
The COIN-OR Optimization Suite:
Python Tools for Optimization

Ted Ralphs

COIN fORgery: Developing Open Source Tools for OR

Institute for Mathematics and Its Applications, Minneapolis, MN

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

Outline

1 Introduction to Python

2 Python Tools in COIN-OR
CyLP
yaposib
PuLP and Dippy
Pyomo
GiMPy
GrUMPy
CuPPy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

Outline

1 Introduction to Python

2 Python Tools in COIN-OR
CyLP
yaposib
PuLP and Dippy
Pyomo
GiMPy
GrUMPy
CuPPy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

Why Python?

Pros
As with many high-level languages, development in Python is quick and
painless (relative to C++!).

Python is popular in many disciplines and there is a dizzying array of
packages available.

Python’s syntax is very clean and naturally adaptable to expressing
mathematical programming models.

Python has the primary data structures necessary to build and manipulate
models built in.

There has been a strong movement toward the adoption of Python as the
high-level language of choice for (discrete) optimizers.

Sage is quickly emerging as a very capable open-source alternative to
Matlab.

Cons
Python’s one major downside is that it can be very slow.

Solution is to use Python as a front-end to call lower-level tools.

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

Drinking the Python Kool-Aid

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

Adapted from a Tuturial by Guido van Rossum

Director of PythonLabs at Zope Corporation

Presented at

LinuxWorld - New York City - January 2002

� Interpreted language

� Intuitive syntax

� Dynamic typing

� Loads of built-in libraries and available
extensionsextensions

� Shallow learning curve

� Easy to call C/C++ for efficiency

� Object-oriented

� Simple, but extremely powerful

� interactive "shell“

� basic types: numbers, strings

� container types: lists, dictionaries, tuples

� variables

� control structures

� functions & procedures

� classes & instances

� modules

� exceptions

� files & standard library

� Great for learning the language

� Great for experimenting with the library

� Great for testing your own modules

� Two variations: IDLE (GUI), python (command line)

� Type statements or expressions at prompt:
>>> print "Hello, world">>> print "Hello, world"

Hello, world

>>> x = 12**2

>>> x/2

72

>>> # this is a comment

� To write a program, put commands in a file

#hello.py

print "Hello, world"

x = 12**2

x/2

print xprint x

� Execute on the command line

~> python hello.py

Hello, world

72

� No need to declare

� Need to assign (initialize)
� use of uninitialized variable raises exception

� Not typed
if friendly: greeting = "hello world"if friendly: greeting = "hello world"

else: greeting = 12**2

print greeting

� Everything is an “object":
� Even functions, classes, modules

if condition:

statements

[elif condition:

statements] ...

else:

while condition:

statements

for var in sequence:

statementselse:

statements

statements

break

continue

In Python:

for i in range(20):

if i%3 == 0:

print i

if i%5 == 0:

In C:

for (i = 0; i < 20; i++)

{

if (i%3 == 0) {

printf("%d\n", i);

if (i%5 == 0) {

0
Bingo!

3

6

9if i%5 == 0:

print "Bingo!"

print "---"

if (i%5 == 0) {

printf("Bingo!\n"); }

}

printf("---\n");

}

9

12

15
Bingo!

18

� The usual suspects
� 12, 3.14, 0xFF, 0377, (-1+2)*3/4**5, abs(x), 0<x<=5

� C-style shifting & masking
� 1<<16, x&0xff, x|1, ~x, x^y

� Integer division truncates :-(
� 1/2 -> 0 # 1./2. -> 0.5, float(1)/2 -> 0.5

� Will be fixed in the future

� Long (arbitrary precision), complex
� 2L**100 -> 1267650600228229401496703205376L

� In Python 2.2 and beyond, 2**100 does the same thing

� 1j**2 -> (-1+0j)

� "hello"+"world" "helloworld" #
concatenation

� "hello"*3 "hellohellohello" #
repetition

� "hello"[0] "h" # indexing

� "hello"[-1] "o" # (from end)� "hello"[-1] "o" # (from end)

� "hello"[1:4] "ell" # slicing

� len("hello") 5 # size

� "hello" < "jello" 1 # comparison

� "e" in "hello" 1 # search

� "escapes: \n etc, \033 etc, \if etc"

� 'single quotes' """triple quotes""" r"raw strings"

� Flexible arrays, not Lisp-like linked lists
� a = [99, "bottles of beer", ["on", "the", "wall"]]

� Same operators as for strings
� a+b, a*3, a[0], a[-1], a[1:], len(a)

� Item and slice assignment� Item and slice assignment
� a[0] = 98

� a[1:2] = ["bottles", "of", "beer"]

-> [98, "bottles", "of", "beer", ["on", "the", "wall"]]

� del a[-1] # -> [98, "bottles", "of", "beer"]

>>> a = range(5) # [0,1,2,3,4]

>>> a.append(5) # [0,1,2,3,4,5]

>>> a.pop() # [0,1,2,3,4]

5

>>> a.insert(0, 42) # [42,0,1,2,3,4]

>>> a.pop(0) # [0,1,2,3,4]>>> a.pop(0) # [0,1,2,3,4]

5.5

>>> a.reverse() # [4,3,2,1,0]

>>> a.sort() # [0,1,2,3,4]

� Hash tables, "associative arrays"
� d = {"duck": "eend", "water": "water"}

� Lookup:
� d["duck"] -> "eend"

� d["back"] # raises KeyError exception� d["back"] # raises KeyError exception

� Delete, insert, overwrite:
� del d["water"] # {"duck": "eend", "back":
"rug"}

� d["back"] = "rug" # {"duck": "eend", "back":
"rug"}

� d["duck"] = "duik" # {"duck": "duik", "back":
"rug"}

� Keys, values, items:
� d.keys() -> ["duck", "back"]

� d.values() -> ["duik", "rug"]

� d.items() -> [("duck","duik"), ("back","rug")]

� Presence check:� Presence check:
� d.has_key("duck") -> 1; d.has_key("spam") -> 0

� Values of any type; keys almost any
� {"name":"Guido", "age":43, ("hello","world"):1,

42:"yes", "flag": ["red","white","blue"]}

� Keys must be immutable:
◦ numbers, strings, tuples of immutables

� these cannot be changed after creation

◦ reason is hashing (fast lookup technique)

◦ not lists or other dictionaries◦ not lists or other dictionaries

� these types of objects can be changed "in place"

◦ no restrictions on values

� Keys will be listed in arbitrary order
◦ again, because of hashing

� key = (lastname, firstname)

� point = x, y, z # parentheses optional

� x, y, z = point # unpack

� lastname = key[0]

singleton = (1,) # trailing comma!!!� singleton = (1,) # trailing comma!!!

� empty = () # parentheses!

� tuples vs. lists; tuples immutable

� Assignment manipulates references
� x = y does not make a copy of y

� x = y makes x reference the object y references

� Very useful; but beware!

� Example:� Example:
>>> a = [1, 2, 3]

>>> b = a

>>> a.append(4)

>>> print b

[1, 2, 3, 4]

a

a = [1, 2, 3] a 1 2 3

1 2 3

b

a

1 2 3

b

4a.append(4)

b = a

a

1

a = 1

b = a

a 1

1

b

a

1b

a = a+1

b = a

2

old reference deleted
by assignment (a=...)

new int object created
by add operator (1+1)

def name(arg1, arg2, ...):

"""documentation""" # optional doc
string

statements

return # from procedure

return expression # from function

def gcd(a, b):

"greatest common divisor"

while a != 0:

a, b = b%a, a # parallel assignment

return b

>>> gcd.__doc__

'greatest common divisor'

>>> gcd(12, 20)

4

class name:

"documentation"

statements

-or-

class name(base1, base2, ...):

......

Most, statements are method definitions:

def name(self, arg1, arg2, ...):

...

May also be class variable assignments

class Stack:

"A well-known data structure…"

def __init__(self): # constructor

self.items = []

def push(self, x):

self.items.append(x) # the sky is the limitself.items.append(x) # the sky is the limit

def pop(self):

x = self.items[-1] # what happens if it’s empty?

del self.items[-1]

return x

def empty(self):

return len(self.items) == 0 # Boolean result

� To create an instance, simply call the class object:
x = Stack()# no 'new' operator!

� To use methods of the instance, call using dot notation:
x.empty() # -> 1

x.push(1) # [1]

x.empty() # -> 0x.empty() # -> 0

x.push("hello") # [1, "hello"]

x.pop() # -> "hello" # [1]

� To inspect instance variables, use dot notation:
x.items # -> [1]

� Collection of stuff in foo.py file
◦ functions, classes, variables

� Importing modules:
◦ import re; print re.match("[a-z]+", s)

◦ from re import match; print match("[a-z]+", s)◦ from re import match; print match("[a-z]+", s)

� Import with rename:
◦ import re as regex

◦ from re import match as m

Getting Python

There are many different flavors of Python, all of which support the same
basic API, but have different backends and performance.

The “original flavor” is CPython, but there is also Jython, Iron Python,
Pyjs, PyPy, RubyPython, and others.

If you are going to use a package with a C extensions, you probably need
to get CPython.
For numerical computational, some additional packages are almost
certainly required, NumPy and SciPy being the most obvious.

On Linux, Python and the most important packages will be pre-installed, with
additional ones installed easily via a package manager.

On OS X, Python comes pre-installed, but it is easier to install Python and
any additional packages via Homebrew.

On Windows, it’s easiest to install a distribution that includes the scientific
software, such as PythonXY or Portable Python.

Another option is to use Sage, a Matlab-like collection of Python
packages (including COIN).

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

In Class Exercise: Install Python!

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

Getting an IDE

An additional requirement for doing development is an IDE.

My personal choice is Eclipse with the PyDev plug-in.

This has the advantage of being portable and cross-platform, as well as
supporting most major languages.

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

Python Extensions

It is possible to implement extensions to the basic language in C/C++.
Calls into these extensions libraries are then executed efficiently as
native C/C++ code.
Although it is possible in theory to provide binary packages for these
extensions, this is a headache on OS X and Linux.
It is likely you will have to build your own versions, but this is relatively
easy.
On Windows, building extensions is harder, but working binaries are
usually easier to obtain.

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

Basic Build Steps

First, build and install the relevant project using the autotools.
You can avoid some potential complications by configuring with
-enable-static -disable-shared.
Otherwise, you need to set either LD_LIBRARY_PATH (Linux) or
DYLD_LIBRARY_PATH (OS X) to point to ${prefix}/lib.

Next, set some environment variables.
For yaposib, you need to have pkg-config installed and set
PKG_CONFIG_PATH=${prefix}/lib/pkgconfig.
For CyLP and DipPy, you need to set COIN_INSTALL_DIR=${prefix}.

Finally, just execute python setup.py install.

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

Outline

1 Introduction to Python

2 Python Tools in COIN-OR
CyLP
yaposib
PuLP and Dippy
Pyomo
GiMPy
GrUMPy
CuPPy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

1 Introduction to Python

2 Python Tools in COIN-OR
CyLP
yaposib
PuLP and Dippy
Pyomo
GiMPy
GrUMPy
CuPPy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

CyLP: Low-level Modeling and API for Cbc/Clp/Cgl

CyLP provides a low-level modeling language for accessing details of the
algorithms and low-level parts of the API.

The included modeling language is “close to the metal”, works directly
with numerical data with access to low-level data structures.
Clp

Pivot-level control of algorithm in Clp.

Access to fine-grained results of solve.

Cbc
Python classes for customization

Cgl
Python class for building cut generators wrapped around Cgl.

Developers: Mehdi Towhidi and Dominique Orban

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

CyLP: Accessing the Tableaux

lp = CyClpSimplex()
x = lp.addVariable(’x’, numVars)
lp += x_u >= x >= 0

lp += A * x <= b if cons_sense == ’<=’ else A * x >= b

lp.objective = -c * x if obj_sense == ’Max’ else c * x
lp.primal(startFinishOptions = 1)
numCons = len(b)
print ’Current solution is’, lp.primalVariableSolution[’x’]
print ’Current tableaux is’, lp.tableaux
for row in range(lp.nConstraints):

print ’Variables basic in row’, row, ’is’, lp.basicVariables[row],
print ’and has value’ lp.rhs[row]

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

1 Introduction to Python

2 Python Tools in COIN-OR
CyLP
yaposib
PuLP and Dippy
Pyomo
GiMPy
GrUMPy
CuPPy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

yaposib: Python Bindings for OSI

Provides Python bindings to any solver with an OSI interface

solver = yaposib.available_solvers()[0]

for filename in sys.argv[1:]:

problem = yaposib.Problem(solver)

print("Will now solve %s" % filename)
err = problem.readMps(filename)
if not err:

problem.solve()
if problem.status == ’optimal’:

print("Optimal value: %f" % problem.obj.value)
for var in problem.cols:

print("\t%s = %f" % (var.name, var.solution))
else:

print("No optimal solution could be found.")

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

1 Introduction to Python

2 Python Tools in COIN-OR
CyLP
yaposib
PuLP and Dippy
Pyomo
GiMPy
GrUMPy
CuPPy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

PuLP: Algebraic Modeling in Python

PuLP is a modeling language in COIN-OR that provides data types for
Python that support algebraic modeling.

PuLP only supports development of linear models.
Main classes

LpProblem

LpVariable

Variables can be declared individually or as “dictionaries” (variables
indexed on another set).

We do not need an explicit notion of a parameter or set here because
Python provides data structures we can use.

In PuLP, models are technically “concrete,” since the model is always
created with knowledge of the data.

However, it is still possible to maintain a separation between model and
data.

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

PuLP Basics: Facility Location Example

from products import REQUIREMENT, PRODUCTS
from facilities import FIXED_CHARGE, LOCATIONS, CAPACITY

prob = LpProblem("Facility_Location")

ASSIGNMENTS = [(i, j) for i in LOCATIONS for j in PRODUCTS]
assign_vars = LpVariable.dicts("x", ASSIGNMENTS, 0, 1, LpBinary)
use_vars = LpVariable.dicts("y", LOCATIONS, 0, 1, LpBinary)

prob += lpSum(use_vars[i] * FIXED_COST[i] for i in LOCATIONS)

for j in PRODUCTS:
prob += lpSum(assign_vars[(i, j)] for i in LOCATIONS) == 1

for i in LOCATIONS:
prob += lpSum(assign_vars[(i, j)] * REQUIREMENT[j]

for j in PRODUCTS) <= CAPACITY * use_vars[i]

prob.solve()

for i in LOCATIONS:
if use_vars[i].varValue > 0:

print "Location ", i, " is assigned: ",
print [j for j in PRODUCTS if assign_vars[(i, j)].varValue > 0]

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

DipPy: Modeling Decomposition (Mike O’Sullivan)

DIP Framework
DIP is a software framework and stand-alone solver for implementation
and use of a variety of decomposition-based algorithms.

Decomposition-based algorithms have traditionally been extremely
difficult to implement and compare.
DIP abstracts the common, generic elements of these methods.

Key: API is in terms of the compact formulation.

The framework takes care of reformulation and implementation.

DIP is now a fully generic decomposition-based parallel MILP solver.

Methods

Column generation
(Dantzig-Wolfe)

Cutting plane method

Lagrangian relaxation (not
complete)

Hybrid methods

⇐ Joke!

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

DipPy Basics: Facility Location Example

from products import REQUIREMENT, PRODUCTS
from facilities import FIXED_CHARGE, LOCATIONS, CAPACITY

prob = dippy.DipProblem("Facility_Location")

ASSIGNMENTS = [(i, j) for i in LOCATIONS for j in PRODUCTS]
assign_vars = LpVariable.dicts("x", ASSIGNMENTS, 0, 1, LpBinary)
use_vars = LpVariable.dicts("y", LOCATIONS, 0, 1, LpBinary)

prob += lpSum(use_vars[i] * FIXED_COST[i] for i in LOCATIONS)

for j in PRODUCTS:
prob += lpSum(assign_vars[(i, j)] for i in LOCATIONS) == 1

\color{red}for i in LOCATIONS:
\color{red} prob.relaxation[i] += lpSum(assign_vars[(i, j)] * REQUIREMENT[j]
\color{red} for j in PRODUCTS) <= CAPACITY * use_vars[i]

dippy.Solve(prob, {doPriceCut:1})

for i in LOCATIONS:
if use_vars[i].varValue > 0:

print "Location ", i, " is assigned: ",
print [j for j in PRODUCTS if assign_vars[(i, j)].varValue > 0]

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

In Class Exercise: Install DipPy!

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

1 Introduction to Python

2 Python Tools in COIN-OR
CyLP
yaposib
PuLP and Dippy
Pyomo
GiMPy
GrUMPy
CuPPy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

Pyomo

An algebraic modeling language in Python similar to PuLP.

Can import data from many sources, including AMPL data files.

More powerful, includes support for nonlinear modeling.

Allows development of both concrete models (like PuLP) and abstract
models (like AMPL).

Also include PySP for stochastic Programming.
Primary classes

ConcreteModel, AbstractModel

Set, Parameter

Var, Constraint

Developers: Bill Hart, John Siirola, Jean-Paul Watson, David Woodruff,
and others...

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

Pyomo Basics: Dedication Model

model = ConcreteModel()

Bonds, Features, BondData, Liabilities = read_data(’ded.dat’)

Periods = range(len(Liabilities))

model.buy = Var(Bonds, within=NonNegativeReals)
model.cash = Var(Periods, within=NonNegativeReals)
model.obj = Objective(expr=model.cash[0] +

sum(BondData[b, ’Price’]*model.buy[b] for b in Bonds),
sense=minimize)

def cash_balance_rule(model, t):
return (model.cash[t-1] - model.cash[t]

+ sum(BondData[b, ’Coupon’] * model.buy[b]
for b in Bonds if BondData[b, ’Maturity’] >= t)

+ sum(BondData[b, ’Principal’] * model.buy[b]
for b in Bonds if BondData[b, ’Maturity’] == t)

== Liabilities[t])
model.cash_balance = Constraint(Periods[1:], rule=cash_balance_rule)

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

In Class Exercise: Install Pyomo!

pip install pyomo

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

1 Introduction to Python

2 Python Tools in COIN-OR
CyLP
yaposib
PuLP and Dippy
Pyomo
GiMPy
GrUMPy
CuPPy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GiMPy (with Aykut Bulut)

A graph class for Python 2.∗.
Builds, displays, and saves graphs (many options)
Focus is on visualization of well-known graph algorithms.

Priority in implementation is on clarity of the algorithms.

Efficiency is not the goal (though we try to be as efficient as we can).

easy_install install coinor.grumpy

g = Graph(display=’xdot’)
g.add_edge(0,1)
g.add_edge(1,2)
g.add_edge(3,4)
g.display()
g.search(0)

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GIMPy Example

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GiMPy Example

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GiMPy: Graph Methods in Python

The following problem/algorithm pairs with similar visualization options exist.
Graph Search:

BFS

DFS

Prim’s

Component Labeling,

Dijkstra’s

Topological Sort

Shortest path: Dijkstra’s, Label Correcting

Maximum flow: Augmenting Path, Preflow Push

Minimum spanning tree: Prim’s Algorithm, Kruskal Algorithm

Minimum Cost Flow: Network Simplex, Cycle Canceling

Data structures: Union-Find (quick union, quick find), Binary Search Tree,
Heap

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GiMPy Tree

Tree class derived from Graph class.

BinaryTree class derived from Tree class.

Has binary tree specific API and attributes.

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

1 Introduction to Python

2 Python Tools in COIN-OR
CyLP
yaposib
PuLP and Dippy
Pyomo
GiMPy
GrUMPy
CuPPy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GrUMPy Overview

Visualizations for solution methods for linear models.
Branch and bound

Cutting plane method

BBTree derived from GiMPy Tree.
Reads branch-and-bound data either dynamically or statically.

Builds dynamic visualizations of solution process.

Includes a pure Python branch and bound implementation.

Polyhedron2D derived from pypolyhedron.
Can construct 2D polyhedra defined by generators or inequalities.

Displays convex hull of integer points.

Can produce animations of the cutting plane method.

GrUMPy is an expansion and continuation of the BAK project (Brady
Hunsaker and Osman Ozaltin).

easy_install coinor.grumpy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GrUMPy: BBTree Branch and Bound Implementation

T = BBTree()
#T.set_layout(’dot2tex’)
#T.set_display_mode(’file’)
T.set_display_mode(’xdot’)
CONSTRAINTS, VARIABLES, OBJ, MAT, RHS = \

T.GenerateRandomMIP(rand_seed = 19)
T.BranchAndBound(CONSTRAINTS, VARIABLES, OBJ, MAT, RHS,

branch_strategy = PSEUDOCOST_BRANCHING,
search_strategy = BEST_FIRST,
display_interval = 1)

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GrUMPy: BBTree Branch and Bound Implementation

Key

x18 ≤ 0.0

x5 ≤ 0.0

x35 ≤ 0.0

x18 ≥ 1.0

x10 ≤ 0.0

x14 ≤ 0.0

x9 ≤ 0.0x4 ≥ 1.0

x22 ≥ 1.0

x14 ≤ 0.0

x0 ≤ 0.0

x11 ≥ 1.0

x26 ≥ 1.0

x4 ≤ 0.0

x16 ≤ 0.0

x0 ≥ 1.0

x18 ≥ 1.0

x5 ≥ 1.0

x35 ≥ 1.0

x35 ≥ 1.0

x14 ≥ 1.0

x14 ≥ 1.0

x0 ≥ 1.0

x2 ≤ 0.0x15 ≤ 0.0

x34 ≥ 1.0

x22 ≤ 0.0 x11 ≤ 0.0

x20 ≤ 0.0

x14 ≤ 0.0

x0 ≤ 0.0

x2 ≥ 1.0 x35 ≥ 1.0

x0 ≤ 0.0

x25 ≤ 0.0

x15 ≥ 1.0x15 ≤ 0.0

x26 ≥ 1.0

x20 ≤ 0.0

x25 ≥ 1.0

x34 ≥ 1.0x34 ≤ 0.0

x22 ≥ 1.0

x34 ≥ 1.0 x20 ≥ 1.0x34 ≤ 0.0 x35 ≤ 0.0

x17 ≥ 1.0

x16 ≥ 1.0

x2 ≥ 1.0x0 ≤ 0.0

x22 ≤ 0.0

x35 ≥ 1.0

x26 ≤ 0.0x15 ≥ 1.0

x20 ≥ 1.0

x2 ≤ 0.0

x10 ≥ 1.0

x34 ≤ 0.0

x9 ≥ 1.0

x24 ≤ 0.0

x35 ≤ 0.0

x18 ≤ 0.0x17 ≤ 0.0

x14 ≥ 1.0

x0 ≥ 1.0

x0 ≥ 1.0

x26 ≤ 0.0

x35 ≤ 0.0

x24 ≥ 1.0

178.5

176.0

178.3

180.9

181.6

182.0

180.5 182.6181.6

179.0181.4

180.5 182.2

182.0 182.2181.3 177.6

179.5 183.5

182.7 182.9 182.5
Pruned

Candidate

180.3 181.9

181.1 180.5181.9 180.9

185.9

185.1184.6

183.6184.5 184.5183.9

183.2182.2

179.5

182.8

182.5

Candidate

Infeasible

182.3

182.0

Pruned

Solution

180.0 181.7181.2

179.9

183.0

178.7

180.5 182.5

180.0

184.1183.3183.0183.8 182.2182.7

182.9180.4 183.8181.5183.1182.6

182.4182.2

183.2181.0

182.2

179.1

181.7

181.5

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GrUMPy: Dynamic Branch and Bound Visualizations

GrUMPy provides four visualizations of the branch and bound process.
Can be used dynamically or statically with any instrumented solver.

BB tree

Histogram

Scatter plot

Incumbent path

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GrUMPy Branch and Bound Tree

Figure: BB tree generated by GrUMPy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GrUMPy Histogram

Figure: BB histogram generated by GrUMPy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GrUMPy Scatter Plot

Figure: Scatter plot generated by GrUMPy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GrUMPy Incumbent Path

Figure: Incumbent path generated by GrUMPy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GrUMPy: Polyhedron2D

f = Figure()
p = Polyhedron2D(A = [[4, 1], [1, 4], [1, -1], [-1, 0], [0, -1]],

b = [28, 27, 1, 0, 0])
#p = Polyhedron2D(points = [[0, 0], [2, 2], [3.75, 2.75], [3, 1]])
f.add_polyhedron(p, color = ’blue’, linestyle = ’solid’, label = ’p’,

show_int_points = True)
f.set_xlim(p.plot_min[0], p.plot_max[0])
f.set_ylim(p.plot_min[1], p.plot_max[1])
pI = p.make_integer_hull()
f.add_polyhedron(pI, color = ’red’, linestyle = ’dashed’, label = ’pI’)
f.add_point((5.666,5.333), 0.02, ’red’)
f.add_text(5.7, 5.4, r’$(17/3, 16/3)$’)
f.add_line([3, 2], 27, p.plot_max, p.plot_min,

color = ’green’, linestyle = ’dashed’)
f.show()

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

Polyhedron2D: Visualzing Polyhedra

Figure: Convex hull of S

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

1 Introduction to Python

2 Python Tools in COIN-OR
CyLP
yaposib
PuLP and Dippy
Pyomo
GiMPy
GrUMPy
CuPPy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

CuPPy: Cutting Planes in Python

Simple implementations and visualizations of cutting plane procedures.

Uses CyLP to access the tableaux of the underlying Clp model.

Currently has visualizations for GMI and split cuts.

f0 = getFraction(sol[basicVarInd])
f = [getFraction(lp.tableau[row, i]) for i in range(lp.nVariables]
pi = np.array([f[j]/f0 if f[j] <= f0

else (1-f[j])/(1-f0) for j in range(lp.nVariables)])
pi_slacks = np.array([x/f0 if x > 0 else -x/(1-f0)

for x in lp.tableau[row, lp.nVariables:]])
pi -= pi_slacks * lp.coefMatrix
pi0 = (1 - np.dot(pi_slacks, lp.constraintsUpper) if sense == ’<=’

else 1 + np.dot(pi_slacks, lp.constraintsUpper))

easy_install coinor.grumpy

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GrUMPy + CuPPy: Visualizing GMI and Gomory Cuts

The GMI cut from the first row is
1

10
s1 +

8
10

s2 ≥ 1, (1)

In terms of x1 and x2, we have

12x1 + 33x2 ≤ 234, (GMI-C1)

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GrUMPy + CuPPy: Visualizing GMI and Gomory Cuts

The GMI cut from the third row is
4

10
s1 +

2
10

s2 ≥ 1, (2)

In terms of x1 and x2, we have

3x1 + 2x2 ≤ 26, (GMI-C3)

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

GrUMPy + CuPPy: Visualizing Intersection Cuts

Figure: GMI Cut from row 2 as an intersection cut

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

End of Part 3!

Questions?

T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018

	Introduction to Python
	Python Tools in COIN-OR
	CyLP
	yaposib
	PuLP and Dippy
	Pyomo
	GiMPy
	GrUMPy
	CuPPy

	Conclusion

