
Computational Integer Programming

Lecture 7: Review of Linear Optimization

Dr. Ted Ralphs

Computational MILP Lecture 7 1

A Quick Review of Linear Optimization

Definition 1. A polyhedron is a set of the form {x ∈ Rn|Ax ≥ b}, where
A ∈ Rm×n and b ∈ Rm.

Let P ⊆ Rn be a given polyhedron.

Definition 2. A vector x ∈ P is an extreme point of P if 6 ∃y, z ∈ P, λ ∈
(0, 1) such that x = λy + (1− λ)z.

Definition 3. A vector x ∈ P is an vertex of P if ∃c ∈ Rn such that
c>x < c>y ∀y ∈ P, x 6= y.

1

Computational MILP Lecture 7 2

Basic Solutions and Extreme Points

Consider a polyhedron P = {x ∈ Rn|Ax ≥ b} and let x̂ ∈ Rn be given.

Definition 4. The vector x̂ is a basic solution with respect to P if there
exist n linearly independent, binding constraints at x̂.

Definition 5. If x̂ is a basic solution and x̂ ∈ P, then x̂ is a basic feasible
solution.

Theorem 1. If P is nonempty and x̂ ∈ P, then the following are
equivalent:

• x̂ is a vertex.

• x̂ is an extreme point.

• x̂ is a basic feasible solution.

2

Computational MILP Lecture 7 3

Example

max 2x1 + 5x2

s.t. −x1 + 3.75x2 ≤ 14.375

−x1 − 2x2 ≤ −2.5

−14x1 + 8x2 ≤ 1

x1 − 18x2 ≤ −2.5

3.75x1 − x2 ≤ 23.875

x1 + x2 ≤ 12.7

x1, x2 ≥ 0

3

Computational MILP Lecture 7 4

Example

Figure 1: Feasible region for example

4

Computational MILP Lecture 7 5

Polyhedra in Standard Form

• For the next few slides, we consider the standard form polyhedron
P = {x ∈ Rn|Āx = b, x ≥ 0}.

• Here, Ā = [A | I], where the additional columns are those corresponding
to the slack variables.

• The feasible region of any linear optimization problem can be expressed
equivalently in this form.

• We will assume that the rows of Ā are linearly independent ⇒ m ≤ n.

• What does a basic feasible solution look like here?

5

Computational MILP Lecture 7 6

Basic Feasible Solutions in Standard Form

• In standard form, the equations are always binding.

• To obtain a basic solution, we must set n −m of the variables to zero
(why?).

• We must also end up with a set of linearly independent constraints.

• Therefore, the variables we pick cannot be arbitrary.

Theorem 2. Consider a polyhedron P in standard form with m linearly
independent constraints. A vector x̂ ∈ Rn is a basic solution with respect
to P if and only if Āx̂ = b and there exist indices B(1), . . . , B(m) such
that:

• The columns ĀB(1), . . . , ĀB(m) are linearly independent, and

• If i 6= B(1), . . . , B(m), then x̂i = 0.

6

Computational MILP Lecture 7 7

Some Terminology

• If x̂ is a basic solution, then x̂B(1), . . . , x̂B(m) are the basic variables.

• The columns ĀB(1), . . . , ĀB(m) are called the basic columns.

• Since they are linearly independent, these columns form a basis for Rm.

• A set of basic columns form a basis matrix, denoted B. So we have,

B =
[
ĀB(1) ĀB(2) · · · ĀB(m)

]
, xB =

 xB(1)
...

xB(m)



7

Computational MILP Lecture 7 8

Basic Solutions and Bases

• Given a basis matrix B, the values of the basic variables are obtained by
solving BxB = b, whose unique solution is xB = B−1b.

• However, multiple bases can give the same basic solution.

• Two bases are adjacent if they differ in only one basic column.

• Two basic solutions are adjacent if and only if they can be obtained from
two adjacent bases (proof is homework).

8

Computational MILP Lecture 7 9

Example: Basis Inverse

Basis inverse and corresponding solution when non-basic variables are s1
and s6:

[0.21 0. 0. 0. 0. 0.21]

[0.21 1. 0. 0. 0. 1.21]

[-4.63 0. 1. 0. 0. 9.37]

[4. 0. 0. 1. 0. 3.]

[1. 0. 0. 0. 1. -2.75]

[-0.21 0. 0. 0. 0. 0.79]

9

Computational MILP Lecture 7 10

Example

Figure 2: Basic solution when s1 and s6 are non-basic

10

Computational MILP Lecture 7 11

Optimality of Extreme Points

Theorem 3. Let P ⊆ Rn be a polyhedron and consider the problem
minx∈P c

>x for a given c ∈ Rn. If P has at least one extreme point and
there exists an optimal solution, then there exists an optimal solution that
is an extreme point.

• For linear optimization, a finite optimal cost is equivalent to the existence
of an optimal solution.

• The previous result can be strengthened.

• Since any linear optimization problem can be written in standard form
and all standard form polyhedra have an extreme point, we get the
following:

Theorem 4. Consider the linear optimization problem of minimizing c>x
over a nonempty polyhedron. Then, either the optimal cost is −∞ or there
exists an optimal solution.

11

Computational MILP Lecture 7 12

Iterative Search Algorithms

• Many optimization algorithms are iterative in nature.

• Geometrically, this means that they move from a given starting point to
a new point in a specified search direction.

• This search direction is calculated to be both feasible and improving.

• The process stops when we can no longer find a feasible, improving
direction.

• For linear optimization problems, it is always possible to find a feasible
improving direction if we are not at an optimal point.

• This is essentially what makes linear optimization problems “easy” to
solve.

12

Computational MILP Lecture 7 13

Feasible and Improving Directions

Definition 6. Let x̂ be an element of a polyhedron P. A vector d ∈ Rn is
said to be a feasible direction if there exists θ ∈ R+ such that x̂+ θd ∈ P.

Definition 7. Consider a polyhedron P and the associated linear
optimization problem minx∈P c

>x for c ∈ Rn. A vector d ∈ Rn is said to
be an improving direction if c>d < 0.

Notes:

• Once we find a feasible, improving direction, we want to move along that
direction as far as possible.

• Recall that we are interested in extreme points.

• The simplex algorithm moves between adjacent extreme points using
improving directions.

13

Computational MILP Lecture 7 14

Constructing Feasible Search Directions in Linear
Optimization

• Consider a BFS x̂, so that x̂N = 0.

• Any feasible direction must increase the value of at least one of the
nonbasic variables (why?).

• We will consider moving in basic directions that increase the value of
exactly one of the nonbasic variables, say variable j. This means

dj = 1

di = 0 for every nonbasic index i 6= j

• In order to remain feasible, we must also have Ād = 0 (why?), which
means

0 = Ād =

n∑
i=1

Āidi =

m∑
i=1

ĀB(i)dB(i)+Āj = BdB+Āj ⇒ dB = −B−1Āj

14

Computational MILP Lecture 7 15

Constructing Improving Search Directions

• Now we know how to construct feasible search directions—how do we
ensure they are improving?

• Recall that we must have c>d < 0.

Definition 8. Let x̂ be a basic solution, let B be an associated basis
matrix, and let cB be the vector of costs of the basic variables. For each
j, we define the reduced cost c̄j of variable j by

c̄j = cj − c>BB−1Āj.

• The basic direction associated with variable j is improving if and only if
c̄j < 0.

• Note that all basic variables have a reduced cost of 0 (why?).

15

Computational MILP Lecture 7 16

Optimality Conditions

Theorem 5. Consider a basic feasible solution x̂ associated with a basis
matrix B and let c̄ be the corresponding vector of reduced costs.

• If c̄ ≥ 0, then x̂ is optimal.

• If x̂ is optimal and nondegenerate, then c̄ ≥ 0.

Notes:

• The condition c̄ ≥ 0 implies there are no feasible improving directions.

• However, c̄j < 0 does not ensure the existence of an improving, feasible
direction unless the current BFS is nondegenerate

.

16

Computational MILP Lecture 7 17

The Tableau

• The tableau looks like this

−c>BB−1b c> − c>BB−1Ā
B−1b B−1Ā

• In more detail, this is

−c>BxB c̄1 · · · c̄n
xB(1)

... B−1Ā1 · · · B−1Ān

xB(m)

17

Computational MILP Lecture 7 18

Optimal Tableau in Example

Tableau and reduced costs when non-basic variables are s1 and s6:

[0. 0. -1.22 0. 0. 0. 0. -2.63]

[0. 1. 0.21 0. 0. 0. 0. 0.21] [5.7]

[0. 0. 0.21 1. 0. 0. 0. 1.21] [15.9]

[0. 0. -4.63 0. 1. 0. 0. 9.37] [53.4]

[0. 0. 4. 0. 0. 1. 0. 3.] [93.1]

[0. 0. 1. 0. 0. 0. 1. -2.75] [3.33]

[1. 0. -0.21 0. 0. 0. 0. 0.79] [7.0]

18

Computational MILP Lecture 7 19

Example

Figure 3: Optimal basic solution for example

19

Computational MILP Lecture 7 20

The Revised Simplex Method

A typical iteration of the revised simplex method:

1. Start with a specified BFS x̂ and the associated basis inverse B−1.

2. Compute p> = c>BB
−1 and the reduced costs c̄j = cj − p>Āj.

3. If c̄ ≥ 0, then the current solution is optimal.

4. Select the entering variable j and compute u = B−1Āj.

5. If u ≤ 0, then the LP is unbounded.

6. Determine the step size θ∗ = min{i|ui>0}
x̂B(i)

ui
.

7. Determine the new solution and the leaving variable i.

8. Update B−1.

9. Go to Step 1.

20

Computational MILP Lecture 7 21

Numerical Considerations

• In the simplex algorithm, we are solving a sequence of closely related
systems of equations.

• The factorization we are using to solve each of these systems is updated
and round-off error accumulates.

• In practice, it is common to periodically discard the basis factorization
and re-compute it from scratch to combat this problem.

• What factors affect the accuracy of solving just one of these systems
from scratch?

• Naturally, the condition number of the current basis is important.

• Can we interpret the condition number of the basis in geometric terms?

21

Computational MILP Lecture 7 22

The Geometry of Conditioning

• Consider again the geometric interperation of condition number of a
matrix B.

• Roughly speaking, it is the ratio of the largest to smallest axes of the
ellipsoid we get by pre-multiplying the points on a unit ball by B:

{Bx | x ∈ R, ‖x‖ = 1}

• Question: What affects the geometry of this ellipsoid?

22

Computational MILP Lecture 7 23

The Geometry of Conditioning

• Factors affecting the shape of the set {Bx | x ∈ R, ‖x‖ = 1}.

– The (relative) magnitude of the norms of the rows of B.
– The “angles” between the rows.

• This is essentially because

|x>y| = ‖x‖‖y‖ cosβ

where β is the angle between x and y.

• Note that condition number is just the “worst case.”

23

Computational MILP Lecture 7 24

The Geometry of Conditioning

• Note that just because the matrix B is ill-conditioned does not mean
that the problem of finding each individual component of the solution is
ill-conditioned.

– The condition number of the matrix is a worst-case measure over all
the component-wise problems.

– There is always one component that exhibits this worst-case behavior.

• Let ri be the ith row of B−1.

• The relative condition of the problem for component i is affected by

– the angle between ri and f
– the angle between ri and b

24

Computational MILP Lecture 7 25

The Geometry of Conditioning

25

Computational MILP Lecture 7 26

The LP Dual Problem

• Consider a standard form LP min{c>x : Āx = b, x ≥ 0}.

• To derive the dual problem, we use Lagrangian relaxation and consider
the function

g(p) = min
x≥0

[
c>x+ p>(b− Āx)

]
in which infeasibility is penalized by a vector of dual prices p.

• For every vector p, g(p) is a lower bound on the optimal value of the
original LP.

• To achieve the best bound, we considered maximizing g(p), which is
equivalent to

max p>b

s.t. p>Ā ≤ c

• This LP is the dual to the original one.

26

Computational MILP Lecture 7 27

Economic Interpretation of the Dual

• Recall that there always exists an optimal solution that is basic.

• We construct basic solutions by

– Choosing a basis B of m linearly independent columns of Ā.
– Solving the system BxB = b to obtain the values of the basic variables.
– Setting remaining variables to value 0.

• If xB ≥ 0, then the associated basic solution is feasible.

• With respect to any basic feasible solution, it is easy to determine the
impact of increasing a given activity.

• The reduced cost
c̄j = cj − c>BB−1Āj.

of (nonbasic) variable j tells us how the objective function value changes
if we increase the level of activity j by one unit.

• From the resource (dual) perspective, the quantity u = cBB
−1 is a

vector that tells us the marginal economic value of each resource.

• Thus, the vector u gives us a price for each resource.

27

Computational MILP Lecture 7 28

Marginal Prices in AMPL

Again, recall the simple bond portfolio model from Lecture 3.

ampl: model bonds.mod;

ampl: solve;

...

ampl: display rating_limit, cash_limit;

rating_limit = 1

cash_limit = 2

• This tells us that the optimal marginal cost of the rating limit

constraint is 1.

• What does this tell us about the “cost” of improving the average rating?

• What is the return on an extra $1K of cash available to invest?

28

Computational MILP Lecture 7 29

Another Interpretation of Marginal Prices

• Let’s consider again the prices for the constraints in the simple bond
portfolio model.

• By combining the two constraints with nonzero prices, we can get a third
inequality that must be satisfied by any feasible solution:

2 [x1 + x2 ≤ 100] +

1 [2x1 + x2 ≤ 150] =

4x1 + 3x2 ≤ 350

• What does this tell us about the optimal solution value?

29

Computational MILP Lecture 7 30

Economic Interpretation of Optimality

Example: A simple product mix problem.

ampl: var X1;

ampl: var X2;

ampl: maximize profit: 3*X1 + 3*X2;

ampl: subject to hours: 3*X1 + 4*X2 <= 120000;

ampl: subject to cash: 3*X1 + 2*X2 <= 90000;

ampl: subject to X1_limit: X1 >= 0;

ampl: subject to X2_limit: X2 >= 0;

ampl: solve;

...

ampl: display X1;

X1 = 20000

ampl: display X2;

X2 = 15000

30

Computational MILP Lecture 7 31

Shadow Prices in Product Mix Model

ampl: model simple.mod

ampl: solve;

...

ampl: display hours, cash;

hours = 0.5

cash = 0.5

• This tells us that increasing the hours by 2000 will increase profit by
(2000)(0.5) = $1000.

• Hence, we should be willing to pay up to $.50/hour for additional labor
hours (as long as the solution remains feasible).

• We can also see that the availability of cash and man hours are
contributing equally to the cost of each product.

31

Computational MILP Lecture 7 32

Economic Interpretation of Optimality

• In the preceding example, we can use the shadow prices to determine
how much each product “costs” in terms of its constituent “resources.”

• The reduced cost of a product is the difference between its selling price
and the (implicit) cost of the constituent resources.

• If we discover a product whose “cost” is less than its selling price, we try
to manufacture more of that product to increase profit.

• With the new product mix, the demand for various resources is changed
and their prices are adjusted.

• We continue until there is no product with cost less than its selling price.

• This is the same as having the reduced costs nonpositive (recall this was
a maximization problem).

• Complementary slackness says that we should only manufacture products
for which cost and selling price are equal.

• This can be viewed as a sort of multi-round auction.

32

Computational MILP Lecture 7 33

AMPL: Displaying Auxiliary Values with Suffixes

• In AMPL, it’s possible to display much of the auxiliary information needed
for sensitivity using suffixes.

• For example, to display the reduced cost of a variable, type the variable
name with the suffix .rc.

• Recall again the short term financing example (short term financing.mod).

ampl: display credit.rc;

credit.rc [*] :=

0 -0.003212

1 0

2 -0.0071195

3 -0.00315

4 0

5 0

;

• How do we interpret this?

33

Computational MILP Lecture 7 34

AMPL: Sensitivity Ranges

• AMPL does not have built-in sensitivity analysis commands.

• AMPL/CPLEX does provide such capability, however.

• To get sensitivity information, type the following

ampl: option cplex_options ’sensitivity’;

• Solve the bond portfolio model:

ampl: solve;

...

suffix up OUT;

suffix down OUT;

suffix current OUT;

34

Computational MILP Lecture 7 35

AMPL: Accessing Sensitivity Information

Access sensitivity information using the suffixes .up and .down. This is from
the model bonds.mod.

ampl: display cash_limit.up, rating_limit.up, maturity_limit.up;

cash_limit.up = 102

rating_limit.up = 200

maturity_limit.up = 1e+20

ampl: display cash_limit.down, rating_limit.down, maturity_limit.down;

cash_limit.down = 75

rating_limit.down = 140

maturity_limit.down = 350

ampl: display buy.up, buy.down;

: buy.up buy.down :=

A 6 3

B 4 2

;

35

Computational MILP Lecture 7 36

AMPL: Sensitivity for the Short Term Financing Model

ampl: short_term_financing.mod;

ampl: short_term_financing.dat;

ampl: solve;

ampl: display credit, credit.rc, credit.up, credit.down;

: credit credit.rc credit.up credit.down :=

0 0 -0.00321386 0.00321386 -1e+20

1 50.9804 0 0.00318204 0

2 0 -0.00711864 0.00711864 -1e+20

3 0 -0.00315085 0.00315085 -1e+20

4 0 0 0 -1e+20

;

36

Computational MILP Lecture 7 37

AMPL: Sensitivity for the Short Term Financing Model
(cont.)

ampl: display bonds, bonds.rc, bonds.up, bonds.down;

: bonds bonds.rc bonds.up bonds.down :=

0 150 0 0.00399754 -0.00321386

1 49.0196 0 0 -0.00318204

2 203.434 0 0.00706931 0

3 0 0 0 0

4 0 0 0 0

;

37

Computational MILP Lecture 7 38

AMPL: Sensitivity for the Short Term Financing Model
(cont.)

ampl: display invest, invest.rc, invest.up, invest.down;

: invest invest.rc invest.up invest.down :=

-1 0 0 0 0

0 0 -0.00399754 0.00399754 -1e+20

1 0 -0.00714 0.00714 -1e+20

2 351.944 0 0.00393091 -0.0031603

3 0 -0.00391915 0.00391915 -1e+20

4 0 -0.007 0.007 -1e+20

5 92.4969 0 1e+20 2.76446e-14

;

38

Computational MILP Lecture 7 39

Sensitivity Analysis of the Dedication Model

Let’s look at the sensitivity information in the dedication model

ampl: model dedication.mod;

ampl: data dedication.dat;

ampl: solve;

ampl: display cash_balance, cash_balance.up, cash_balance.down;

: cash_balance cash_balance.up cash_balance.down :=

1 0.971429 1e+20 5475.71

2 0.915646 155010 4849.49

3 0.883046 222579 4319.22

4 0.835765 204347 3691.99

5 0.656395 105306 2584.27

6 0.619461 123507 1591.01

7 0.5327 117131 654.206

8 0.524289 154630 0

;

How can we interpret these?

39

Computational MILP Lecture 7 40

Sensitivity Analysis of the Dedication Model

ampl: display buy, buy.rc, buy.up, buy.down;

: buy buy.rc buy.up buy.down :=

A 62.1361 -1.42109e-14 105 96.4091

B 0 0.830612 1e+20 98.1694

C 125.243 -1.42109e-14 101.843 97.6889

D 151.505 1.42109e-14 101.374 93.2876

E 156.808 -1.42109e-14 102.917 80.7683

F 123.08 0 113.036 100.252

G 0 8.78684 1e+20 91.2132

H 124.157 0 104.989 92.3445

I 104.09 0 111.457 101.139

J 93.4579 0 94.9 37.9011

;

40

Computational MILP Lecture 7 41

Sensitivity Analysis of the Dedication Model

ampl: display cash, cash.rc, cash.up, cash.down;

: cash cash.rc cash.up cash.down :=

0 0 0.0285714 1e+20 0.971429

1 0 0.0557823 1e+20 -0.0557823

2 0 0.0326005 1e+20 -0.0326005

3 0 0.0472812 1e+20 -0.0472812

4 0 0.17937 1e+20 -0.17937

5 0 0.0369341 1e+20 -0.0369341

6 0 0.0867604 1e+20 -0.0867604

7 0 0.0084114 1e+20 -0.0084114

8 0 0.524289 1e+20 -0.524289

;

41

Computational MILP Lecture 7 42

Sensitivity Analysis in PuLP and Pyomo

• Both PuLP and Pyomo also support sensitivity analysis through suffixes.

• Pyomo

– The option --solver-suffixes=’.*’ should be used.
– The supported suffixes are .dual, .rc, and .slack.

• PuLP

– PuLP creates suffixes by default when supported by the solver.
– The supported suffixed are .pi and .rc.

42

Computational MILP Lecture 7 43

Sensitivity Analysis of the Dedication Model with PuLP

for t in Periods[1:]:

prob += (cash[t-1] - cash[t]

+ lpSum(BondData[b, ’Coupon’] * buy[b]

for b in Bonds if BondData[b, ’Maturity’] >= t)

+ lpSum(BondData[b, ’Principal’] * buy[b]

for b in Bonds if BondData[b, ’Maturity’] == t)

== Liabilities[t]), "cash_balance_%s"%t

status = prob.solve()

for t in Periods[1:]:

print ’Present of $1 liability for period’, t,

print prob.constraints["cash_balance_%s"%t].pi

43

