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Quick Overview

e Course web site
http://coral.ie.lehigh.edu/~ted/teaching/computational-mip

e Course structure: five days, nine sessions, alternating between

— Lecture sessions
— Computational exercises

e Slides will be posted on-line each day
e Material is drawn from

— http://coral.ie.lehigh.edu/~ted/teaching/ie418
— http://coral.ie.lehigh.edu/~ted/teaching/coin-or
— http://co-at-work.zib.de/#schedule

— https://github.com/tkralphs/FinancialModels/

e Please ask questions!!



Computational MILP Lecture 1

Computational Tools

e We'll install these free optimization suites.

— SCIP
— COIN-OR

e We'll work with these modeling and programming environments.

— AMPL

- ZIMPL

— Python-based
x PulLP

*x Pyomo
x DIPPy

e Solver Studio (?7)

e Any OS should work!!
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Computational Exercises

e We'll have to see how the computational exercises go.
e With so many students and just one instructor, it may be difficult.
e Please bear with me and plan to try some things at home.

e Please bring questions back the next day.
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Survey Says...

e Laptop?

e Preferred OS?

e Programming Experience?
e Programming Environment?

e Optimization Background?
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Reference Texts

e Nemhauser and Wolsey
e Wolsey
e Conforti, Corneujols, and Zambelli

e See also more extensive list at

http://coral.ie.lehigh.edu/~ted/teaching/ie418
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References for This Lecture

e N&W Sections 1.1.1-1.1.4
e Wolsey Chapter 1
e CCZ Chapter 2
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Mathematical Optimization Problems

e Nathematical optimization is a framework for formulating and analyzing
optimization problems.

e The essential elements of an optimization problem are

— a system whose operating states can be described numerically by
specifying the values of certain variables;

— a set of states considered feasible for the given system; and

— an objective function that defines a preference ordering of the states.

e Before applying mathematical optimization techniques, we must first
create a model, which is then translated into a particular formulation.

e The formulation is a formal description of the problem in terms of
mathematical functions and logical operators .

e The use of mathematical optimization as a framework for formulation
imposes constraints on what aspects of the system can be modeled.

e We often need to make simplifying assumptions and approximations in
order to put the problem into the required form.
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Modeling

e Our overall goal is to develop a model of a real-world system in order to
analyze the system.

e The system we are modeling is typically (but not always) one we are
seeking to control by determining its “operating state.”

e The (independent) variables in our model represent aspects of the system
we have control over.

e [ he values that these variables take in the model tell us how to set the
operating state of the system in the real world.

e Modeling is the process of creating a conceptual model of the real-world
system.

e formulation is the process of constructing a mathematical optimization
problem whose solution reveals the optimal state according to the model.

e [his is far from an exact science.
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The Modeling Process

e The modeling process consists generally of the following steps.

— Determine the “real-world” state variables, system constraints, and
goal(s) or objective(s) for operating the system.

— Translate these variables and constraints into the form of a
mathematical optimization problem (the “formulation™).

— Solve the mathematical optimization problem.

— Interpret the solution in terms of the real-world system.

e This process presents many challenges.

— Simplifications may be required in order to ensure the eventual
mathematical optimization problem is “tractable”.

— The mappings from the real-world system to the model and back are
sometimes not very obvious.

— There may be more than one valid “formulation”.

e All in all, an intimate knowledge of mathematical optimization definitely
helps during the modeling process.
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Formalizing: Mathematical Optimization Problems

Elements of the model:

e Decision variables
e Constraints
e Objective Function

e Parameters and Data
The general form of a mathematical optimization problem is:
min or max f(x)

S.t. gz(ﬂf) bz

AVAR VAN

r € X
where X C R™ might be a discrete set (what is a discrete set?)
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Solutions

A solution is an assignment of values to variables.
A solution can hence be thought of as an n-dimensional vector.

A feasible solution is an assignment of values to variables such that all
the constraints are satisfied.

The objective function value of a solution is obtained by evaluating the
objective function at the given point.

An optimal solution (assuming maximization) is one whose objective
function value is greater than or equal to that of all other feasible
solutions.

Note that a mathematical optimization problem may not have a feasible
solution.

Question: What are the different ways in which this can happen?
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Possible Outcomes

e When we say we are going to “solve” a mathematical optimization
problem, we mean to determine

— whether it is feasible, and
— whether it has an optimal solution.

e \We may also want to know some other things, such as the status of its
“dual” or about sensitivity.
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Types of Mathematical Optimization Problems

e The type of a mathematical optimization problem is determined primarily
by

— The form of the objective and the constraints.
— The form of the set X.

e The most basic case in the linear optimization problem (LP) (this course
assumes basic knowledge of linear optimization).

— The objective function is linear.
— The constraints are linear.

e The most important determinants of whether a mathematical
optimization problem is “tractable” are the convexity of

— The objective function.
— The feasible region.
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Types of Mathematical Optimization Problems (cont’d)

e Mathematical optimization problems are generally classified according to
the following dichotomies.

— Linear/nonlinear

— Convex/nonconvex

— Discrete/continuous

— Stochastic/deterministic

e See the NEOS guide for a more detailed breakdown.

e This class concerns (primarily) models that are discrete, linear, and
deterministic (and as a result generally non-convex)
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Our Formal Setting

e \We consider linear optimization problems in which we additionally impose
that X =78 x RY™".

e The general form of such a mathematical optimization problem is
zip =max{c' x|z € S}, (MILP)
where for A € Q™*", b € Q™,c € Q™. we have

P ={z € R" | Az < b} (FEAS-LP)

S=PnNZ xRY™P) (FEAS-MIP)
e This type of optimization problem is called a mixed integer linear

optimization problem, or simply a mixed integer optimization problem
(MIP).

o If p = n, then we have a pure integer linear optimization problem, or an
integer optimization problem (IP).

e If p =0, then we have a linear optimization problem (LP).

e The first p components of x are the discrete or integer variables and the
remaining components consist of the continuous variables.
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Special Case: Binary Integer Optimization

e In many cases, the variables of an IP represent yes/no decisions or logical
relationships.

e These variables naturally take on values of O or 1.
e Such variables are called binary.

e |Ps involving only binary variables are called binary optimization problems.
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Combinatorial Optimization

A combinatorial optimization problem CP = (N, F) consists of

— A finite ground set N,
— A set F C 2V of feasible solutions, and
— A cost function ¢ € Z™.

The costof F' € Flis ¢(F) =) ,cp¢j.

The combinatorial optimization problem is then

max{c(F) | F € F}

There is a natural association with a 0-1 math program.

Many COPs can be written as BIPs or MIPs.
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Some Notes

e The form of the problem we consider will be maximization by default,
since this is the standard in the reference texts.

e | normally think in terms of minimization by default, so please be aware
that this may cause some confusion.

e Also note that the definition of § includes nonnegativity, but the definition
of P does not.

e One further assumption we will make is that the constraint matrix is
rational.

— This is an important assumption since with irrational data, certain
“intuitive” results no longer hold (such as what?)

— A computer can only understand rational data anyway, so this is not
an unreasonable assumption.
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How Difficult is Discrete Optimization?

e Solving general integer programs can be much more difficult than solving
linear programs.

e There in no known polynomial-time algorithm for solving general MIPs.

e Solving the associated /inear programming relaxation results in an upper
bound on the optimal solution to the MIP.

e |n general, solving the LP relaxation, an LP obtained by dropping the
integerality restrictions, does not tell us much.

— Rounding to a feasible integer solution may be difficult.

— The optimal solution to the LP relaxation can be arbitrarily far away
from the optimal solution to the MIP.

— Rounding may result in a solution far from optimal.

— We can bound the difference between the optimal solution to the LP
and the optimal solution to the MIP (how?).
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Integer Programming and Convexity

e The feasible region of an integer program is nonconvex.
e The nonconvexity is of a rather special form, though.

e Although the feasible set is nonconvex, there is a convex set over which
we can optimize in order to get a solution (why?).

e The challenge is that we do not know how to describe that set.

e Even if we knew the description, it would in general be too large to write
down explicitly.

e Integer variables can be used to model other forms of nonconvexity, as
we will see later on.
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The Geometry of Integer Programming

e Let's consider again an integer linear program

max ¢l
s.t. Az <b
mn
SN/

e The feasible region is the integer points inside a polyhedron.

: _ — Polyhedron P
6k i.......i....]-- ConvexHull of Integer Points |

e Why does solving the LP relaxation not necessarily yield a good solution?
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How General is MILP?

A natural question to ask is just how general this language for describing
optimization problems is.

Is this language general enough that we should spend time studying it?

To answer this question rigorously requires some tools from an area of
computer science called complexity theory.

We can say informally, however, that the language of mathematical
optimization is very general.

One can show that almost anything a computer can do can be described
as a mathematical optimization problem?.

Mixed integer linear optimization is not quite as general, but is complete
for a broad class of problems called “N P".

We will study this class later in the course.

1Forma||y, mathematical optimization can be shown to be a “Turing-complete” language
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Conjunction versus Disjunction

e A more general mathematical view that ties integer programming to logic
is to think of integer variables as expressing disjunction.

e The constraints of a standard mathematical program are conjunctive.
— All constraints must be satisfied.

— In terms of logic, we have

g1(x) < by AND go(x) < by AND --- AND g,n(x) < by (1)

— This corresponds to intersection of the regions associated with each
constraint.

e Integer variables introduce the possibility to model disjunction.
— At least one constraint must be satisfied.

— In terms of logic, we have

g1(x) < by OR ga(x) < by OR -+ OR gp(x) < by, (2)

— This corresponds to wnion of the regions associated with each
constraint.
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Representability Theorem

The connection between integer programming and disjunction is captured
most elegantly by the following theorem.

Theorem 1. (MILP Representability Theorem) A set F C R" is MIP
representable if and only if there exist rational polytopes P1,...,P. and

vectors ', ..., rt € Z" such that

k
F = U P; + intcone{r', ..., r'}

1=1

Roughly speaking, we are optimizing over a union of polyhedra, which
can be obtained simply by introducing a disjunctive logical operator to the
language of linear programming.
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Connection with Other Fields

e Integer programming can be studied from the point of view of a number
of fundamental mathematical disciplines:

— Algebra
— Geometry
— Topology
— Combinatorics
x Matroid theory
x Graph theory
— Logic
x Set theory
x Proof theory
+ Computability /complexity theory

e There are also a number of other related disciplines

— Constraint programming
— Satisfiability
— Artificial intelligence



