
Computational Integer Programming

Lecture 3: Software

Dr. Ted Ralphs



Computational MILP Lecture 3 1

Introduction to Software (Solvers)

• There is a wealth of software available for modeling, formulation, and
solution of MILPs.

• Commercial solvers

– IBM CPLEX
– FICO XPress
– Gurobi

• Open Source and Free for Academic Use

– COIN-OR Optimization Suite (Cbc, SYMPHONY, Dip)
– SCIP
– lp-solve
– GLPK
– MICLP
– Constraint programming systems

1



Computational MILP Lecture 3 2

Introduction to Software (Modeling)

• There are two main categories of modeling software.

– Algebraic Modeling Languages (AMLs)
– Constraint Programming Systems (CPSs)

• According to our description of the modeling process, AMLs should
probably be called “formulation languages”.

• AMLs assume the problem will be formulated as a mathematical
optimization problem.

• Although AMLs make the formulation process more convenient, the user
must provide an initial “formulation” and decide on an appropriate solver.

• Solvers do some internal reformulation, but this is limited.

• Constraint programming systems use a much higher level description of
the model itself.

• Reformulation is done internally before automatically passing the problem
to the most appropriate of a number of solvers.

2



Computational MILP Lecture 3 3

Algebraic Modeling Languages

• A key concept is the separation of “model” (formulation, really) from
“data.”

• Generally speaking, we follow a four-step process in modeling with AMLs.

– Develop an “abstract model” (more like a formulation).
– Populate the formulation with data.
– Solve the Formulation.
– Analyze the results.

• These four steps generally involve different pieces of software working in
concert.

• For mathematical optimization problems, the modeling is often done
with an algebraic modeling system.

• Data can be obtained from a wide range of sources, including
spreadsheets.

• Solution of the model is usually relegated to specialized software,
depending on the type of model.

3



Computational MILP Lecture 3 4

Introduction to Software (AMLs)

• Commercial AMLs.

– AMPL
– GAMS
– MPL

• Python-based Open Source Modeling Languages and Interfaces

– yaposib (OSI bindings)
– CyLP (provides API-level interface)
– PuLP/Dippy (Decomposition-based modeling)
– Pyomo (full-featured algebraic modeling language)

• Other Open Source and Free for Academic Use AMLs

– FLOPC++ (algebraic modeling in C++)
– CMPL (modeling language with GUI interface)
– MathProg.jl (modeling language built in Julia)
– GMPL (open-source AMPL clone)
– ZIMPL (stand-alone parser)

4



Computational MILP Lecture 3 5

Introduction to Software (Other Interfaces)

• SolverStudio (spreadsheet plug-in)

• Open Office

• R (RSymphony Plug-in)

• Matlab (OPTI)

• Mathematica

• Optimization Services

• Sage

5



Computational MILP Lecture 3 6

How AMLs Interface

• Although not required, it’s useful to know something about how modeling
languages interface with solvers.

• In many cases, modeling languages interface with solvers by writing out
an intermediate file that the solver then reads in.

• It is also possible to generate these intermediate files directly from a
custom-developed code.

• Common file formats

– MPS format: The original standard developed by IBM in the days of
Fortran, not easily human-readable and only supports (integer) linear
modeling.

– LP format: Developed by CPLEX as a human-readable alternative to
MPS.

– .nl format: AMPL’s intermediate format that also supports non-linear
modeling.

– OSIL: an open, XML-based format used by the Optimization Services
framework of COIN-OR.

– Python C Extension: Several projects interface through a Python
extension that can be easily

6



Computational MILP Lecture 3 7

Software We’ll Install

• COIN-OR Optimization Suite

• SCIP Optimization Suite

• AMPL Trial Version

• Python

– PuLP
– Pyomo
– DiPPy (maybe)
– GiMPy/GrUMPy

7



Computational MILP Lecture 3 8

Brief Introduction to COIN-OR

• The COIN-OR Foundation

– A non-profit foundation promoting the development and use of
interoperable, open-source software for operations research.

– A consortium of researchers in both industry and academia dedicated
to improving the state of computational research in OR.

– A venue for developing and maintaining standards.
– A forum for discussion and interaction between practitioners and

researchers.

• The COIN-OR Repository

– A collection of interoperable software tools for building optimization
codes, as well as a few stand alone packages.

– A venue for peer review of OR software tools.
– A development platform for open source projects, including a wide

range of project management tools.

See http://www.coin-or.org for more information.

8



Computational MILP Lecture 3 9

What You Can Do With COIN-OR: Low-level Tools

• We currently have 50+ projects and more are being added all the time.

• Most projects are now licensed under the EPL (very permissive).

• COIN-OR has solvers for most common optimization problem classes.

– Linear programming

– Nonlinear programming

– Mixed integer linear programming

– Mixed integer nonlinear programming (convex and nonconvex)

– Stochastic linear programming

– Semidefinite programming

– Graph problems

– Combinatorial problems (VRP, TSP, SPP, etc.)

• COIN-OR has various utilities for reading/building/manipulating/preprocessing
optimization models and getting them into solvers.

• COIN-OR has overarching frameworks that support implementation of
broad algorithm classes.

– Parallel search

– Branch and cut (and price)

– Decomposition-based algorithms

9



Computational MILP Lecture 3 10

What You Can Do With COIN-OR: High-level Tools

One of the most exciting developments of recent years is the number of is
the wide range of high-level tools available to access COIN-OR solvers.

• Python-based modeling languages

• Spreadsheet modeling (!)

• Commercial modeling languages

• Mathematica

• Matlab

• R

• Sage

• Julia

• Optimization Services

• ...

10



Computational MILP Lecture 3 11

COIN-OR Optimization Suite: Modular Structure

• One of the hallmarks of good open source tools is modularity .

• The suite is made up of building blocks with well-defined interfaces that
allow construction of higher level tools.

• There have been 75 authors over time and most have never coordinated
directly with each other!

• This is the open source model of development.

11



Computational MILP Lecture 3 12

Basic Building Blocks: CoinUtils

The CoinUtils project contains a wide range of low-level utilities used in
almost every project in suite.

• Factorization

• File parsing

• Sparse matrix and array storage

• Presolve

• Memory management

• Model building

• Parameter parsing

• Timing

• Basic data structures

12



Computational MILP Lecture 3 13

Basic Building Blocks: Open Solver Interface

Uniform API for a variety of solvers:

• CBC

• CLP

• CPLEX

• DyLP

• FortMP

• XPRESS-MP

• GLPK

• Mosek

• OSL

• Soplex

• SYMPHONY

• Volume Algorithm

• Read input from MPS or CPLEX LP files or construct instances using
COIN-OR data structures.

• Manipulate instances and output to MPS or LP file.

• Set solver parameters.

• Calls LP solver for LP or MIP LP relaxation.

• Manages interaction with dynamic cut and column generators.

• Calls MIP solver.

• Returns solution and status information.

13



Computational MILP Lecture 3 14

Building Blocks: Cut Generator Library

• A collection of cutting-plane generators and management utilities.

• Interacts with OSI to inspect problem instance and solution information
and get violated cuts.

• Cuts include:

– Combinatorial cuts: AllDifferent, Clique, KnapsackCover, OddHole
– Flow cover cuts
– Lift-and-project cuts
– Mixed integer rounding cuts
– General strengthening: DuplicateRows, Preprocessing, Probing,

SimpleRounding

14



Computational MILP Lecture 3 15

Optimization Suite Dependency Graph

15



Computational MILP Lecture 3 16

Installing the COIN-OR Optimization Suite

• Many of the tools mentioned interoperate by using the configuration and
build utilities provided by the BuildTools project.

• The BuildTools project provides build infrastructure for

– MS Windows (CYGWIN, MINGW, and Visual Studio)
– Linux
– Mac OS X (clang, gcc)

• The BuildTools provides autoconf macros and scripts to allow the
modular use of code across multiple projects.

• If you work with multiple COIN projects, you may end up maintaining
many (possibly incompatible) copies of COIN libraries and binaries.

• The easiest way to use multiple COIN projects is simply to download and
install the latest version of the suite (1.8 due out imminently).

• The TestTools project is the focal point for testing of COIN code.

16



Computational MILP Lecture 3 17

Getting the Binary Distribution

• The CoinBinary project is a long-term effort to provide pre-built binaries
and installers for popular platforms.

• You can download some binaries here (may be out of date):

http://www.coin-or.org/download/binary/OptimizationSuite

http://ampl.com/products/solvers/open-source/

• Installers

– For Windows, there is an installer available at the URL above for
installing libraries compatible with Visual Studio (you will need to
install the free Intel compiler redistributable libraries).

– For OS X, there are Homebrew recipes for some projects (we are
working on adding more).

– For Linux, there are now Debian and Fedora packages for most
projects in the suite and we are investigating the possiblity of providing
Linuxbrew packages

• Other ways of obtaining COIN include downloading it through a number
of modeling language front-ends (more on this later).

17



Computational MILP Lecture 3 18

Getting the Source

• Why download and build COIN yourself?

– There are many options for building COIN codes and the distributed
binaries are built with just one set of options.

– We cannot distribute binaries linked to libraries licensed under the GPL,
so you must build yourself if you want GMPL, command completion,
command history, Haskell libraries, etc.

– Other advanced options that require specific hardware/software my
also not be supported in distributed binaries (parallel builds, MPI)

– Once you understand how to get and build source, it is much faster
to get bug fixes.

• You can download source tarballs and zip archives here:

http://www.coin-or.org/download/source/OptimizationSuite

• The recommended way to get source is to use subversion, although
git is also an option.

• With subversion, it is easy to stay up-to-date with the latest sources and
to get bug fixes.

http://www.coin-or.org/svn/CoinBinary/OptimizationSuite

18



Computational MILP Lecture 3 19

What Version to Get?

• About version numbers

– COIN numbers versions by a standard semantic versioning scheme:
each version has a major, minor, and patch/release number.

– All version within a major.minor series are compatible.
– All versions within a major series are backwards compatible.

• Organization of the repositories

– At the top level, all repositories have the following directory structure.
html/

conf/

branches/

trunk

stable/

releases/

– Trunk is where development takes place (bleeding edge).
– Stable versions have two digits and are continuously patched with fixes

and updates.
– Release versions have three digits and are fixed forever.

• If you are using subversion to get code, you want the latest stable version.

• If you are downloading a tarball, you want the latest release.

19



Computational MILP Lecture 3 20

Build Tools

• The primary build system is based on the GNU auto tools (there is a
CMake harness being developed).

– Build scripts work on any platform
– Externals can be used to get complete sources (including

dependencies).
– Projects are only loosely coupled and can be installed individually.
– Scripts available for upgrading to latest releases.
– Smooth upgrade path.

• Features

– Libtool library versioning.
– Support for pkg-config.
– Build against installed binaries.
– Wrapper libraries for third party open source projects.

20



Computational MILP Lecture 3 21

Source Tree Organization

• The source tree for project Xxx looks something like:

Xxx/

doxydoc/

INSTALL

Dependencies

configure

Makefile.am

...

• The files in the root directory are for doing monolithic builds, including
dependencies (listed in the Dependencies file).

• Source code for dependencies is pulled in using the svn externals
mechanism.

• If you only want to build the project itself and lnk against installed
binaries of other projects, you only need the Xxx/ subdirectory.

21



Computational MILP Lecture 3 22

Source Tree Organization (Project Subdirectory)

• The source tree for project Xxx looks something like:

src/

examples/

MSVisualStudio/

test/

AUTHORS

README

LICENSE

INSTALL

configure

Makefile.am

...

• The files in the subdirectory are for building the project itself, with no
dependencies.

• The exception is the MSVisualStudio/ directory, which contains solution
files that include dependencies.

22



Computational MILP Lecture 3 23

Preparing to Build on Windows

• The easiest way to build on Windows is with the GNU autotools.

• First step is to install either Msys2 or CYGWIN.

– For MSys2, download and unzip MSys2 base:
http://kent.dl.sourceforge.net/project/msys2/Base/x86_64/

msys2-base-x86_64-20150512.tar.xz

– Add msys64\usr\bin, msys64\mingw32\bin, and msys64\mingw64\bin
to your Windows path.

– At a Windows command prompt, do
bash

pacman -S make wget tar patch dos2unix diffutils svn

• For CYGWIN, download the CYGWIN installer and run it.

– It is a bit more complicated because you have to choose your packages.
– You need at least gcc, g++, and gfortran, and other optional packages.
– It’s helpful to install the X server (xorg) in order to have graphical

interfaces, but this is not necessary.
– Add C:\cygwin\bin to your PATH.

23



Computational MILP Lecture 3 24

Preparing to Build on OS X

• The latest versions of OS X come with the clang compiler but no Fortran
compiler.

• The easiest way to remedy this is to install Homebrew (see brew.sh)
and then brew install gcc.

• It will also be helpful to brew install wget.

• Notes:

– Since clang uses the GNU standard library, gfortran is compatible and
this is what will be used to build Fortran code when required.

– Clang will be used to build by default. If you want to use, e.g., the
gcc compiler provided by Homebrew, you need to specify that with
CC=gcc-5 CXX=g++-5.

24



Computational MILP Lecture 3 25

Building from Source (All Platforms)

• First, open a terminal (in Windows, run cmd and type bash).

• To build the OptimizationSuite, first get the source by either

wget \

http://www.coin-or.org/download/source/CoinBinary/OptimizationSuite/\

CoinBinary-OptimizationSuite-1.8.0.zip

unzip CoinBinary-OptimizationSuite-1.8.0.zip

or by

svn co \

http://projects.coin-or.org/svn/CoinBinary/OptimizationSuite/stable/1.8 \

OptimizationSuite-1.8

• Then do

cd OptimizationSuite-1.8

./get.allThirdParty

mkdir build

cd build

../configure COIN_SKIP_PROJECTS="FlopCpp" --enable-gnu-packages \

--prefix=/path/to/install/dir

make -j 2

make test

make install

25



Computational MILP Lecture 3 26

After Building

• Note that in order to use the installed binaries and libraries, you will
need to add the directory OptimizationSuite-1.8/build/bin to your
executable PATH (or install in a system directory using --prefix, see
below).

• If you move the installed libraries or link to them from a non-COIN
binary, you need to add OptimizationSuite-1.8/build/lib to your
LD LIBRARY PATH (DYLD LIBRARY PATH on OS X).

• Note that after building, the examples will be installed with Makefiles in
project subdirectories.

26



Computational MILP Lecture 3 27

Building on Windows with Visual Studio Compiler

• To build with the Visual Studio compiler

– If you don’t already have the IDE, you can download the Microsoft
SDK, which includes the compilers.

– To build any of the non-linear solvers, you will need a compatible
Fortran compiler, such as the one from Intel.

– Run vcvarsall.bat to set the proper environment variables (and
ifortvars.bat for Intel compiler).

– At a Windows command propt, do
bash

cd COIN-1.8

./configure --enable-msvc

make

make install

– To build Python extensions, you should use the Visual Studio compiler
and build with --enable-msvc=MD.

• To build with the GNU compilers, just open bash and follow the
instructions for Linux/OS X.

27



Computational MILP Lecture 3 28

Building on Windows (Visual Studio IDE)

• To build through the Visual Studio IDE, MSVC++ project files are
provided.

– Solution files for v10 are provided, but upgrading to other versions
should work.

– Important: Common settings are saved using property sheets!!
– Change the settings on the property sheets, not in the individual

projects and configurations!!!!
– It is incredibly easy to slip up on this and the repercussions are always

annoyingly difficult to deal with.

28



Computational MILP Lecture 3 29

ThirdParty Projects

• There are a number of open-source projects that COIN projects can link
to, but whose source we do not distribute.

• We provide convenient scripts for downloading these projects (shell scripts
named ./get.Xxx) and a build harness for build them.

• We also produce libraries and pkg-config files.

– AMPL Solver Library (required to use solvers with AMPL)
– Blas (improves performance—usually available natively on Linux/OS

X)
– Lapack (same as Blas)
– Glpk
– Metis
– MUMPS (required for Ipopt to build completely open source)
– Soplex
– SCIP
– HSL (an alternative to MUMPS that is not open source)
– FilterSQP

29



Computational MILP Lecture 3 30

Parallel Builds

• SYMPHONY, DIP, CHiPPS, and Cbc all include the ability to solve in
parallel.

– CHiPPS uses MPI and is targeted at massive parallelism (it would be
possible to develop a hybrid algorithm, however).

– SYMPHONY and Cbc both have shared memory threaded parallelism.
– DIP’s parallel model is still being implemented but is a hybrid

distributed/shared approach.

• To enable shared memory for Cbc, option is --enable-cbc-parallel.

• For SYMPHONY, it’s --enable-openmp (now the default).

• For CHiPPS, specify the location of MIP with --with-mpi-incdir and
--with-mpi-lib:

configure --enable-static

--disable-shared

--with-mpi-incdir=/usr/include/mpich2

--with-mpi-lib="-L/usr/lib -lmpich"

MPICC=mpicc

MPICXX=mpic++

30



Computational MILP Lecture 3 31

Other Configure-time Options

• There are many configure options for customizing the builds, which is
the advantage of learning to build yourself.

– Over-riding variables: CC, CXX, F77, CXX ADDFLAGS

– --prefix

– --enable-debug

– --enable-gnu-packages

– -C

• configure --help lists many of the options, but beware that configure
is recursive and the individual project also have their own options.

– SYMPHONY/configure --help will list the options for SYMPHONY.
– These options can be given to the root configure—they will be

passed on automatically.

31



Computational MILP Lecture 3 32

Building Individual Packages from Source

• Assuming some libraries are already installed in /some/dir

svn co http://projects.coin-or.org/svn/Cbc/stable/2.8/Cbc Cbc-2.8

cd Cbc-2.8

mkdir build

cd build

../configure --enable-gnu-packages -C --with-coin-instdir=/some/dir

make -j 2

make test

make install

• Note that this checks out Cbc without externals and links against installed
libraries.

• “Old style” builds will still work with all dependencies checked out using
SVN externals.

32



Computational MILP Lecture 3 33

Working With Git

• You can now get most of the COIN projects that are part of the
Optimization Suite from github.
git clone https://github.com/coin-or/Xxx

• Stables are branches and releases are tags.
git clone --branch=stable/X.X

git clone --branch=releases/X.X.X

• To build from source, there is a script that fetches dependent projects
and build automatically.

git clone --branch=stable/1.8 https://github.com/coin-or-tools/BuildTools/

BuildTools/get.dependencies fetch

BuildTools/get.dependencies build --quiet --test

33



Computational MILP Lecture 3 34

Documentation

• Documentation on using the full optimization suite

http://projects.coin-or.org/CoinHelp

http://projects.coin-or.org/CoinEasy

• User’s manuals and documentation for individual projects

http://projects.coin-or.org/ProjName

http://www.coin-or.org/ProjName

• Source code documentation

http://www.coin-or.org/Doxygen

34



Computational MILP Lecture 3 35

Support

• Support is available primarily through mailing lists and bug reports.

http://list.coin-or.org/mailman/listinfo/ProjName

http://projects.coin-or.org/ProjName

• Keep in mind that the appropriate place to submit your question or bug
report may be different from the project you are actually using.

• Make sure to report all information required to reproduce the bug
(platform, version number, arguments, parameters, input files, etc.)

• Also, please keep in mind that support is an all-volunteer effort.

• In the near future, we will be moving away from mailing lists and towards
support forums.

35



Computational MILP Lecture 3 36

Introduction to the SCIP Optimization Suite

• SCIP is free-for-academic-use software that provides many of the same
capabilities as COIN-OR.

• It consists of the following packages.

– SCIP
– SoPlex (LP solver)
– ZIMPL (stand-alone modeling language)
– UG (parallel optimization framework)
– GCG (decomposition-based solver)

• The easiest way to get SCIP is to download the binaries here:

http://scip.zib.de/#download

• You can also download source and build with make on the command line.

36



Computational MILP Lecture 3 37

Exercise: Download and Install COIN and SCIP

wget https://github.com/coin-or/yaposib/blob/master/examples/p0033.mps

symphony -F p0033.mps

cbc p0033.mps

scip -f p0033.mps

37


