Computational Integer Programming

Lecture 7: Review of Linear Optimization

Dr. Ted Ralphs

A Quick Review of Linear Optimization

Definition 1. A polyhedron is a set of the form $\{x \in \mathbb{R}^n | Ax \ge b\}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Let $\mathcal{P} \subseteq \mathbb{R}^n$ be a given polyhedron.

Definition 2. A vector $x \in \mathcal{P}$ is an extreme point of \mathcal{P} if $\not\exists y, z \in \mathcal{P}, \lambda \in (0,1)$ such that $x = \lambda y + (1-\lambda)z$.

Definition 3. A vector $x \in \mathcal{P}$ is an vertex of \mathcal{P} if $\exists c \in \mathbb{R}^n$ such that $c^{\top}x < c^{\top}y \ \forall y \in \mathcal{P}, x \neq y$.

Basic Solutions and Extreme Points

Consider a polyhedron $\mathcal{P} = \{x \in \mathbb{R}^n | Ax \geq b\}$ and let $\hat{x} \in \mathbb{R}^n$ be given.

Definition 4. The vector \hat{x} is a basic solution with respect to \mathcal{P} if there exist n linearly independent, binding constraints at \hat{x} .

Definition 5. If \hat{x} is a basic solution and $\hat{x} \in \mathcal{P}$, then \hat{x} is a basic feasible solution.

Theorem 1. If \mathcal{P} is nonempty and $\hat{x} \in \mathcal{P}$, then the following are equivalent:

- \hat{x} is a vertex.
- \hat{x} is an extreme point.
- \hat{x} is a basic feasible solution.

Example

 $\begin{array}{ll}
\max & 2x_1 + 5x_2 \\
\text{s.t.} & -x_1 + 3.75x_2 \le 14.375 \\
& -x_1 - 2x_2 \le -2.5 \\
& -14x_1 + 8x_2 \le 1 \\
& x_1 - 18x_2 \le -2.5 \\
& 3.75x_1 - x_2 \le 23.875 \\
& x_1 + x_2 \le 12.7 \\
& x_1, x_2 \ge 0
\end{array}$

Example

Figure 1: Feasible region for example

Polyhedra in Standard Form

- For the next few slides, we consider the standard form polyhedron $\mathcal{P} = \{x \in \mathbb{R}^n | \bar{A}x = b, x \geq 0\}.$
- Here, $\bar{A} = [A \mid I]$, where the additional columns are those corresponding to the slack variables.
- The feasible region of any linear optimization problem can be expressed equivalently in this form.
- We will assume that the rows of \bar{A} are linearly independent $\Rightarrow m \leq n$.
- What does a basic feasible solution look like here?

Basic Feasible Solutions in Standard Form

- In standard form, the equations are always binding.
- To obtain a basic solution, we must set n-m of the variables to zero (why?).
- We must also end up with a set of linearly independent constraints.
- Therefore, the variables we pick cannot be arbitrary.

Theorem 2. Consider a polyhedron \mathcal{P} in standard form with m linearly independent constraints. A vector $\hat{x} \in \mathbb{R}^n$ is a basic solution with respect to \mathcal{P} if and only if $\bar{A}\hat{x} = b$ and there exist indices $B(1), \ldots, B(m)$ such that:

- The columns $\bar{A}_{B(1)}, \ldots, \bar{A}_{B(m)}$ are linearly independent, and
- If $i \neq B(1), \ldots, B(m)$, then $\hat{x}_i = 0$.

Some Terminology

- If \hat{x} is a basic solution, then $\hat{x}_{B(1)}, \ldots, \hat{x}_{B(m)}$ are the *basic variables*.
- The columns $\bar{A}_{B(1)}, \ldots, \bar{A}_{B(m)}$ are called the *basic columns*.
- Since they are linearly independent, these columns form a *basis* for \mathbb{R}^m .
- A set of basic columns form a basis matrix, denoted B. So we have,

$$B = [\bar{A}_{B(1)} \ \bar{A}_{B(2)} \cdots \bar{A}_{B(m)}], \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix}$$

Basic Solutions and Bases

- Given a basis matrix B, the values of the basic variables are obtained by solving $Bx_B = b$, whose unique solution is $x_B = B^{-1}b$.
- However, multiple bases can give the same basic solution.
- Two bases are *adjacent* if they differ in only one basic column.
- Two basic solutions are adjacent if and only if they can be obtained from two adjacent bases (proof is homework).

Example: Basis Inverse

Basis inverse and corresponding solution when non-basic variables are s_1 and s_6 :

```
      [ 0.21 0.
      0.
      0.
      0.
      0.21]

      [ 0.21 1.
      0.
      0.
      0.
      1.21]

      [-4.63 0.
      1.
      0.
      0.
      9.37]

      [ 4. 0.
      0.
      1.
      0.
      3.
      ]

      [ 1. 0. 0.
      0.
      0.
      1.
      -2.75]

      [-0.21 0.
      0.
      0.
      0.
      0.79]
```

Example

Figure 2: Basic solution when s_1 and s_6 are non-basic

Optimality of Extreme Points

Theorem 3. Let $\mathcal{P} \subseteq \mathbb{R}^n$ be a polyhedron and consider the problem $\min_{x \in \mathcal{P}} c^{\top} x$ for a given $c \in \mathbb{R}^n$. If \mathcal{P} has at least one extreme point and there exists an optimal solution, then there exists an optimal solution that is an extreme point.

- For linear optimization, a finite optimal cost is equivalent to the existence of an optimal solution.
- The previous result can be strengthened.
- Since any linear optimization problem can be written in standard form and all standard form polyhedra have an extreme point, we get the following:

Theorem 4. Consider the linear optimization problem of minimizing $c^{\top}x$ over a nonempty polyhedron. Then, either the optimal cost is $-\infty$ or there exists an optimal solution.

Iterative Search Algorithms

- Many optimization algorithms are *iterative* in nature.
- Geometrically, this means that they move from a given starting point to a new point in a specified *search direction*.
- This search direction is calculated to be both feasible and improving.
- The process stops when we can no longer find a feasible, improving direction.
- For linear optimization problems, it is always possible to find a feasible improving direction if we are not at an optimal point.
- This is essentially what makes linear optimization problems "easy" to solve.

Feasible and Improving Directions

Definition 6. Let \hat{x} be an element of a polyhedron \mathcal{P} . A vector $d \in \mathbb{R}^n$ is said to be a feasible direction if there exists $\theta \in \mathbb{R}_+$ such that $\hat{x} + \theta d \in \mathcal{P}$.

Definition 7. Consider a polyhedron \mathcal{P} and the associated linear optimization problem $\min_{x \in \mathcal{P}} c^{\top} x$ for $c \in \mathbb{R}^n$. A vector $d \in \mathbb{R}^n$ is said to be an improving direction if $c^{\top} d < 0$.

Notes:

- Once we find a feasible, improving direction, we want to move along that direction as far as possible.
- Recall that we are interested in extreme points.
- The simplex algorithm moves between adjacent extreme points using improving directions.

Constructing Feasible Search Directions in Linear Optimization

- Consider a BFS \hat{x} , so that $\hat{x}_N = 0$.
- Any feasible direction must increase the value of at least one of the nonbasic variables (why?).
- We will consider moving in *basic directions* that increase the value of exactly one of the nonbasic variables, say variable j. This means

$$d_j = 1$$
 $d_i = 0$ for every nonbasic index $i \neq j$

• In order to remain feasible, we must also have $\bar{A}d=0$ (why?), which means

$$0 = \bar{A}d = \sum_{i=1}^{n} \bar{A}_i d_i = \sum_{i=1}^{m} \bar{A}_{B(i)} d_{B(i)} + \bar{A}_j = Bd_B + \bar{A}_j \Rightarrow d_B = -B^{-1} \bar{A}_j$$

Constructing Improving Search Directions

- Now we know how to construct feasible search directions—how do we ensure they are improving?
- Recall that we must have $c^{\top}d < 0$.

Definition 8. Let \hat{x} be a basic solution, let B be an associated basis matrix, and let c_B be the vector of costs of the basic variables. For each j, we define the reduced cost \bar{c}_j of variable j by

$$\bar{c}_j = c_j - c_B^{\mathsf{T}} B^{-1} \bar{A}_j.$$

- The basic direction associated with variable j is improving if and only if $\bar{c}_j < 0$.
- Note that all basic variables have a reduced cost of 0 (why?).

Optimality Conditions

Theorem 5. Consider a basic feasible solution \hat{x} associated with a basis matrix B and let \bar{c} be the corresponding vector of reduced costs.

- If $\bar{c} \geq 0$, then \hat{x} is optimal.
- If \hat{x} is optimal and nondegenerate, then $\bar{c} \geq 0$.

Notes:

- The condition $\bar{c} \geq 0$ implies there are no feasible improving directions.
- However, $\bar{c}_j < 0$ does not ensure the existence of an improving, feasible direction unless the current BFS is nondegenerate

.

The Tableau

• The tableau looks like this

$$\begin{array}{|c|c|c|c|c|} \hline -c_B^{\top}B^{-1}b & c^{\top}-c_B^{\top}B^{-1}\overline{A} \\ \hline B^{-1}b & B^{-1}\overline{A} \\ \hline \end{array}$$

• In more detail, this is

$-c_B^{\top} x_B$	$ar{c}_1$	• • •	\bar{c}_n
$x_{B(1)}$	$B^{-1}\bar{A}_1$	• • •	$B^{-1}\bar{A}_n$
$x_{B(m)}$			

Optimal Tableau in Example

Tableau and reduced costs when non-basic variables are s_1 and s_6 :

0. 0. [0. 0. 0. 0. -1.22-2.63[0. 1. 0.21 0. 0. 0. 0. 0.21] [0. 0. 0. 0.21 1. 0. 0. 1.21] 15.9 [0. 0. -4.63 0.1. 0. 0. 9.37] 53.4 [0. 1. 0. 93.1 0. 4. 0. 0. 3.] [0. 1. 0. 1. -2.753.33] 0. 0. 0. [1. -0.210.79] 0. 0. 0. 0. 0. 7.0

Example

Figure 3: Optimal basic solution for example

The Revised Simplex Method

A typical iteration of the revised simplex method:

- 1. Start with a specified BFS \hat{x} and the associated basis inverse B^{-1} .
- 2. Compute $p^{\top} = c_B^{\top} B^{-1}$ and the reduced costs $\bar{c}_j = c_j p^{\top} \bar{A}_j$.
- 3. If $\bar{c} \geq 0$, then the current solution is optimal.
- 4. Select the entering variable j and compute $u = B^{-1}\bar{A}_j$.
- 5. If $u \leq 0$, then the LP is unbounded.
- 6. Determine the step size $\theta^* = \min_{\{i|u_i>0\}} \frac{\hat{x}_{B(i)}}{u_i}$.
- 7. Determine the new solution and the leaving variable i.
- 8. Update B^{-1} .
- 9. Go to Step 1.

Numerical Considerations

- In the simplex algorithm, we are solving a sequence of closely related systems of equations.
- The factorization we are using to solve each of these systems is updated and round-off error accumulates.
- In practice, it is common to periodically discard the basis factorization and re-compute it from scratch to combat this problem.
- What factors affect the accuracy of solving just one of these systems from scratch?
- Naturally, the condition number of the current basis is important.
- Can we interpret the condition number of the basis in geometric terms?

- Consider again the geometric interperation of condition number of a matrix B.
- Roughly speaking, it is the ratio of the largest to smallest axes of the ellipsoid we get by pre-multiplying the points on a unit ball by B:

$$\{Bx \mid x \in \mathbb{R}, ||x|| = 1\}$$

Question: What affects the geometry of this ellipsoid?

- Factors affecting the shape of the set $\{Bx \mid x \in \mathbb{R}, \|x\| = 1\}$.
 - The (relative) magnitude of the norms of the rows of B.
 - The "angles" between the rows.
- This is essentially because

$$|x^\top y| = ||x|| ||y|| \cos \beta$$

where β is the angle between x and y.

Note that condition number is just the "worst case."

- Note that just because the matrix B is ill-conditioned does not mean that the problem of finding each individual component of the solution is ill-conditioned.
 - The condition number of the matrix is a worst-case measure over all the component-wise problems.
 - There is always one component that exhibits this worst-case behavior.
- Let r_i be the i^{th} row of B^{-1} .
- ullet The relative condition of the problem for component i is affected by
 - the angle between r_i and f
 - the angle between r_i and b

The LP Dual Problem

- Consider a standard form LP $\min\{c^{\top}x: \bar{A}x = b, x \geq 0\}$.
- To derive the *dual problem*, we use Lagrangian relaxation and consider the function

$$g(p) = \min_{x>0} \left[c^{\mathsf{T}} x + p^{\mathsf{T}} (b - \bar{A}x) \right]$$

in which infeasibility is penalized by a vector of dual prices p.

- For every vector p, g(p) is a lower bound on the optimal value of the original LP.
- ullet To achieve the best bound, we considered maximizing g(p), which is equivalent to

$$\max p^{\top} b$$

$$s.t. \quad p^{\top} \bar{A} \le c$$

• This LP is the dual to the original one.

Economic Interpretation of the Dual

- Recall that there always exists an optimal solution that is basic.
- We construct basic solutions by
 - Choosing a basis B of m linearly independent columns of \overline{A} .
 - Solving the system $Bx_B = b$ to obtain the values of the basic variables.
 - Setting remaining variables to value 0.
- If $x_B \ge 0$, then the associated basic solution is *feasible*.
- With respect to any basic feasible solution, it is easy to determine the impact of increasing a given activity.
- The reduced cost

$$\bar{c}_j = c_j - c_B^{\mathsf{T}} B^{-1} \bar{A}_j.$$

of (nonbasic) variable j tells us how the objective function value changes if we increase the level of activity j by one unit.

- From the resource (dual) perspective, the quantity $u=c_BB^{-1}$ is a vector that tells us the marginal economic value of each resource.
- \bullet Thus, the vector u gives us a *price* for each resource.

Marginal Prices in AMPL

Again, recall the simple bond portfolio model from Lecture 3.

```
ampl: model bonds.mod;
ampl: solve;
...
ampl: display rating_limit, cash_limit;
rating_limit = 1
cash_limit = 2
```

- This tells us that the optimal marginal cost of the rating_limit constraint is 1.
- What does this tell us about the "cost" of improving the average rating?
- What is the return on an extra \$1K of cash available to invest?

Another Interpretation of Marginal Prices

- Let's consider again the prices for the constraints in the simple bond portfolio model.
- By combining the two constraints with nonzero prices, we can get a third inequality that must be satisfied by any feasible solution:

$$\begin{array}{ccc}
2 \left[x_1 + x_2 \le 100 \right] & + \\
1 \left[2x_1 + x_2 \le 150 \right] & = \\
4x_1 + 3x_2 & \le 350
\end{array}$$

What does this tell us about the optimal solution value?

Economic Interpretation of Optimality

Example: A simple product mix problem.

```
ampl: var X1;
ampl: var X2;
ampl: maximize profit: 3*X1 + 3*X2;
ampl: subject to hours: 3*X1 + 4*X2 <= 120000;</pre>
ampl: subject to cash: 3*X1 + 2*X2 <= 90000;
ampl: subject to X1_limit: X1 >= 0;
ampl: subject to X2_limit: X2 >= 0;
ampl: solve;
ampl: display X1;
X1 = 20000
ampl: display X2;
X2 = 15000
```

Shadow Prices in Product Mix Model

```
ampl: model simple.mod
ampl: solve;
...
ampl: display hours, cash;
hours = 0.5
cash = 0.5
```

- This tells us that increasing the hours by 2000 will increase profit by (2000)(0.5) = \$1000.
- Hence, we should be willing to pay up to \$.50/hour for additional labor hours (as long as the solution remains feasible).
- We can also see that the availability of cash and man hours are contributing equally to the cost of each product.

Economic Interpretation of Optimality

- In the preceding example, we can use the shadow prices to determine how much each product "costs" in terms of its constituent "resources."
- The reduced cost of a product is the difference between its selling price and the (implicit) cost of the constituent resources.
- If we discover a product whose "cost" is less than its selling price, we try to manufacture more of that product to increase profit.
- With the new product mix, the demand for various resources is changed and their prices are adjusted.
- We continue until there is no product with cost less than its selling price.
- This is the same as having the reduced costs nonpositive (recall this was a maximization problem).
- Complementary slackness says that we should only manufacture products for which cost and selling price are equal.
- This can be viewed as a sort of multi-round auction.

AMPL: Displaying Auxiliary Values with Suffixes

- In AMPL, it's possible to display much of the auxiliary information needed for sensitivity using suffixes.
- For example, to display the reduced cost of a variable, type the variable name with the suffix .rc.
- Recall again the short term financing example (short_term_financing.mod).

```
ampl: display credit.rc;
credit.rc [*] :=
    0   -0.003212
    1    0
    2   -0.0071195
    3   -0.00315
    4    0
    5    0
;
```

How do we interpret this?

AMPL: Sensitivity Ranges

- AMPL does not have built-in sensitivity analysis commands.
- AMPL/CPLEX does provide such capability, however.
- To get sensitivity information, type the following

```
ampl: option cplex_options 'sensitivity';
```

• Solve the bond portfolio model:

```
ampl: solve;
...
suffix up OUT;
suffix down OUT;
suffix current OUT;
```

AMPL: Accessing Sensitivity Information

Access sensitivity information using the suffixes .up and .down. This is from the model bonds.mod.

```
ampl: display cash_limit.up, rating_limit.up, maturity_limit.up;
cash_limit.up = 102
rating_limit.up = 200
maturity_limit.up = 1e+20

ampl: display cash_limit.down, rating_limit.down, maturity_limit.down;
cash_limit.down = 75
rating_limit.down = 140
maturity_limit.down = 350

ampl: display buy.up, buy.down;
: buy.up buy.down :=
A      6      3
B      4      2
;
```

AMPL: Sensitivity for the Short Term Financing Model

```
ampl: short_term_financing.mod;
ampl: short_term_financing.dat;
ampl: solve;
ampl: display credit, credit.rc, credit.up, credit.down;
    credit credit.rc credit.up credit.down
             -0.00321386 0.00321386
                                        -1e+20
     0
0
    50.9804
                         0.00318204
                                             0
2
              -0.00711864 0.00711864 -1e+20
3
              -0.00315085 0.00315085 -1e+20
                                        -1e+20
4
               0
```

AMPL: Sensitivity for the Short Term Financing Model (cont.)

```
ampl: display bonds, bonds.rc, bonds.up, bonds.down;
                            bonds.up bonds.down
      bonds
                bonds.rc
                                                        :=
                           0.00399754
     150
                                        -0.00321386
      49.0196
                                        -0.00318204
                           0
    203.434
                           0.00706931
                                         0
3
       0
       0
```

AMPL: Sensitivity for the Short Term Financing Model (cont.)

```
ampl: display invest, invest.rc, invest.up, invest.down;
     invest
                invest.rc
                               invest.up
                                               invest.down
-1
                                0
                                                  0
                0
               -0.00399754
                                0.00399754
                                             -1e+20
O
               -0.00714
                                0.00714
                                           -1e+20
    351.944
                                0.00393091
                                                 -0.0031603
                ()
               -0.00391915
                                0.00391915
                                           -1e+20
4
               -0.007
                                0.007
                                             -1e+20
5
     92.4969
                            1e+20
                                                  2.76446e-14
```

Sensitivity Analysis of the Dedication Model

Let's look at the sensitivity information in the dedication model

```
ampl: model dedication.mod;
ampl: data dedication.dat;
ampl: solve;
ampl: display cash_balance, cash_balance.up, cash_balance.down;
: cash_balance cash_balance.up cash_balance.down
1
     0.971429
                     1e+20
                                    5475.71
    0.915646
                    155010
                                    4849.49
    0.883046
                    222579
                                    4319.22
    0.835765
                    204347
                                    3691.99
4
    0.656395
                    105306
                                    2584.27
    0.619461
                    123507
                                    1591.01
6
7
    0.5327
                    117131
                                     654,206
    0.524289
8
                    154630
                                        0
```

How can we interpret these?

Sensitivity Analysis of the Dedication Model

```
ampl: display buy, buy.rc, buy.up, buy.down;
                             buy.up
                                       buy.down
     buy
                 buy.rc
                                                   :=
    62.1361
                              105
              -1.42109e-14
                                        96.4091
Α
В
               0.830612
                            1e+20
                                        98.1694
     0
   125.243
              -1.42109e-14
                              101.843
                                        97.6889
   151.505
              1.42109e-14
                              101.374
                                        93.2876
D
E
   156.808
              -1.42109e-14
                              102.917 80.7683
F
   123.08
                              113.036
                                       100.252
               0
G
               8.78684
                                        91.2132
     0
                            1e+20
Η
   124.157
                              104.989
                                        92.3445
               0
                              111.457
Ι
   104.09
                                       101.139
               0
J
                               94.9
    93.4579
                                        37.9011
```

Sensitivity Analysis of the Dedication Model

```
ampl: display cash, cash.rc, cash.up, cash.down;
: cash
         cash.rc
                  cash.up
                           cash.down
                                         :=
        0.0285714
                    1e+20 0.971429
0
   ()
1
        0.0557823
                   1e+20
                           -0.0557823
        0.0326005 1e+20
                           -0.0326005
3
        0.0472812
                   1e+20
                           -0.0472812
4
   0
        0.17937
                    1e+20
                           -0.17937
5
        0.0369341
                    1e+20
                           -0.0369341
6
        0.0867604
                   1e+20
                           -0.0867604
        0.0084114
                   1e+20
                           -0.0084114
8
        0.524289
                    1e+20
                           -0.524289
```

Sensitivity Analysis in PuLP and Pyomo

- Both PuLP and Pyomo also support sensitivity analysis through suffixes.
- Pyomo
 - The option --solver-suffixes='.*' should be used.
 - The supported suffixes are .dual, .rc, and .slack.
- PuLP
 - PuLP creates suffixes by default when supported by the solver.
 - The supported suffixed are .pi and .rc.

Sensitivity Analysis of the Dedication Model with PuLP