goals are somewhat antithetical.
- The search strategy has to achieve a balance between these two antithetical goals.

Tradeoffs in Practice

- In a practical implementation, there are many more choices and tradeoffs than those we have indicated so far.
- The complexity of the problem of optimizing the algorithm itself is immense.
- We have additional auxiliary methods, such as preprocessing and primal heuristics that we can choose to devote more or less effort to.
- We also have the choice of how much effort to devote to choosing a good candidate for branching.
- Finally, we have the choice of how much effort to devote to proving a good bound on the subproblem.
- It is the careful balance of the levels of effort devoted to each of these algorithmic processes the leads to a good algorithmic implementation.

Exercise: Install Graphviz, xdot, and GrUMPy

- pip install coinor.grumpy
- Graphviz
 - Linux: Install with package manager
 - OS X: brew install graphviz
 - Windows: http://graphviz.org/Download.php
- xdot: pip install xdot
 - Linux: Install with package manager
 - OS X: brew install pygtk
 - Windows: http://pygtk.org/downloads.html
- python -m coinor.grumpy.BB

Exercise2: Branch and Bound