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Reading for This Lecture

• Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4

• Wolsey Chapter 7
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Computational Integer Optimization

• We now turn to the details of how integer optimization problems are
solved in practice.

• Computationally, the most important aspects of solving integer
optimization problems are

– A method for obtaining good bounds on the value of the optimal
solution (usually by solving a relaxation or dual; and

– A method for generating valid disjunctions violated by a given
(infeasible) solution.

• In this lecture, we will motivate this fact by introducing the branch and
bound algorithm.

• We will then look at various methods of obtaining bounds.

• Later, we will examine branch and bound in more detail.
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Integer Optimization and Disjunction

• As we know, the difficulty in solving an integer optimization problem
arises from the requirement that certain variables take on integer values.

• Such requirements can be described in terms of logical disjunctions,
constraints of the form

x ∈
⋃

1≤i≤k

Xi

for Xi ⊆ Rn, i ∈ 1, . . . , k.

• The integer variables in a given formulation may represent logical
conditions that were originally expressed in terms of disjunction.

• In fact, the MILP Representability Theorem tells us that any MILP can
be re-formulated as an optimization problem whose feasible region is

F =
k⋃

i=1

Pi + intcone{r1, . . . , rt}

is the disjunctive set F defined above, for some appropriately chosen
polytopes P1, . . . ,Pk and vectors r1, . . . , rt ∈ Zn.
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Two Conceptual Reformulations

• From what we have seen so far, we have to two conceptual reformulations
of a given integer optimization problem.

• The first is in terms of disjunction:

max

{
c>x | x ∈

(
k⋃

i=1

Pi + intcone{r1, . . . , rt}
)}

(DIS)

• The second is in terms of valid inequalities:

max
{
c>x | x ∈ conv(S)

}
(CP)

where S is the feasible region.

• In principle, if we had a method for generating either of these
reformulations, this would lead to a practical method of solution.

• Unfortunately, these reformulations are necessarily of exponential size in
general, so there can be no way of generating them efficiently.
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Valid Disjunctions

• In practice, we dynamically generate parts of the reformulations (CP) and
(DIS) in order to obtain a proof of optimality for a particular instance.

• The concept of valid disjunction, arises from a desire to approximate the
feasible region of (DIS).

Definition 1. Let {Xi}ki=1 be a collection of subset of Rn. Then if⋃
1≤i≤kXi ⊇ S, the disjunction associated with {Xi}ki=1 is said to be

valid for an MILP with feasible set S.

Definition 2. If {Xi}ki=1 is a disjunction valid for S andXi is polyhedral
for all i ∈ {1, . . . , k}, then we say the disjunction is linear.

Definition 3. If {Xi}ki=1 is a disjunction valid for S and Xi ∩Xj = ∅
for all i, j ∈ {1, . . . , k}, we say the disjunction is partitive.

Definition 4. If {Xi}ki=1 is a disjunction valid for S that is both linear
and partitive, we call it admissible.
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Valid Inequalities

• Likewise, we can think of the concept of a valid inequality as arising from
our desire to approximate conv(S) (the feasible region of (CP)).

• The inequality denoted by (π, π0) is called a valid inequality for S if
π>x ≤ π0 ∀x ∈ S.

• Note (π, π0) is a valid inequality if and only if S ⊆ {x ∈ Rn | π>x ≤ π0}.
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Optimality Conditions

• Let us now consider an MILP (A, b, c, p) with feasible set S = P ∩ (Zp
+×

Rn−p
+ ), where P is the given formulation.

• Further, let {Xi}ki=1 be a linear disjunction valid for this MILP so that
Xi ∩ P ⊆ Rn is polyhedral.

• Then maxXi∩S c
>x is an MILP for all i ∈ 1, . . . , k.

• For each i = 1, . . . , k, let Pi be a polyhedron such that Xi ∩ S ⊆ Pi ⊆
P ∩Xi.

• In other words, Pi is a valid formulation for subproblem i, possibly
strengthened by additional valid inequalities.

• Note that {Pi}ki=1 is itself a valid linear disjunction.

• We will see why there is a distinction between Xi and Pi later on.

• Conceptually, we are combining and relaxing the formulations (CP) and
(DIS).
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Optimality Conditions (cont’d)

• From the disjunction on the previous slide, we obtain a relaxation of a
general MILP.

• This relaxation yields a practical set of optimality conditions.

• In particular,
max

i∈1,...,k
max

x∈Pi∩Rn
+

c>x ≥ zIP , (1)

which implies that if we have x∗ ∈ S such that

max
i∈1,...,k

max
x∈Pi∩Rn

+

c>x = c>x∗, (OPT)

then x∗ must be optimal.
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More on Optimality Conditions

• Although it is not obvious, these optimality conditions can be seen as a
generalization of those from LP.

• They are also the optimality conditions implicitly underlying many
advanced algorithms.

• There is an associated duality theory that we will see later.

• By parameterizing (1), we obtain a “dual function” that is the solution
to a dual that generalizes the LP dual.
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Branch and Bound

• Branch and bound is the most commonly-used algorithm for solving
MILPs.

• It is a recursive, divide-and-conquer approach.

• Suppose S is the feasible set for an MILP and we wish to compute
maxx∈S c

>x.

• Consider a partition of S into subsets S1, . . .Sk. Then

max
x∈S

c>x = max
{1≤i≤k}

{max
x∈Si

c>x}

.

• In other words, we can optimize over each subset separately.

• Idea: If we can’t solve the original problem directly, we might be able to
solve the smaller subproblems recursively.

• Dividing the original problem into subproblems is called branching.

• Taken to the extreme, this scheme is equivalent to complete enumeration.
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Branching in Branch and Bound

• Branching is achieved by selecting an admissible disjunction {Xi}ki=1 and
using it to partition S, e.g., Si = S ∩Xi.

• We only consider linear disjunctions so that the subproblem remain
MILPs after branching.

• The reason for choosing partitive disjunctions is self-evident.

• The way this disjunction is selected is called the branching method and
is a topic we will examine in some depth.

• Generally speaking, we want x∗ 6∈ ∪1≤i≤kXi, where x∗ is the (infeasible)
solution produced by solving the bounding problem associated with a
given subproblem.

• A typical disjunction is

X1 = {xj ≤ bx∗jc}, (2)

X2 = {xj ≥ dx∗je}, (3)

where x∗ ∈ argmaxx∈P c
>x.
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Bounding in Branch and Bound

• The bounding problem is a problem solved to obtain a bound on the
optimal solution value of a subproblem maxSi c

>x.

• Typically, the bounding problem is either a relaxation or a dual of the
subproblem (these concepts will be defined formally in Lecture 7).

• Solving the bounding problem serves two purposes.

– In some cases, the solution x∗ to the relaxation may actually be a
feasible solution (x∗ ∈ S, in which case c>x∗ is a global lower bound
l(S).

– Bounding enables us to inexpensively a bound b(Si) on the optimal
solution value of subproblem i.

• If b(Si) ≤ l(S), then Si can’t contain a solution strictly better than the
best one found so far.

• Thus, we may discard or prune subproblem i.
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Constructing a Bounding Problem

• There are many ways to construct a bounding problem and this will be
the topic of later lectures.

• The easiest of the these is to form the LP relaxation maxP∩Rn
+∩Xi

,
obtained by dropping the integrality constraints.

• For the rest of the lecture, assume all variables have finite upper and
lower bounds.
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LP-based Branch and Bound: Initial Subproblem

• In LP-based branch and bound, we first solve the LP relaxation of the
original problem. The result is one of the following:

1. The LP is infeasible ⇒ MILP is infeasible.
2. We obtain a feasible solution for the MILP ⇒ optimal solution.
3. We obtain an optimal solution to the LP that is not feasible for the

MILP ⇒ upper bound.

• In the first two cases, we are finished.

• In the third case, we must branch and recursively solve the resulting
subproblems.
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Branching in LP-based Branch and Bound

• In LP-based branch and bound, the most commonly used disjunctions
are the variable disjunctions, imposed as follows:

– Select a variable i whose value x̂i is fractional in the LP solution.
– Create two subproblems.
∗ In one subproblem, impose the constraint xi ≤ bx̂ic.
∗ In the other subproblem, impose the constraint xi ≥ dx̂ie.

• What does it mean in a 0-1 problem?
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The Geometry of Branching

Figure 1: The original feasible region
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The Geometry of Branching (cont’d)

Figure 2: Branching on disjunction x1 ≤ 2 OR x1 ≥ 3

17



Computational MILP Lecture 8 18

Continuing the Algorithm After Branching

• After branching, we solve each of the subproblems recursively.

• Now we have an additional factor to consider.

• As mentioned earlier, if the optimal solution value to the LP relaxation
is smaller than the current lower bound, we need not consider the
subproblem further.

• This is the key to the efficiency of the algorithm.

• Terminology

– If we picture the subproblems graphically, they form a search tree.
– Each subproblem is linked to its parent and eventually to its children.
– Eliminating a problem from further consideration is called pruning.
– The act of bounding and then branching is called processing.
– A subproblem that has not yet been considered is called a candidate

for processing.
– The set of candidates for processing is called the candidate list.
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The Geometry of Branching

Figure 3: Branching on disjunction x1 ≤ 4 OR x1 ≥ 5 in Subproblem 2
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LP-based Branch and Bound Algorithm

1. To start, derive a lower bound L using a heuristic method.

2. Put the original problem on the candidate list.

3. Select a problem S from the candidate list and solve the LP relaxation
to obtain the bound b(S).

• If the LP is infeasible ⇒ node can be pruned.
• Otherwise, if b(S) ≤ L ⇒ node can be pruned.
• Otherwise, if b(S) > L and the solution is feasible for the MILP ⇒

set L← b(S).
• Otherwise, branch and add the new subproblem to the candidate list.

4. If the candidate list in nonempty, go to Step 2. Otherwise, the algorithm
is completed.
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Branch and Bound Tree
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Termination Conditions

• Note that although we use multiple disjunctions to branch during the
algorithm, the tree can still be seen as encoding a single disjunction.

• To see this, consider the set T of subproblems associated with the leaf
nodes in the tree.

– Provided that we use admissible disjunctions for branching, the feasible
regions of these subproblems are a partition of S.

– Furthermore, we will see that there exists a collection of polyhedra
{Pi}i∈T , where
∗ Pi is a formulation for subproblem i; and
∗ {Pi}ki=1 is admissible with respect to S.

• When this disjunction, along with the best solution found so far satisfies
the optimality conditions (OPT), the algorithm terminates.

• We will revisit this more formally as we further develop the supporting
theory.
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Ensuring Finite Convergence

• For LP-based branch and bound, ensuring convergence requires a
convergent branching method.

• Roughly speaking, a convergent branching method is one which will

– produce a violated admissible disjunction whenever the solution to the
bounding problem is infeasible; and

– if applied recursively, guarantee that at some finite depth, any resulting
bounding problem will either
∗ produce a feasible solution (to the original MILP); or
∗ be proven infeasible; or
∗ be pruned by bound.

• Typically, we achieve this by ensuring that at some finite depth, the
feasible region of the bounding problem contains at most one feasible
solution.

• We will also revisit this result more formally as we develop the supporting
theory.
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Algorithmic Choices in Branch and Bound

• Although the basic algorithm is straightforward, the efficiency of it in
practice depends strongly on making good algorithmic choices.

• These algorithmic choices are made largely by heuristics that guide the
algorithm.

• Basic decisions to be made include

– The bounding method(s).
– The method of selecting the next candidate to process.
∗ “Best-first” always chooses the candidate with the highest upper

bound.
∗ This rule minimizes the size of the tree (why?).
∗ There may be practical reasons to deviate from this rule.

– The method of branching.
∗ Branching wisely is extremely important.
∗ A “poor” branching can slow the algorithm significantly.

• We will cover the last two topics in more detail in later lectures.
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A Thousand Words

Figure 4: Tree after 400 nodes

Note that we are minimizing here!
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A Thousand Words

Figure 5: Tree after 1200 nodes
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A Thousand Words

Figure 6: Final tree
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Global Bounds

• The pictures show the evolution of the branch and bound process.

• Nodes are pictured at a height equal to that of their lower bound (we
are minimizing in this case!!).

– Red: candidates for processing/branching
– Green: branched or infeasible
– Turquoise: pruned by bound (possibly having produced a feasible

solution) or infeasible.

• The red line is the level of the current best solution (global upper bound).

• The level of the highest red node is the global lower bound.

• As the procedure evolves, the two bounds grow together.

• The goal is for this to happen as quickly as possible.
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Tradeoffs

• We will see that there are many tradeoffs to be managed in branch and
bound.

• Note that in the final tree:

– Nodes below the line were pruned by bound (and may or may not have
generated a feasible solution) or were infeasible.

– Nodes above the line were either branched or were infeasible or
generated an optimal solution.

• There is a tradeoff between the goals of moving the upper and lower
bounds

– The nodes below the line serve to move the upper bound.
– The nodes above the line serve to move the lower bound.

• It is clear that these two goals are somewhat antithetical.

• The search strategy has to achieve a balance between these two
antithetical goals.
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Tradeoffs in Practice

• In a practical implementation, there are many more choices and tradeoffs
than those we have indicated so far.

• The complexity of the problem of optimizing the algorithm itself is
immense.

• We have additional auxiliary methods, such as preprocessing and primal
heuristics that we can choose to devote more or less effort to.

• We also have the choice of how much effort to devote to choosing a
good candidate for branching.

• Finally, we have the choice of how much effort to devote to proving a
good bound on the subproblem.

• It is the careful balance of the levels of effort devoted to each of these
algorithmic processes the leads to a good algorithmic implementation.
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Exercise: Install Graphviz, xdot, and GrUMPy

• pip install coinor.grumpy

• Graphviz

– Linux: Install with package manager
– OS X: brew install graphviz
– Windows: http://graphviz.org/Download.php

• xdot: pip install xdot

– Linux: Install with package manager
– OS X: brew install pygtk
– Windows: http://pygtk.org/downloads.html

• python -m coinor.grumpy.BB
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Exercise2: Branch and Bound

from coinor.grumpy import BBTree, PSEUDOCOST_BRANCHING, MOST_FRACTIONAL

from coinor.grumpy import DEPTH_FIRST, BEST_FIRST, BEST_ESTIMATE

T = BBTree()

T.set_display_mode(’xdot’)

CONSTRAINTS, VARIABLES, OBJ, MAT, RHS = T.GenerateRandomMIP(rand_seed = 19)

T.BranchAndBound(CONSTRAINTS, VARIABLES, OBJ, MAT, RHS,

branch_strategy = PSEUDOCOST_BRANCHING,

search_strategy = BEST_FIRST,

display_interval = 10000)
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