Computational Integer Programming

Lecture 10: Branching

Dr. Ted Ralphs

Reading for This Lecture

- Wolsey Sections 7.4-7.5
- Nemhauser and Wolsey Section II.4.2
- Linderoth and Savelsburgh, (1999)
- Martin (2001)
- Achterberg, Koch, Martin (2005)
- Karamanov and Cornuejols, Branching on General Disjunctions (2007)
- Achterberg, Conflict Analysis in Mixed Integer Programming (2007)

Branch and Bound Recap

- As usual, suppose S is the feasible region of an MILP and we wish to solve $\max_{x \in S} c^{\top}x$.
- To apply branch and bound, we consider a partition of S into subsets $S_1, \ldots S_k$. Then

$$\max_{x \in \mathcal{S}} c^{\top} x = \max_{1 \le i \le k} \max_{x \in \mathcal{S}_i} c^{\top} x.$$

- In other words, we can optimize over each subset separately.
- <u>Idea</u>: If we can't solve the original problem directly, we might be able to solve the smaller *subproblems* recursively.
- Dividing the original problem into subproblems is called branching.
- Taken to the extreme, this scheme is equivalent to complete enumeration.

Branching

- We have now spent several lectures discussing methods for bounding.
- Obtaining tight bounds is the most important aspect of the branch-andbound algorithm.
- Branching effectively is a very close second.
- Choosing an effective method of branching can make orders of magnitude difference in the size of the search tree and the solution time.

Disjunctions and Branching

- Recall that branching is generally achieved by selecting an admissible disjunction $\{X_i\}_{i=1}^k$ and using it to partition \mathcal{S} , e.g., $\mathcal{S}_i = \mathcal{S} \cap X_i$.
- The way this disjunction is selected is called the *branching method* and is the topic we now examine.
- Generally speaking, we want $x^* \notin \bigcup_{1 \leq i \leq k} X_i$, where x^* is the (infeasible) solution produced by solving the *bounding problem* associated with a given subproblem.

Split Disjunctions

- The most easily handled disjunctions are those based on dividing the feasible region using a given hyperplane.
- In such cases, each term of the disjunction can be imposed by addition of a single inequality.
- A hyperplane defined by a vector $\pi \in \mathbb{R}^n$ is said to be *integer* if $\pi_i \in \mathbb{Z}$ for $0 \le i \le p$ and $\pi_i = 0$ for $p + 1 \le i \le n$.
- Note that if π is integer, then we have $\pi^{\top}x \in \mathbb{Z}$ whenever $x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$.
- Then the disjunction defined by

$$X_1 = \{ x \in \mathbb{R}^n \mid \pi^\top x \le \pi_0 \}, X_2 = \{ x \in \mathbb{R}^n \mid \pi x \ge \pi_0 + 1 \}, \quad (1)$$

is valid when $\pi_0 \in \mathbb{Z}$.

• This is known as a *split disjunction*.

Variable Disjunctions

- The simplest split disjunction is to take $\pi = e_i$ for $0 \le i \le p$, where e_i is the i^{th} unit vector.
- If we branch using such a disjunction, we simply say we are branching on x_j .
- For such a branching disjunction to be admissible, we should have $\pi_0 < x_i^* < \pi_0 + 1$.
- In the special case of a 0-1 IP, this dichotomy reduces to

$$x_{i} = 0 \text{ OR } x_{i} = 1$$

- In general IP, branching on a variable involves imposing new bound constraints in each one of the subproblems.
- This is easily handled implicitly in most cases.
- This is the most common method of branching.
- What are the benefits of such a scheme?

The Geometry of Branching

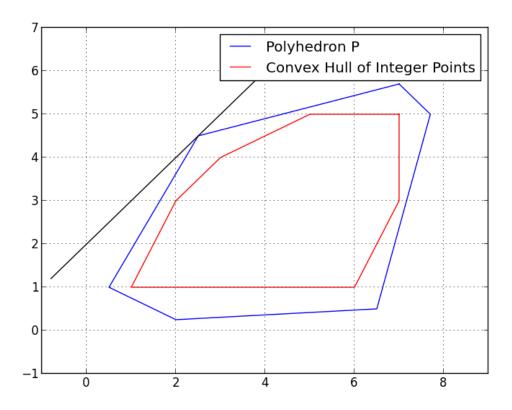


Figure 1: Feasible region of an MILP

The Geometry of Branching (Variable Disjunction)

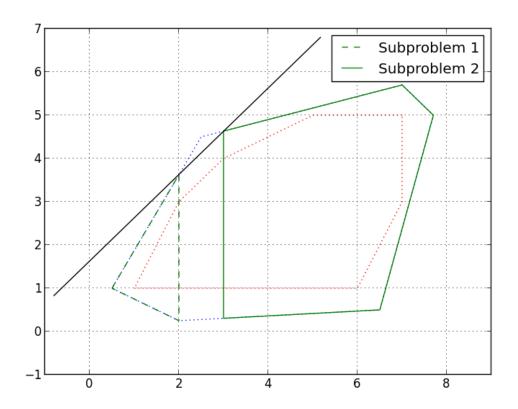


Figure 2: Branching on disjunction $x_1 \leq 2$ OR $x_1 \geq 3$

The Geometry of Branching (Variable Disjunction)

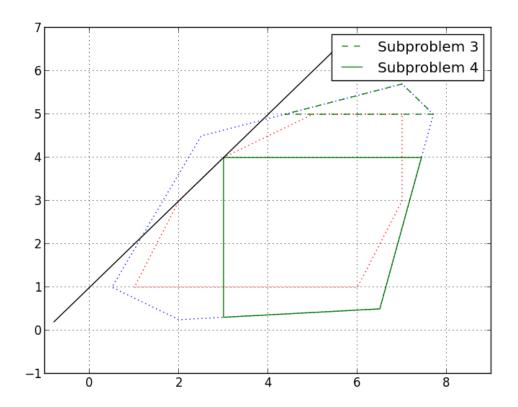


Figure 3: Branching on disjunction $x_2 \le 4$ OR $x_2 \ge 5$ in Subproblem 2

The Geometry of Branching (General Split Disjunction)

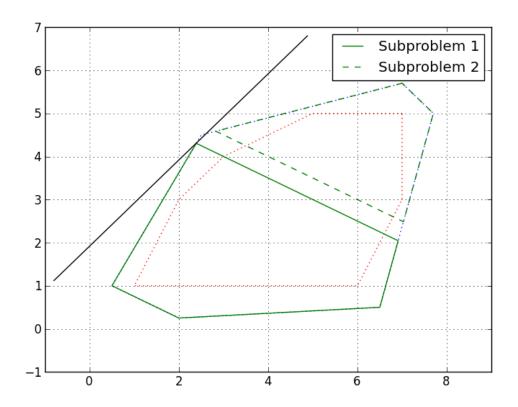


Figure 4: Branching on disjunction $x_1 + 2x_2 \le 11$ OR $x_1 + 2x_2 \ge 12$

The Geometry of Branching (General Split Disjunction)

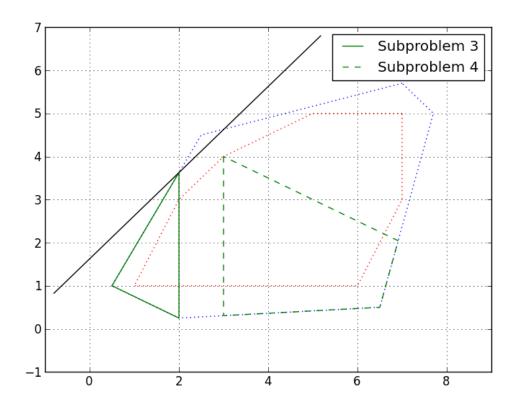


Figure 5: Branching on hyperplane $x_1 \leq 2$ OR $x_1 \geq 3$ in Subproblem 1

Other Disjunctions

• A generalized upper bound (GUB) is of the form:

$$\sum_{j \in Q} x_j = 1, \quad x \in \{0, 1\}^Q$$

- Suppose |Q| = 10 and we branch on the disjunction $x_1 \le 0$ OR $x_1 \ge 1$.
- How many possible solutions to the above equation are there in each of the branches? Is this a "good" disjunction to branch on?
- Consider the disjunction $\sum_{j=1}^{5} x_j = 0$ OR $\sum_{j=6}^{10} x_j = 0$.
- Is this better?

Logical Disjunctions

- We can derive other types of branching based on logical considerations.
- <u>Example #1</u>:
 - y_i binary variable and $y_i = 0 \Rightarrow \pi x \leq \pi_0$.
 - Possible branching:

```
y_i = 1,
y_i = 0 \text{ and } \pi x \le \pi_0.
```

- This avoids using the big M method.
- Example #2: Solving the TSP with Lagrangian relaxation.

Choosing a Branching Disjunction

- What is the real goal of branching?
- This may depend on the goal of the search
 - Find the best feasible solution possible in a limited time.
 - Find the provably optimal solution as quickly as possible.
- It is difficult to know how our branching decision will impact these goals, but we may want to choose a branching that
 - Decreases the upper bound,
 - Increases the lower bound, or
 - Result in one or more (nearly) infeasible subproblem.
- Most of the times, we focus on decreasing the upper bound.

Choosing a Branching Disjunction (cont'd)

- There are many possible disjunctions to choose from.
- We generally choose the branching disjunction based on the predicted amount of progress it will produce towards our goal.
- If the goal is to minimize time to optimality, bound improvement is often used as a proxy.
- How do we efficiently predict the bound improvement that will result from the imposition of a given disjunction?

Strong Branching

- *Strong branching* provides the most accurate estimate, but is computationally very expensive.
- The idea is to compute the *actual* change in bound by solving the bounding problems resulting from imposing the disjunction.
- This can be very costly. How can we moderate this?
 - Do only a limited number of dual-simplex pivots for each candidate for each child.
 - Use this as an estimate.
- Empirically, this reduces number of nodes, but this must be traded against the computational expense.

Pseudocost Branching

- An alternative to strong branching is pseudocost branching
- This is suitable primarily for branching on branching on variables.
- The pseudocost of a variable is an estimate derived by averaging observed changes resulting from branching on each of the variables.
- For each variable, we maintain an "up pseudocost" (P_j^+) and a "down pseudocost" (P_j^-) .
- Then the change in bound for each child can be estimated as:

$$D_{j}^{+} = P_{j}^{+}(1 - f_{j})$$

 $D_{j}^{-} = P_{j}^{-}f_{j},$

where $f_j = x_j^* - \lfloor x_j^* \rfloor$.

• In other words, D_j^+ and D_j^- are estimates of the *change* in bound that will result from imposing $x_j \geq \lfloor x_j^* \rfloor$ and $x_j \geq \lceil x_j^* \rceil$, respectively.

Pseudocost Initialization

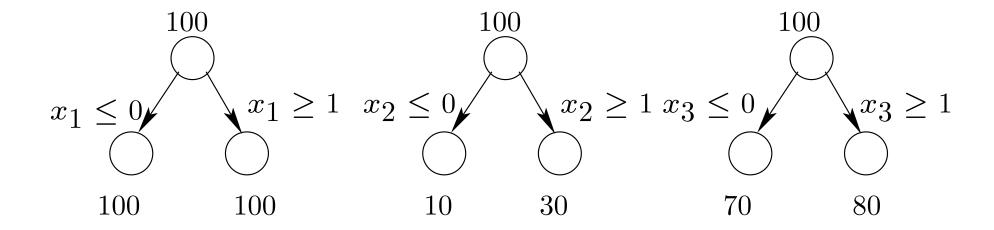
- Is it reasonable to assume that effect of branching on a particular variable is actually roughly the same in different parts of the tree?
- Empirical evidence shows that this is the case.
- Another important question is how to get initial estimates before any branching has occurred.
- This can be done initially using strong branching.
- After initialization, we switch to pseudocost branching, updating the pseudocost estimates after each bounding operation.
- A more systematic approach to doing this is to use what is called *reliability branching*.

Reliability Branching

- Strong branching is effective in reducing the number of nodes, but can be costly.
- Using pseudocosts is inexpensive, but requires good initialization.
- Reliability branching combines both.
 - Use strong branching in the early stages of the tree. Initialize/update pseudo-costs of variables using these bounds.
 - Once strong branching (or actual branching) has been carried out η number of times on a variable, only use pseudo-costs after that.
 - $-\eta$ is called reliability parameter.
 - What does $\eta = 0$ imply? What does $\eta = \infty$ imply?
 - Empirically $\eta = 4$ seems to be quite effective.

Comparing Branching Candidates

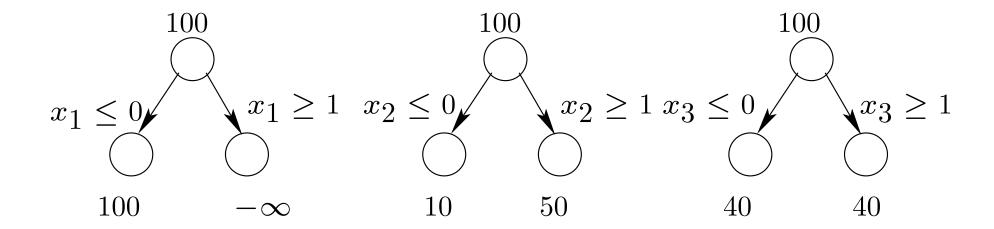
- So far we have seen, how to evaluate a candidate in several ways.
- Sometimes the choice of candidate is clear after this evaluation.



- Are we minimizing or maximizing?
- Which candidate would you choose?

Comparing Candidates

- However, choice of candidates is not always clear.
- Consider



- Possible metrics $(\tilde{z}_1, \tilde{z}_2, \dots \tilde{z}_r)$ are the estimates for r children of a candidate):
 - $-\max \tilde{z}_i$
 - $-\sum_{i}\tilde{z}_{i}/r$
 - $-\max_{i}\tilde{z}_{i}-\min_{i}\tilde{z}_{i}$
 - $-\alpha_1 \max_i \tilde{z}_i + \alpha_2 \min_i \tilde{z}_i$

Comparing Candidates

- The number of fractional variables (after full strong branching) is another possible criterion.
- For more criteria based on structure of constraints, see *Active-Constraint Variable Ordering for Faster Feasibility of MILPs*, by Patel and Chinneck, 2006.

Local Branching

- Local branching is a branching scheme that emphasizes finding feasible solutions over improving the upper bound.
- ullet Consider the solution x^* to an LP relaxation at a certain node in the tree of a binary program.
- Let S be the set: $\{j|x_j^*=0\}$.
- Consider the disjunction

$$\sum_{j \in S} x_j \le k \text{ OR } \sum_{j \in S} x_j \ge k + 1$$

for small k.

- Is this a valid rule?
- Which child is easier to solve?
- For full details, see *Local Branching* by Fischetti and Lodi.
- We will discuss this and other methods when we talk about primal heuristics.

Valid Inequalities by Branching

- Note this one of the subproblems obtained by imposing a given binary disjunction is infeasible, the we obtain a valid inequality!
- This is in some sense what a valid inequality is.
- For the problem in Figure 1, branching on the valid disjunction $x_2-x_1 \le 1$ OR $x_2-x_1 \ge 2$ immediately solves the problem.
- This may make it seem easy to find valid inequalities, but we will see later why this is not the case.