
Computational Integer Programming

Lecture 1: Introduction

Dr. Ted Ralphs



Computational MILP Lecture 1 1

Quick Overview

• Course web site

http://coral.ie.lehigh.edu/~ted/teaching/computational-mip

• Course structure: five days, nine sessions, alternating between

– Lecture sessions
– Computational exercises

• Slides will be posted on-line each day

• Material is drawn from

– http://coral.ie.lehigh.edu/~ted/teaching/ie418

– http://coral.ie.lehigh.edu/~ted/teaching/coin-or

– http://co-at-work.zib.de/#schedule

– https://github.com/tkralphs/FinancialModels/

• Please ask questions!!

1



Computational MILP Lecture 1 2

Computational Tools

• We’ll install these free optimization suites.

– SCIP
– COIN-OR

• We’ll work with these modeling and programming environments.

– AMPL
– ZIMPL
– Python-based
∗ PuLP
∗ Pyomo
∗ DiPPy

• Solver Studio (?)

• Any OS should work!!

2



Computational MILP Lecture 1 3

Computational Exercises

• We’ll have to see how the computational exercises go.

• With so many students and just one instructor, it may be difficult.

• Please bear with me and plan to try some things at home.

• Please bring questions back the next day.

3



Computational MILP Lecture 1 4

Survey Says...

• Laptop?

• Preferred OS?

• Programming Experience?

• Programming Environment?

• Optimization Background?

4



Computational MILP Lecture 1 5

Reference Texts

• Nemhauser and Wolsey

• Wolsey

• Conforti, Corneujols, and Zambelli

• See also more extensive list at

http://coral.ie.lehigh.edu/~ted/teaching/ie418

5



Computational MILP Lecture 1 6

References for This Lecture

• N&W Sections I.1.1-I.1.4

• Wolsey Chapter 1

• CCZ Chapter 2

6



Computational MILP Lecture 1 7

Mathematical Optimization Problems

• Mathematical optimization is a framework for formulating and analyzing
optimization problems.

• The essential elements of an optimization problem are

– a system whose operating states can be described numerically by
specifying the values of certain variables;

– a set of states considered feasible for the given system; and
– an objective function that defines a preference ordering of the states.

• Before applying mathematical optimization techniques, we must first
create a model, which is then translated into a particular formulation.

• The formulation is a formal description of the problem in terms of
mathematical functions and logical operators .

• The use of mathematical optimization as a framework for formulation
imposes constraints on what aspects of the system can be modeled.

• We often need to make simplifying assumptions and approximations in
order to put the problem into the required form.

7



Computational MILP Lecture 1 8

Modeling

• Our overall goal is to develop a model of a real-world system in order to
analyze the system.

• The system we are modeling is typically (but not always) one we are
seeking to control by determining its “operating state.”

• The (independent) variables in our model represent aspects of the system
we have control over.

• The values that these variables take in the model tell us how to set the
operating state of the system in the real world.

• Modeling is the process of creating a conceptual model of the real-world
system.

• Formulation is the process of constructing a mathematical optimization
problem whose solution reveals the optimal state according to the model.

• This is far from an exact science.

8



Computational MILP Lecture 1 9

The Modeling Process

• The modeling process consists generally of the following steps.

– Determine the “real-world” state variables, system constraints, and
goal(s) or objective(s) for operating the system.

– Translate these variables and constraints into the form of a
mathematical optimization problem (the “formulation”).

– Solve the mathematical optimization problem.
– Interpret the solution in terms of the real-world system.

• This process presents many challenges.

– Simplifications may be required in order to ensure the eventual
mathematical optimization problem is “tractable”.

– The mappings from the real-world system to the model and back are
sometimes not very obvious.

– There may be more than one valid “formulation”.

• All in all, an intimate knowledge of mathematical optimization definitely
helps during the modeling process.

9



Computational MILP Lecture 1 10

Formalizing: Mathematical Optimization Problems

Elements of the model:

• Decision variables

• Constraints

• Objective Function

• Parameters and Data

The general form of a mathematical optimization problem is:

min or max f(x)

s.t. gi(x)

 ≤=≥
 bi

x ∈ X
where X ⊆ Rn might be a discrete set (what is a discrete set?)

10



Computational MILP Lecture 1 11

Solutions

• A solution is an assignment of values to variables.

• A solution can hence be thought of as an n-dimensional vector.

• A feasible solution is an assignment of values to variables such that all
the constraints are satisfied.

• The objective function value of a solution is obtained by evaluating the
objective function at the given point.

• An optimal solution (assuming maximization) is one whose objective
function value is greater than or equal to that of all other feasible
solutions.

• Note that a mathematical optimization problem may not have a feasible
solution.

• Question: What are the different ways in which this can happen?

11



Computational MILP Lecture 1 12

Possible Outcomes

• When we say we are going to “solve” a mathematical optimization
problem, we mean to determine

– whether it is feasible, and
– whether it has an optimal solution.

• We may also want to know some other things, such as the status of its
“dual” or about sensitivity.

12



Computational MILP Lecture 1 13

Types of Mathematical Optimization Problems

• The type of a mathematical optimization problem is determined primarily
by

– The form of the objective and the constraints.
– The form of the set X.

• The most basic case in the linear optimization problem (LP) (this course
assumes basic knowledge of linear optimization).

– The objective function is linear.
– The constraints are linear.

• The most important determinants of whether a mathematical
optimization problem is “tractable” are the convexity of

– The objective function.
– The feasible region.

13



Computational MILP Lecture 1 14

Types of Mathematical Optimization Problems (cont’d)

• Mathematical optimization problems are generally classified according to
the following dichotomies.

– Linear/nonlinear
– Convex/nonconvex
– Discrete/continuous
– Stochastic/deterministic

• See the NEOS guide for a more detailed breakdown.

• This class concerns (primarily) models that are discrete, linear, and
deterministic (and as a result generally non-convex)

14



Computational MILP Lecture 1 15

Our Formal Setting

• We consider linear optimization problems in which we additionally impose
that X = Zp

+ × Rn−p
+ .

• The general form of such a mathematical optimization problem is

zIP = max{c>x | x ∈ S}, (MILP)

where for A ∈ Qm×n, b ∈ Qm, c ∈ Qn. we have

P = {x ∈ Rn | Ax ≤ b} (FEAS-LP)

S = P ∩ (Zp
+ × Rn−p

+ ) (FEAS-MIP)

• This type of optimization problem is called a mixed integer linear
optimization problem, or simply a mixed integer optimization problem
(MIP).

• If p = n, then we have a pure integer linear optimization problem, or an
integer optimization problem (IP).

• If p = 0, then we have a linear optimization problem (LP).

• The first p components of x are the discrete or integer variables and the
remaining components consist of the continuous variables.

15



Computational MILP Lecture 1 16

Special Case: Binary Integer Optimization

• In many cases, the variables of an IP represent yes/no decisions or logical
relationships.

• These variables naturally take on values of 0 or 1.

• Such variables are called binary.

• IPs involving only binary variables are called binary optimization problems.

16



Computational MILP Lecture 1 17

Combinatorial Optimization

• A combinatorial optimization problem CP = (N,F) consists of

– A finite ground set N ,
– A set F ⊆ 2N of feasible solutions, and
– A cost function c ∈ Zn.

• The cost of F ∈ F is c(F ) =
∑

j∈F cj.

• The combinatorial optimization problem is then

max{c(F ) | F ∈ F}

• There is a natural association with a 0-1 math program.

• Many COPs can be written as BIPs or MIPs.

17



Computational MILP Lecture 1 18

Some Notes

• The form of the problem we consider will be maximization by default,
since this is the standard in the reference texts.

• I normally think in terms of minimization by default, so please be aware
that this may cause some confusion.

• Also note that the definition of S includes nonnegativity, but the definition
of P does not.

• One further assumption we will make is that the constraint matrix is
rational.

– This is an important assumption since with irrational data, certain
“intuitive” results no longer hold (such as what?)

– A computer can only understand rational data anyway, so this is not
an unreasonable assumption.

18



Computational MILP Lecture 1 19

How Difficult is Discrete Optimization?

• Solving general integer programs can be much more difficult than solving
linear programs.

• There in no known polynomial-time algorithm for solving general MIPs.

• Solving the associated linear programming relaxation results in an upper
bound on the optimal solution to the MIP.

• In general, solving the LP relaxation, an LP obtained by dropping the
integerality restrictions, does not tell us much.

– Rounding to a feasible integer solution may be difficult.
– The optimal solution to the LP relaxation can be arbitrarily far away

from the optimal solution to the MIP.
– Rounding may result in a solution far from optimal.
– We can bound the difference between the optimal solution to the LP

and the optimal solution to the MIP (how?).

19



Computational MILP Lecture 1 20

Integer Programming and Convexity

• The feasible region of an integer program is nonconvex.

• The nonconvexity is of a rather special form, though.

• Although the feasible set is nonconvex, there is a convex set over which
we can optimize in order to get a solution (why?).

• The challenge is that we do not know how to describe that set.

• Even if we knew the description, it would in general be too large to write
down explicitly.

• Integer variables can be used to model other forms of nonconvexity, as
we will see later on.

20



Computational MILP Lecture 1 21

The Geometry of Integer Programming

• Let’s consider again an integer linear program

max c>x

s.t. Ax ≤ b

x ∈ Zn
+

• The feasible region is the integer points inside a polyhedron.

• Why does solving the LP relaxation not necessarily yield a good solution?

21



Computational MILP Lecture 1 22

How General is MILP?

• A natural question to ask is just how general this language for describing
optimization problems is.

• Is this language general enough that we should spend time studying it?

• To answer this question rigorously requires some tools from an area of
computer science called complexity theory.

• We can say informally, however, that the language of mathematical
optimization is very general.

• One can show that almost anything a computer can do can be described
as a mathematical optimization problem1.

• Mixed integer linear optimization is not quite as general, but is complete
for a broad class of problems called “NP”.

• We will study this class later in the course.

1Formally, mathematical optimization can be shown to be a “Turing-complete” language

22



Computational MILP Lecture 1 23

Conjunction versus Disjunction

• A more general mathematical view that ties integer programming to logic
is to think of integer variables as expressing disjunction.

• The constraints of a standard mathematical program are conjunctive.

– All constraints must be satisfied.
– In terms of logic, we have

g1(x) ≤ b1 AND g2(x) ≤ b2 AND · · · AND gm(x) ≤ bm (1)

– This corresponds to intersection of the regions associated with each
constraint.

• Integer variables introduce the possibility to model disjunction.

– At least one constraint must be satisfied.
– In terms of logic, we have

g1(x) ≤ b1 OR g2(x) ≤ b2 OR · · · OR gm(x) ≤ bm (2)

– This corresponds to union of the regions associated with each
constraint.

23



Computational MILP Lecture 1 24

Representability Theorem

The connection between integer programming and disjunction is captured
most elegantly by the following theorem.

Theorem 1. (MILP Representability Theorem) A set F ⊆ Rn is MIP
representable if and only if there exist rational polytopes P1, . . . ,Pk and
vectors r1, . . . , rt ∈ Zn such that

F =

k⋃
i=1

Pi + intcone{r1, . . . , rt}

Roughly speaking, we are optimizing over a union of polyhedra, which
can be obtained simply by introducing a disjunctive logical operator to the
language of linear programming.

24



Computational MILP Lecture 1 25

Connection with Other Fields

• Integer programming can be studied from the point of view of a number
of fundamental mathematical disciplines:

– Algebra
– Geometry
– Topology
– Combinatorics
∗ Matroid theory
∗ Graph theory

– Logic
∗ Set theory
∗ Proof theory
∗ Computability/complexity theory

• There are also a number of other related disciplines

– Constraint programming
– Satisfiability
– Artificial intelligence

25


