
Computational Integer Programming

Lecture 10: Branching

Dr. Ted Ralphs

Computational MILP Lecture 10 1

Reading for This Lecture

• Wolsey Sections 7.4-7.5

• Nemhauser and Wolsey Section II.4.2

• Linderoth and Savelsburgh, (1999)

• Martin (2001)

• Achterberg, Koch, Martin (2005)

• Karamanov and Cornuejols, Branching on General Disjunctions (2007)

• Achterberg, Conflict Analysis in Mixed Integer Programming (2007)

1

Computational MILP Lecture 10 2

Branch and Bound Recap

• As usual, suppose S is the feasible region of an MILP and we wish to
solve maxx∈S c

>x.

• To apply branch and bound, we consider a partition of S into subsets
S1, . . .Sk. Then

max
x∈S

c>x = max
1≤i≤k

max
x∈Si

c>x.

• In other words, we can optimize over each subset separately.

• Idea: If we can’t solve the original problem directly, we might be able to
solve the smaller subproblems recursively.

• Dividing the original problem into subproblems is called branching.

• Taken to the extreme, this scheme is equivalent to complete enumeration.

2

Computational MILP Lecture 10 3

Branching

• We have now spent several lectures discussing methods for bounding.

• Obtaining tight bounds is the most important aspect of the branch-and-
bound algorithm.

• Branching effectively is a very close second.

• Choosing an effective method of branching can make orders of magnitude
difference in the size of the search tree and the solution time.

3

Computational MILP Lecture 10 4

Disjunctions and Branching

• Recall that branching is generally achieved by selecting an admissible
disjunction {Xi}ki=1 and using it to partition S, e.g., Si = S ∩Xi.

• The way this disjunction is selected is called the branching method and
is the topic we now examine.

• Generally speaking, we want x∗ 6∈ ∪1≤i≤kXi, where x∗ is the (infeasible)
solution produced by solving the bounding problem associated with a
given subproblem.

4

Computational MILP Lecture 10 5

Split Disjunctions

• The most easily handled disjunctions are those based on dividing the
feasible region using a given hyperplane.

• In such cases, each term of the disjunction can be imposed by addition
of a single inequality.

• A hyperplane defined by a vector π ∈ Rn is said to be integer if πi ∈ Z
for 0 ≤ i ≤ p and πi = 0 for p+ 1 ≤ i ≤ n.

• Note that if π is integer, then we have π>x ∈ Z whenever x ∈ Zp×Rn−p.

• Then the disjunction defined by

X1 = {x ∈ Rn | π>x ≤ π0}, X2 = {x ∈ Rn | πx ≥ π0 + 1}, (1)

is valid when π0 ∈ Z.

• This is known as a split disjunction.

5

Computational MILP Lecture 10 6

Variable Disjunctions

• The simplest split disjunction is to take π = ei for 0 ≤ i ≤ p, where ei
is the ith unit vector.

• If we branch using such a disjunction, we simply say we are branching on
xj.

• For such a branching disjunction to be admissible, we should have
π0 < x∗i < π0 + 1.

• In the special case of a 0-1 IP, this dichotomy reduces to

xj = 0 OR xj = 1

• In general IP, branching on a variable involves imposing new bound
constraints in each one of the subproblems.

• This is easily handled implicitly in most cases.

• This is the most common method of branching.

• What are the benefits of such a scheme?

6

Computational MILP Lecture 10 7

The Geometry of Branching

Figure 1: Feasible region of an MILP

7

Computational MILP Lecture 10 8

The Geometry of Branching (Variable Disjunction)

Figure 2: Branching on disjunction x1 ≤ 2 OR x1 ≥ 3

8

Computational MILP Lecture 10 9

The Geometry of Branching (Variable Disjunction)

Figure 3: Branching on disjunction x2 ≤ 4 OR x2 ≥ 5 in Subproblem 2

9

Computational MILP Lecture 10 10

The Geometry of Branching (General Split Disjunction)

Figure 4: Branching on disjunction x1 + 2x2 ≤ 11 OR x1 + 2x2 ≥ 12

10

Computational MILP Lecture 10 11

The Geometry of Branching (General Split Disjunction)

Figure 5: Branching on hyperplane x1 ≤ 2 OR x1 ≥ 3 in Subproblem 1

11

Computational MILP Lecture 10 12

Other Disjunctions

• A generalized upper bound (GUB) is of the form:∑
j∈Q

xj = 1, x ∈ {0, 1}Q

• Suppose |Q| = 10 and we branch on the disjunction x1 ≤ 0 OR x1 ≥ 1.

• How many possible solutions to the above equation are there in each of
the branches? Is this a “good” disjunction to branch on?

• Consider the disjunction
∑5

j=1 xj = 0 OR
∑10

j=6 xj = 0.

• Is this better?

12

Computational MILP Lecture 10 13

Logical Disjunctions

• We can derive other types of branching based on logical considerations.

• Example #1:

– yi binary variable and yi = 0⇒ πx ≤ π0.
– Possible branching:

yi = 1,

yi = 0 and πx ≤ π0.

– This avoids using the big M method.

• Example #2: Solving the TSP with Lagrangian relaxation.

13

Computational MILP Lecture 10 14

Choosing a Branching Disjunction

• What is the real goal of branching?

• This may depend on the goal of the search

– Find the best feasible solution possible in a limited time.
– Find the provably optimal solution as quickly as possible.

• It is difficult to know how our branching decision will impact these goals,
but we may want to choose a branching that

– Decreases the upper bound,
– Increases the lower bound, or
– Result in one or more (nearly) infeasible subproblem.

• Most of the times, we focus on decreasing the upper bound.

14

Computational MILP Lecture 10 15

Choosing a Branching Disjunction (cont’d)

• There are many possible disjunctions to choose from.

• We generally choose the branching disjunction based on the predicted
amount of progress it will produce towards our goal.

• If the goal is to minimize time to optimality, bound improvement is often
used as a proxy.

• How do we efficiently predict the bound improvement that will result
from the imposition of a given disjunction?

15

Computational MILP Lecture 10 16

Strong Branching

• Strong branching provides the most accurate estimate, but is
computationally very expensive.

• The idea is to compute the actual change in bound by solving the
bounding problems resulting from imposing the disjunction.

• This can be very costly. How can we moderate this?

– Do only a limited number of dual-simplex pivots for each candidate
for each child.

– Use this as an estimate.

• Empirically, this reduces number of nodes, but this must be traded
against the computational expense.

16

Computational MILP Lecture 10 17

Pseudocost Branching

• An alternative to strong branching is pseudocost branching

• This is suitable primarily for branching on branching on variables.

• The pseudocost of a variable is an estimate derived by averaging observed
changes resulting from branching on each of the variables.

• For each variable, we maintain an “up pseudocost” (P+
j) and a “down

pseudocost” (P−j).

• Then the change in bound for each child can be estimated as:

D+
j = P+

j (1− fj)

D−j = P−j fj,

where fj = x∗j − bx∗jc.

• In other words, D+
j and D−j are estimates of the change in bound that

will result from imposing xj ≥ bx∗jc and xj ≥ dx∗je, respectively.

17

Computational MILP Lecture 10 18

Pseudocost Initialization

• Is it reasonable to assume that effect of branching on a particular variable
is actually roughly the same in different parts of the tree?

• Empirical evidence shows that this is the case.

• Another important question is how to get initial estimates before any
branching has occurred.

• This can be done initially using strong branching.

• After initialization, we switch to pseudocost branching, updating the
pseudocost estimates after each bounding operation.

• A more systematic approach to doing this is to use what is called
reliability branching.

18

Computational MILP Lecture 10 19

Reliability Branching

• Strong branching is effective in reducing the number of nodes, but can
be costly.

• Using pseudocosts is inexpensive, but requires good initialization.

• Reliability branching combines both.

– Use strong branching in the early stages of the tree. Initialize/update
pseudo-costs of variables using these bounds.

– Once strong branching (or actual branching) has been carried out η
number of times on a variable, only use pseudo-costs after that.

– η is called reliability parameter.
– What does η = 0 imply? What does η =∞ imply?
– Empirically η = 4 seems to be quite effective.

19

Computational MILP Lecture 10 20

Comparing Branching Candidates

• So far we have seen, how to evaluate a candidate in several ways.

• Sometimes the choice of candidate is clear after this evaluation.

x1 ≤ 0

100 3010 70

x1 ≥ 1 x3 ≤ 0 x3 ≥ 1x2 ≤ 0 x2 ≥ 1

80100

100 100 100

• Are we minimizing or maximizing?

• Which candidate would you choose?

20

Computational MILP Lecture 10 21

Comparing Candidates

• However, choice of candidates is not always clear.

• Consider

4010

x1 ≥ 1 x3 ≤ 0 x3 ≥ 1x2 ≤ 0 x2 ≥ 1

100

100 100 100

x1 ≤ 0

−∞ 50 40

• Possible metrics (z̃1, z̃2, . . . z̃r are the estimates for r children of a
candidate):

– max z̃i
–

∑
i z̃i/r

– maxi z̃i −mini z̃i
– α1maxi z̃i + α2mini z̃i

21

Computational MILP Lecture 10 22

Comparing Candidates

• The number of fractional variables (after full strong branching) is another
possible criterion.

• For more criteria based on structure of constraints, see Active-Constraint
Variable Ordering for Faster Feasibility of MILPs, by Patel and
Chinneck, 2006.

22

Computational MILP Lecture 10 23

Local Branching

• Local branching is a branching scheme that emphasizes finding feasible
solutions over improving the upper bound.

• Consider the solution x∗ to an LP relaxation at a certain node in the
tree of a binary program.

• Let S be the set: {j|x∗j = 0}.

• Consider the disjunction∑
j∈S

xj ≤ k OR
∑
j∈S

xj ≥ k + 1

for small k.

• Is this a valid rule?

• Which child is easier to solve?

• For full details, see Local Branching by Fischetti and Lodi.

• We will discuss this and other methods when we talk about primal
heuristics.

23

Computational MILP Lecture 10 24

Valid Inequalities by Branching

• Note this one of the subproblems obtained by imposing a given binary
disjunction is infeasible, the we obtain a valid inequality!

• This is in some sense what a valid inequality is.

• For the problem in Figure 1, branching on the valid disjunction x2−x1 ≤ 1
OR x2 − x1 ≥ 2 immediately solves the problem.

• This may make it seem easy to find valid inequalities, but we will see
later why this is not the case.

24

