
Computational Integer Programming

Lecture 4: Python

Dr. Ted Ralphs

Computational MILP Lecture 4 1

Why Python?

• Pros

– As with many high-level languages, development in Python is quick
and painless (relative to C++!).

– Python is popular in many disciplines and there is a dizzying array of
packages available.

– Python’s syntax is very clean and naturally adaptable to expressing
mathematical programming models.

– Python has the primary data structures necessary to build and
manipulate models built in.

– There has been a strong movement toward the adoption of Python as
the high-level language of choice for (discrete) optimizers.

– Sage is quickly emerging as a very capable open-source alternative to
Matlab.

• Cons

– Python’s one major downside is that it can be very slow.
– Solution is to use Python as a front-end to call lower-level tools.

1

Computational MILP Lecture 4 2

Drinking the Python Kool-Aid

2

Adapted from a Tuturial by Guido van Rossum

Director of PythonLabs at Zope Corporation

Presented at

LinuxWorld - New York City - January 2002

� Interpreted language

� Intuitive syntax

� Dynamic typing

� Loads of built-in libraries and available
extensionsextensions

� Shallow learning curve

� Easy to call C/C++ for efficiency

� Object-oriented

� Simple, but extremely powerful

� interactive "shell“

� basic types: numbers, strings

� container types: lists, dictionaries, tuples

� variables

� control structures

� functions & procedures

� classes & instances

� modules

� exceptions

� files & standard library

� Great for learning the language

� Great for experimenting with the library

� Great for testing your own modules

� Two variations: IDLE (GUI), python (command line)

� Type statements or expressions at prompt:
>>> print "Hello, world">>> print "Hello, world"

Hello, world

>>> x = 12**2

>>> x/2

72

>>> # this is a comment

� To write a program, put commands in a file

#hello.py

print "Hello, world"

x = 12**2

x/2

print xprint x

� Execute on the command line

~> python hello.py

Hello, world

72

� No need to declare

� Need to assign (initialize)
� use of uninitialized variable raises exception

� Not typed
if friendly: greeting = "hello world"if friendly: greeting = "hello world"

else: greeting = 12**2

print greeting

� Everything is an “object":
� Even functions, classes, modules

if condition:

statements

[elif condition:

statements] ...

else:

while condition:

statements

for var in sequence:

statementselse:

statements

statements

break

continue

In Python:

for i in range(20):

if i%3 == 0:

print i

if i%5 == 0:

In C:

for (i = 0; i < 20; i++)

{

if (i%3 == 0) {

printf("%d\n", i);

if (i%5 == 0) {

0
Bingo!

3

6

9if i%5 == 0:

print "Bingo!"

print "---"

if (i%5 == 0) {

printf("Bingo!\n"); }

}

printf("---\n");

}

9

12

15
Bingo!

18

� The usual suspects
� 12, 3.14, 0xFF, 0377, (-1+2)*3/4**5, abs(x), 0<x<=5

� C-style shifting & masking
� 1<<16, x&0xff, x|1, ~x, x^y

� Integer division truncates :-(
� 1/2 -> 0 # 1./2. -> 0.5, float(1)/2 -> 0.5

� Will be fixed in the future

� Long (arbitrary precision), complex
� 2L**100 -> 1267650600228229401496703205376L

� In Python 2.2 and beyond, 2**100 does the same thing

� 1j**2 -> (-1+0j)

� "hello"+"world" "helloworld" #
concatenation

� "hello"*3 "hellohellohello" #
repetition

� "hello"[0] "h" # indexing

� "hello"[-1] "o" # (from end)� "hello"[-1] "o" # (from end)

� "hello"[1:4] "ell" # slicing

� len("hello") 5 # size

� "hello" < "jello" 1 # comparison

� "e" in "hello" 1 # search

� "escapes: \n etc, \033 etc, \if etc"

� 'single quotes' """triple quotes""" r"raw strings"

� Flexible arrays, not Lisp-like linked lists
� a = [99, "bottles of beer", ["on", "the", "wall"]]

� Same operators as for strings
� a+b, a*3, a[0], a[-1], a[1:], len(a)

� Item and slice assignment� Item and slice assignment
� a[0] = 98

� a[1:2] = ["bottles", "of", "beer"]

-> [98, "bottles", "of", "beer", ["on", "the", "wall"]]

� del a[-1] # -> [98, "bottles", "of", "beer"]

>>> a = range(5) # [0,1,2,3,4]

>>> a.append(5) # [0,1,2,3,4,5]

>>> a.pop() # [0,1,2,3,4]

5

>>> a.insert(0, 42) # [42,0,1,2,3,4]

>>> a.pop(0) # [0,1,2,3,4]>>> a.pop(0) # [0,1,2,3,4]

5.5

>>> a.reverse() # [4,3,2,1,0]

>>> a.sort() # [0,1,2,3,4]

� Hash tables, "associative arrays"
� d = {"duck": "eend", "water": "water"}

� Lookup:
� d["duck"] -> "eend"

� d["back"] # raises KeyError exception� d["back"] # raises KeyError exception

� Delete, insert, overwrite:
� del d["water"] # {"duck": "eend", "back":
"rug"}

� d["back"] = "rug" # {"duck": "eend", "back":
"rug"}

� d["duck"] = "duik" # {"duck": "duik", "back":
"rug"}

� Keys, values, items:
� d.keys() -> ["duck", "back"]

� d.values() -> ["duik", "rug"]

� d.items() -> [("duck","duik"), ("back","rug")]

� Presence check:� Presence check:
� d.has_key("duck") -> 1; d.has_key("spam") -> 0

� Values of any type; keys almost any
� {"name":"Guido", "age":43, ("hello","world"):1,

42:"yes", "flag": ["red","white","blue"]}

� Keys must be immutable:
◦ numbers, strings, tuples of immutables

� these cannot be changed after creation

◦ reason is hashing (fast lookup technique)

◦ not lists or other dictionaries◦ not lists or other dictionaries

� these types of objects can be changed "in place"

◦ no restrictions on values

� Keys will be listed in arbitrary order
◦ again, because of hashing

� key = (lastname, firstname)

� point = x, y, z # parentheses optional

� x, y, z = point # unpack

� lastname = key[0]

singleton = (1,) # trailing comma!!!� singleton = (1,) # trailing comma!!!

� empty = () # parentheses!

� tuples vs. lists; tuples immutable

� Assignment manipulates references
� x = y does not make a copy of y

� x = y makes x reference the object y references

� Very useful; but beware!

� Example:� Example:
>>> a = [1, 2, 3]

>>> b = a

>>> a.append(4)

>>> print b

[1, 2, 3, 4]

a

a = [1, 2, 3] a 1 2 3

1 2 3

b

a

1 2 3

b

4a.append(4)

b = a

a

1

a = 1

b = a

a 1

1

b

a

1b

a = a+1

b = a

2

old reference deleted
by assignment (a=...)

new int object created
by add operator (1+1)

def name(arg1, arg2, ...):

"""documentation""" # optional doc
string

statements

return # from procedure

return expression # from function

def gcd(a, b):

"greatest common divisor"

while a != 0:

a, b = b%a, a # parallel assignment

return b

>>> gcd.__doc__

'greatest common divisor'

>>> gcd(12, 20)

4

class name:

"documentation"

statements

-or-

class name(base1, base2, ...):

......

Most, statements are method definitions:

def name(self, arg1, arg2, ...):

...

May also be class variable assignments

class Stack:

"A well-known data structure…"

def __init__(self): # constructor

self.items = []

def push(self, x):

self.items.append(x) # the sky is the limitself.items.append(x) # the sky is the limit

def pop(self):

x = self.items[-1] # what happens if it’s empty?

del self.items[-1]

return x

def empty(self):

return len(self.items) == 0 # Boolean result

� To create an instance, simply call the class object:
x = Stack()# no 'new' operator!

� To use methods of the instance, call using dot notation:
x.empty() # -> 1

x.push(1) # [1]

x.empty() # -> 0x.empty() # -> 0

x.push("hello") # [1, "hello"]

x.pop() # -> "hello" # [1]

� To inspect instance variables, use dot notation:
x.items # -> [1]

� Collection of stuff in foo.py file
◦ functions, classes, variables

� Importing modules:
◦ import re; print re.match("[a-z]+", s)

◦ from re import match; print match("[a-z]+", s)◦ from re import match; print match("[a-z]+", s)

� Import with rename:
◦ import re as regex

◦ from re import match as m

Computational MILP Lecture 4 28

Getting Python

• There are many different flavors of Python, all of which support the same
basic API, but have different backends and performance.

• The “original flavor” is CPython, but there is also Jython, Iron Python,
Pyjs, PyPy, RubyPython, and others.

• If you are going to use a package with a C extensions, you probably need
to get CPython.

• For numerical computational, some additional packages are almost
certainly required, NumPy and SciPy being the most obvious.

– On Linux, Python and the most important packages will be pre-
installed, with additional ones installed easily via a package manager.

– On OS X, Python comes pre-installed, but it is easier to install Python
and any additional packages via Homebrew.

– On Windows, it’s easiest to install a distribution that includes the
scientific software, such as anaconda or winPython.

• Another option is to use Sage, a Matlab-like collection of Python packages
(including COIN).

• Make sure you install Python 2.7!!

28

Computational MILP Lecture 4 29

Getting an IDE

• An additional requirement for doing development is an IDE.

• My personal choice is Eclipse with the PyDev plug-in.

• This has the advantage of being portable and cross-platform, as well as
supporting most major languages.

• There are many alternative IDEs, however.

29

Computational MILP Lecture 4 30

Exercise: Install Python and IDE

Complete as many of the exercises here as you can:

http://coral.ie.lehigh.edu/~ted/files/ie172/labs/lab0/Lab0.pdf

Make sure you install Python 2.7!!

30

