
SYMMETRY IN INTEGER

PROGRAMMING

by

James Ostrowski

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Industrial and Systems Engineering

Lehigh University

December 15 2008

Approved and recommended for acceptance as a dissertation in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

Date

Dr. Ted Ralphs

Chairman

Accepted Date

Committee:

Dr. Ted Ralphs, Co-Advisor

Dr. Jeff Linderoth, Co-Advisor

Dr. Garth Isaak

Dr. François Margot

ii

Acknowledgments

I would like thank my advisor professor Jeff Linderoth for his guidance and assistance. His efforts have contributed a

great deal to this thesis. I would also like to thank professor Fabrizio Rossi and professor Stefano Smriglio for their

help in the writing of this thesis. I would also like to thank my committee members, professor Garth Isaak, professor

Françios Margot, and professor Ted Ralphs for their efforts and advice. Most of my stay at Lehigh University was

supported by an IGERT fellowship from the National Science Foundation and I would like to thank Dean Wu for his

efforts in obtaining this funding.

I would especially like to thank my wife, Jessie, for her support and encouragement.

iii

Contents

Acknowledgments iii

Contents iv

List of Tables vii

List of Figures ix

Abstract 1

1 Introduction 3

1.1 Motivation . 3

1.2 Integer Programming . 4

1.2.1 Symmetry in Integer Programming . 5

1.3 Mathematical Preliminaries . 7

1.3.1 Group Theory . 7

1.3.2 Order Theory . 9

1.3.3 Graph Theory . 10

1.4 Symmetry Groups of Integer Linear Programs . 11

1.5 Computing Symmetry Groups and Formulation Groups . 14

1.6 Contributions . 16

1.7 Outline . 16

2 Literature Review 18

2.1 Avoiding Symmetry by Reformulation . 18

2.2 Removing Symmetry in the Formulation . 20

2.3 Static Symmetry-Breaking Methods . 24

iv

2.3.1 Lexicographic Ordering . 28

2.3.2 Static Symmetry Breaking via Orbitopes . 32

2.3.3 Double Lex . 37

2.4 Dynamic Symmetry Breaking . 38

2.4.1 Isomorphism Pruning . 39

2.4.2 Symmetry Breaking via Dominance Detection . 40

2.4.3 SBDS . 43

2.4.4 Using Local Symmetry . 46

2.5 Summary . 46

3 Orbital Branching 48

3.1 Orbital Branching . 49

3.1.1 Method . 49

3.1.2 Description of Methods . 49

3.1.3 Illustrative Example . 51

3.2 Enhancements to Orbital Branching . 52

3.2.1 Orbital Fixing . 55

3.2.2 Reversing Orbital Branching . 59

3.3 Implementation . 59

3.3.1 Using a Subgroup of the Original Symmetry Group . 59

3.3.2 Branching Rules . 61

3.4 Computational Experiments . 62

3.5 Incomplete Symmetry Removal . 66

3.5.1 Symmetry Removal by Branching Rule . 70

3.6 Comparison with Other Methods . 71

3.6.1 Isomorphism Pruning . 71

3.6.2 Symmetry Breaking Inequalities . 72

3.7 Summary . 73

4 Flexible Isomorphism Pruning 80

4.1 Isomorphism Pruning . 81

4.1.1 The Rank and Lexicographic Ordering . 81

4.1.2 The Rank and Isomorphism Pruning . 82

4.1.3 Relaxing Depth-Dependent Rank . 84

v

4.2 Implementation . 86

4.2.1 The Smallest-Image Set function in GAP . 86

4.2.2 Smallest-Image Fixing . 92

4.2.3 Speedups to SmallestImageSet . 95

4.3 Computational Experiments . 95

5 Constraint Orbital Branching 99

5.1 Constraint Orbital Branching . 100

5.2 Strong Branching Disjunctions, Subproblem Structure, and Enumeration 101

5.3 Case Study:Steiner Triple Systems . 105

5.3.1 STS135 . 107

5.3.2 STS(243) . 108

5.4 Case Study: Covering Designs . 109

5.4.1 Computational Results . 110

5.5 Summary . 111

6 Conclusions 112

6.1 Orbital Branching . 113

6.2 Flexible Isomorphism Pruning . 113

6.3 Constraint Orbital Branching . 114

6.4 Future Work . 114

vi

List of Tables

1.1 Computational Effort Required to Solve ILP . 6

1.2 Generators for G(A,b,c). 13

1.3 Generators for Stab({0},G(A, b, c)). 13

2.1 Constraints Generating a Fundamental Domain . 23

2.2 Lexicographic Constraints . 24

2.3 Generators for SBDS Example . 44

3.1 Symmetric Integer Programs . 63

3.2 CPU Time for Orbital Branching Using Local Symmetry Group . 64

3.3 CPU Time for Orbital Branching Using Global Symmetry Group . 65

3.4 Number of Nodes in Orbital Branching Enumeration Tree with Different Symmetry Groups 66

3.5 Comparison of Different Solvers on Test Instances . 67

3.6 Number of Solutions Generated Within k of Optimal . 71

3.7 Performance of Orbital Branching Rules (Local Symmetry) on Symmetric ILPs 74

3.8 Performance of Orbital Branching Rules (Global Symmetry) on Symmetric ILPs 75

4.1 Generators of G . 87

4.2 Examples of the SmallestImageSet Function . 87

4.3 Mapping from Index Space to Rank Space . 88

4.4 Conjugating a Symmetry Group . 88

4.5 Symmetric Integer Programs . 96

4.6 Flexibility in Min Index Branching . 97

4.7 Comparison of Branching Rules . 97

4.8 Impact of Smallest-Image Fixing . 98

5.1 Computational Statistics for Solution of STS(135) . 107

vii

5.2 Number of non-isomorphic solutions to STS(81) . 109

5.3 Node Characteristics . 111

viii

List of Figures

1.1 Enumeration Tree for ILP Instance 1.2 . 7

1.2 Graph Resulting in a Symmetric ILP. 12

2.1 Fundamental Domain Example 1 . 22

2.2 Fundamental Domain Example 2 . 22

2.3 Fundamental Domain Example 3 . 23

2.4 Fundamental Domain Example 4 . 23

2.5 Ramsey Graph for n = 4 . 27

2.6 An Equivalent Ramsey Graph for n = 4 . 28

2.7 Shifted Column 1 . 35

2.8 Shifted Column 2 . 35

2.9 Shifted Column 3 . 36

2.10 Matrix that does not satisfy SCI . 36

2.11 SBDD Example . 42

3.1 Example . 51

3.2 Child subproblems . 52

3.3 Enumeration tree with orbital branching . 53

3.4 Enumeration tree with branching on variable . 54

3.5 Isomorphic Subproblems when Branching on Variables . 55

3.6 Enumeration tree with orbital branching and orbital fixing . 58

3.7 Performance Profile of Branching Rules . 64

3.8 Performance Profile of Local versus Global Symmetry Groups . 65

3.9 Performance Profile of Impact of Orbital Fixing . 66

3.10 Subset of Enumeration Tree . 67

3.11 Graph of subproblem A . 68

ix

3.12 Graph of subproblem B . 68

3.13 Graph of subproblem C . 69

3.14 Graph of subproblem D . 69

3.15 Graph of subproblem E . 70

3.16 Example 3.1.3: Structure of Subproblems and Orbits in Orbital Branching. 76

4.1 Ranked Branching Rule . 84

4.2 SmallestImageSet Example . 90

4.3 Permutation Tree for SmallestImageSet Example . 91

4.4 Branch and Bound Tree for Isomorphism Fixing Example . 93

4.5 Permutation for Isomorphism Fixing Example . 94

5.1 Example Graph . 103

5.2 Branching Tree for Solution of STS(135) . 107

5.3 Branching Tree for Solution of STS(243) . 108

5.4 Branching Tree for C(11, 6, 5) . 111

x

Abstract

This thesis focuses on solving integer programs whose feasible regions are highly symmetric. Symmetry has long

been considered a curse for solving integer programs, and auxiliary (often extended) formulations are often sought to

reduce the amount of symmetry in an integer linear programming (ILP) formulation. The approach taken in this work

is different in that it seeks to exploit the symmetry, not avoid it by reformulation.

A standard method for solving integer programs is branch-and-bound. In branch-and-bound, the set of feasible

solutions is partitioned, forming more easily-solved subproblems. The presence of symmetry means that many of

these subproblems are equivalent. Only one member of each collection of equivalent subproblems needs to be solved.

Failure to recognize that many subproblems are symmetric results in a waste of computational effort that can render

an instance unsolvable by branch-and-bound.

In an effort to reduce the deleterious effects of symmetry, we first introduce orbital branching, a branching method

effective for binary integer programs exhibiting symmetry. This method is based on computing sets of variables that

may be equivalent with respect to the symmetry remaining in the problem after branching, including symmetry that is

not present at the root node. These sets of equivalent variables, called orbits, are used to create a valid partitioning of

the feasible region that significantly reduces the effects of symmetry. We also show how to use the symmetries present

in the problem to fix variables throughout the branch-and-bound tree. Orbital branching is an effective symmetry-

breaking algorithm that can be easily incorporated into standard integer programming software.

The importance of orbital branching is that it considers the effects of symmetry during the branching process.

Fixing one variable through branching can often lead to the fixing of other variables as a result of symmetry. The addi-

tional variables that can be fixed by symmetry can have a significant affect on the LP relaxation solution and should be

taken into account in the branching process. Through an empirical study on a test suite of symmetric integer programs,

the question as to the most effective orbit on which to base the branching decision is investigated. The resulting method

was shown to be quite competitive with a similar method known as isomorphism pruning and significantly better than

a state-of-the-art commercial solver on symmetric integer programs. Another important contribution of this work is

that it offers a way to identify and exploit the symmetry that arises in the problem as a result of branching decisions.

1

Orbital branching does not, by itself, fully exploit the symmetry present in the problem. Specifically, some redun-

dant subproblems may still be explored. While orbital branching can be a very effective method for finding an optimal

solutions, because there is no guarantee that all solutions found are non-isomorphic, it is not recommended to generate

all non-isomorphic solution. Determining if the set of solutions contains only non-isomorphic solutions requires a

comparison of each pair of solutions generated. The time needed to perform these tests could outweigh most of the

benefits of using orbital branching.

The second major contribution of this work is the development of a modification to isomorphism pruning, the cur-

rent state-of-the-art symmetry-breaking technique for ILP. Isomorphism pruning provides a way to prune nodes and

set variables in a way that guarantees no two symmetric subproblems are solved. However, the current implementation

of isomorphism pruning in ILP requires a very rigid branching rule. The proposed method removes any restrictions

on the choice of branching without the need for significantly more computational effort than the standard isomor-

phism pruning algorithm. The modification to isomorphism pruning allows us to use orbital branching to incorporate

symmetry information into branching, strengthening the branching disjunctions.

Unlike orbital branching, isomorphism pruning can use information provided by the symmetry group to prune

nodes in the branch-and-bound tree. This pruning ensures that all solutions found are non-isomorphic. With a guaran-

tee of complete symmetry removal, isomorphism pruning is an ideal choice when generating all optimal solutions.

For many integer programs, the partitioning of the feasible region for branch-and-bound search is best done via

general disjunctions, rather than simple variable disjunctions. The third major contribution is to extend the concept

of orbital branching to this more general case. Using the symmetry of the problem, we can generate collections of

symmetric inequalities that can be used to partition the feasible region. A major difficulty with branching on general

disjunctions is determining how to generate them. Many highly symmetric problems contain subproblems with the

same structure as the original problem, and the subproblems can be used to define effective branching disjunctions. In

addition, if there are relatively few near-optimal (non-isomorphic) solutions to the embedded subproblems, the feasible

region can be partitioned based on these solutions. The subproblems resulting from this partition can be easily solved

in parallel. The power of the methods presented in chapter 5 are demonstrated by proving the optimality, for the first

time, of well-known instances of Steiner Triple Systems of incidence-widths of 135 and 243.

2

Chapter 1

Introduction

1.1 Motivation

Even though finding an optimal solution to a pure integer linear program is a NP-hard problem [69], many large

instances can be solved in a reasonable amount of time. Advanced techniques such as cutting planes, preprocessing,

and heuristics have contributed to this great success and turned integer linear programming into a practical success

[8]. However, significant challenges remain. Symmetry is one of those challenges. This thesis focuses on techniques

for improving the solvability of difficult symmetric instances of integer linear programs.

In general, it is possible to solve a typical pure integer linear program (ILP) instance with as many as tens of

thousands of variables. For instance, MIPLIB 2003 [58], a collection of challenging ILPs, contains problems with

as many as 87,000 variables that can be solved within 2 hours. However, problems with a large degree of symmetry

containing merely 100’s of variables remain unsolved. Most notably, an instance of the football pool problem that

contains only 743 variables remains unsolved despite enormous computational effort [46]. This thesis aims to close

that gap.

Standard formulations of many different classes of important problems exhibit symmetry. One of these is graph

coloring problems, a class of great importance both for its theoretical results and its application to many real world

problems. In fact, the popular puzzle game, Sudoku, can be thought of as a graph coloring problem. Typical ILP

formulations of graph coloring problems contain symmetry. In addition to graph coloring, symmetry appears in job

scheduling problems when there are identical machines, covering design problems that have applications in statistics,

and code construction.

3

1.2. INTEGER PROGRAMMING

1.2 Integer Programming

A (pure) integer linear program is the problem of finding values of decision variables that maximize a linear function,

subject to a set of linear constraints with the additional restriction that values of all variables should be integral. An

ILP can be written as

ZILP = max
x∈Zn

+

{cT x | Ax ≤ b} (ILP)

where Zn
+ denotes the set of n-dimensional non-negative integer vectors, A ∈ Qm×n, b ∈ Qm, and c ∈ Qn where

Q denotes the set of rational numbers. The set {x ∈ Zn
+| Ax ≤ b} is called the feasible region of the ILP, which we

denote as F . A point is feasible if it is in the feasible region. The function that is maximized, cT x, is known as the

objective function. The problem (ILP) is known to be NP-hard, and there is a wide body of research devoted to solving

ILPs. One approach uses the linear program (LP) relaxation. The relaxation

ZLP = max
x∈Rn

+

{cT x | Ax ≤ b} (LP)

is formed by relaxing the integrality constraints of (ILP). The space {x ∈ Rn
+ |Ax ≤ b} is called the feasible region

of the LP relaxation and will sometimes be denoted as F(LP). The values ZILP and ZLP are not guaranteed to exist.

The values ZILP and ZLP do not exist if F(LP) is empty (in which case neither exist), or if F(LP) is non-empty but

contains no integer points (ZLP exists, but ZILP does not). In this case we call the ILP problem infeasible. If F(LP)

contains a sequence of points {xi}∞i=1 such that limi→∞ cT xi = ∞ then we say (LP) is unbounded and ZLP does

not exist. If there is such a sequence that consists only of integral points, then (ILP) is unbounded and ZILP does

not exists. (LP) can be solved in polynomial time, while no polynomial time algorithm for a general (ILP) is known.

Since F ⊂ F(LP), solving (LP) yields an upper bound on (ILP), i.e., ZLP ≥ ZILP , as some variables in an optimal

solution to the relaxation may not have integer values. Information on how to solve (LP) can be found in Bertsimas

and Tsitsiklis [7].

Branch-and-bound is a common method used to solve (ILP). Branch-and-bound begins by first solving the LP

relaxation to obtain an optimal solution x∗LP . If x∗LP ∈ Zn
+, then x∗LP is both a feasible solution and an optimal

solution to (ILP). If x∗LP /∈ Zn, then x∗LP must be removed from the region that is being searched. In branch-and-

bound, removing a fractional solution is done by branching. For a vector φ ∈ Zn, no feasible solution x ∈ F satisfies

bφT x∗LP c < φT x < dφT x∗LP e. Thus, (ILP) can be solved by dividing (ILP) into two smaller problems, one with the

additional constraint φT x ≤ bφT x∗LP c, and the other with the additional constraint φT x ≥ dφT x∗LP e. Because x∗LP

does not satisfy either the constraint φT x ≤ bφT x∗LP c or the constraint φT x ≥ dφT x∗LP e, x∗LP is not feasible in the

LP relaxation of either of the smaller problems. Traditionally, the disjunction is obtained by choosing φ = ej for a

variable xj with bx∗jLP
c < x∗jLP

< dx∗jLP
e. This is called branching on a variable.

4

1.2. INTEGER PROGRAMMING

This thesis focuses on binary integer linear programs, ILPs where x is restricted to {0, 1}n, not Zn. Constraints

added to subproblems through branching either fix a fractional variable xi to 0 or to 1. A subproblem a = (F a
1 , F a

0)

can then be identified by the set of variables fixed to 1, F a
1 , and the set of variables fixed to 0, F a

0 .

Adding inequalities as a result of branching disjunctions create subproblems. These subproblems are known as

children. The problem instance from which the child nodes are created is called the parent. The original problem is

the root. Each of the children are solved in a similar way to the parent. If at any point in the process we find a solution

x̂ that is both an optimal solution to the LP relaxation and integral, the value cT x̂ can be used as a lower bound for

(ILP). If there is any subproblem whose LP relaxation is less than the lower bound, that subproblem cannot contain an

optimal solution. As a result, the subproblem can be discarded. Removing a subproblem whose LP bound is less than

the lower bound is referred to as pruning by bound. Subproblems can also be pruned when the constraints added make

the subproblem infeasible. Branch-and-bound can be expressed by a tree where each node represents a subproblem

created by branching. Two nodes are adjacent in this tree if and only if they represent a parent-child pair. The tree

associated with the search is the branch-and-bound tree.

At any node in the branch-and-bound tree, there may be multiple variables that have fractional values in the LP

solution. Any of the fractional variables may be chosen for branching, however, variables should be chosen with

care. It is well known that the choice of variable on which to branch can significantly affect the solution time [48].

The basis for solving (ILP) is to increase the lower bound (by finding better feasible solutions) while decreasing the

upper bound (by adding constraints by branching) until the bounds meet. These two competing goals can lead to

conflicting branching strategies. However, branching rules are generally aimed at reducing the upper bound [47] [1].

It is generally assumed throughout this thesis that the lower bounds on (ILP) are found using heuristics and not the

responsibility of the branch-and-bound process. By not attempting to find solutions, branch-and-bound can focus

its efforts on decreasing the upper bound as quickly as possible. Decreasing the bound is a result of the change in

the LP relaxation solution that comes from branching. Variables that decrease the LP relaxation significantly when

branched upon are ideal candidates for branching. Therefore, determining the variables that effect the LP solution is

very important.

1.2.1 Symmetry in Integer Programming

The focus in this thesis is on cases where an (ILP) is highly symmetric, a concept that will be formalized later in this

section. Some intuition can be illustrated with the following example from Bertsimas and Tsitsiklis [7]:

min
x∈{0,1}n+1

{xn+1 | 2x1 + 2x2 + . . . + 2xn + xn+1 = 2k + 1} where k ∈ Z+, k ≤ n. (1.1)

The integer program in (1.1) can be easily solved without the use of a computer for any choice of n and k. The sum

5

1.2. INTEGER PROGRAMMING

2x1 + 2x2 + . . . + 2xn + xn+1 must always be odd, forcing xn+1, and hence the objective function, to take the value

1. Despite the problem’s obvious solution, traditional branch-and-bound methods like those described in Section 1.2

cannot solve even modest-sized instances. Table 1.1 gives computational results obtained from solving small problem

instances of (1.1) using the commercial solver CPLEX with its advanced features turned off.

n k Time (seconds) Nodes
20 5 3.24 54,262
20 6 6.97 116,278
20 7 12.24 203,400
20 8 17.83 293,928
20 9 21.68 352,714
20 10 21.74 352,714
25 5 13.86 23,228
25 6 38.96 657,798
25 7 92.71 1,562,273
30 5 42.7 736,284
30 6 160.15 2,629,573

Table 1.1: Computational Effort Required to Solve ILP

For any k ∈ Z, 0 ≤ k < n, there will be a fractional solution feasible to the LP relaxation of (1.1) with xn+1 = 0.

Thus, nodes in the branch-and-bound-tree will not be pruned until either k variables are fixed to 1 or n − k variables

are fixed to zero. As a result, the enumeration tree will contain at least min(2k, 2n−k) nodes. Inspection of the

enumeration tree, however, reveals that most of the work performed by traditional branch and bound is unnecessary.

Many nodes in the tree represent identical subproblems that only need to be solved once.

To illustrate this phenomenon, consider the specific instance

min
x∈{0,1}5

{x5 | 2x1 + 2x2 + 2x3 + 2x4 + x5 = 3}. (1.2)

The tree in Figure 1.1 is generated using traditional branch and bound methods, by branching on the fractional variable

with the smallest index. This branching method is, in general, a poor branching strategy. However, in this instance, the

branching strategy is guaranteed to produce the smallest tree. Only nodes for which the LP relaxation is feasible are

included in the figure. The LP relaxations of all non-leaf nodes in the tree have optimal values of 0, while the optimal

solutions to each of the leaf nodes is also an optimal solution to the ILP (and hence has an objective value of 1).

Consider node D, the subproblem formed by fixing x1 to zero and x2 to one. We can rewrite the subproblem as

min
x∈{0,1}5

{x5 | 2x3 + 2x4 + x5 = 1}. (D)

Now consider node E, the subproblem formed by fixing x1 to zero and x2 to one. This subproblem can also be

6

1.3. MATHEMATICAL PRELIMINARIES

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

x1 = 1

x2 = 1

x4 = 1

x3 = 1

x1 = 0
A

B C

D E F

G H I J

L M N O P

x3 = 0

x2 = 0
x2 = 0

x3 = 0

x4 = 0

x3 = 0

x4 = 0 x4 = 0

Figure 1.1: Enumeration Tree for ILP Instance 1.2

written as

min
x∈{0,1}5

{x5 | 2x3 + 2x4 + x5 = 1}. (E)

The subproblem at node D is identical to the subproblem at node E. It is easy to see why traditional methods have

difficulty with this type of problem as both nodes D and E are solved. It is not necessary to consider both nodes D

and E, but traditional methods provide no way of recognizing that two nodes are identical. Further inspection shows

that there are many other nodes that represent identical subproblems (for instance, nodes G, H , and I represent the

same subproblem, as well as nodes L, M , N , and O).

Not only are identical subproblems solved multiple times; the subproblems themselves can be difficult to solve.

Note that an optimal solution is feasible in each node in Figure 1.1. Nodes whose feasible region contains an optimal

solution are more difficult to prune than nodes that do not because nodes with optimal solutions need more of the

integrality gap to be closed.

A good branch-and-bound algorithm should avoid solving identical subproblems. Ideally, sets of identical sub-

problems should be recognized during the branching process and all but one member of each set should be pruned.

For example, node E can be pruned because it is identical to node D; nodes I and O can be pruned because they

are identical to nodes G and L (respectively). Pruning to avoid this repetition will significantly reduce the number of

nodes in the enumeration tree, making even very large symmetric problems solvable by integer programming methods.

1.3 Mathematical Preliminaries

1.3.1 Group Theory

The many identical subproblems in the example arise because of the symmetry in (1.2). To formalize the definition of

symmetry, we need to briefly introduce some basic concepts from group theory. A thorough review of group theory

7

1.3. MATHEMATICAL PRELIMINARIES

can be found in L.C. and C.T. [45], J.J. [37], and P.J. [71].

A nonempty, finite, set of elements G together with a binary operation denoted by “ ◦” is called a group if the

following properties hold:

i a, b ∈ G implies a ◦ b ∈ G. (The set is closed under ◦).

ii a, b, c ∈ G implies a ◦ (b ◦ c) = (a ◦ b) ◦ c. (The operator ◦ is associative).

iii There exists e ∈ G with a ◦ e = e ◦ a = a for all a ∈ G. (The group contains an identity element).

iv For every a ∈ G, there exists a−1 ∈ G with a◦a−1 = e. (For every element in the group the group also contains

that element’s inverse).

Let In be the ground set {1, . . . , n}. Let Sn be the collection of permutations of the ground set, i.e., the collection

of all functions π such that π : In → In is a one-to-one and onto (bijective) mapping. The only binary operation

acting on permutations throughout this thesis is the composition operation, i.e., πi ◦ πj = πi(πj). Thus, for notational

convenience, a group containing permutations will be referred to only by the set of elements G. Sn is the symmetric

group of In. Any subset of Sn that satisfies the properties of a group is called a permutation group. To provide em-

phasis and to distinguish Sn from a general permutation group, Sn will often be referred to as the complete symmetric

group.

Given a vector λ ∈ Rn and a permutation group G, π ∈ G acts on λ by permuting its coordinates: π(λ) =

(λπ1 , λπ2 , . . . λπn
). A permutation group can also act on a collection of vectors. For X ⊂ Rn, XG is given by

{π(x) | x ∈ X and π ∈ G}.

Throughout this thesis, cyclic notation is used to describe permutations. For any i ∈ {1, . . . , n} and permutation

π, π’s action on i can be represented by the sequence (i, π(i), π2(i), . . .), where π2(i) = π(π(i)). Because G is

a finite group, no element of this sequence is distinct. Let p be the first power of π such that πp(i) = i. The cycle

(i, π(i), π2(i), . . . , πp−1(i)) can be used to describe how the permutation acts on a subset of the elements. The

permutation maps i to π(i). It also sends the element π(i) to π2(i). The set In can be partitioned using subsets formed

by cycles of π. The collection of cycles formed by the partition of In defines the permutation. For example, suppose

π is a permutation with π(1) = 1, π(2) = 3, π(3) = 2, π(4) = 5, π(5) = 4. The permutation π can be written as

(1)(2, 3)(4, 5). Since π does not permute element 1, the cycle (1) need not be included. The permutation π can be

written more succinctly as (2, 3)(4, 5). For any element not found in a cycle, it can be assumed that the element is

not changed by the permutation.

Let G be an arbitrary permutation group acting on {1, 2, . . . , n}. The group G can be extended to act on sets of

elements. For S ⊆ {1, 2, . . . , n}, the set π(S) = {π(i) | i ∈ S}. For a point z ∈ Rn, the orbit of z under the action

8

1.3. MATHEMATICAL PRELIMINARIES

of the group G is the set of all elements of Rn to which z can be mapped by permutations in G, i.e.,

orb(G, z) def= {z′ ∈ Rn | ∃π ∈ G such that z′ = π(z)} = {π(z) | π ∈ G} = zG .

By definition, if j ∈ orb({k},G), then k ∈ orb({j},G), i.e., the elements j and k share the same orbit. Therefore,

the union of the orbits

O(G) def=
n⋃

j=1

orb({j},G)

forms a partition of In = {1, 2, . . . , n}, that is referred to as the orbital partition of G, or simply the orbits of G. Any

two elements of In that share an orbit under the group G are equivalent or symmetric with respect to G.

The stabilizer of a set S ⊆ In in G is the set of permutations in G that send S to itself:

stab(S,G) = {π ∈ G | π(S) = S}.

The stabilizer of S is a subgroup of G. The set of permutations that stabilize each set in the collection {S1, S2, . . . , Sk}

is written as

stab(Si, S2, . . . , Sk,G) =
k⋂

j=1

stab({Sj},G).

For any collection of permutations, A, 〈A〉 is defined to be the smallest group containing all permutations in A.

The group 〈A〉 is the group generated by A, and similarly the set A is a generating set, or generator, of 〈A〉. Thus,

any group can be compactly represented by a generating set.

Example LetA ⊂ S4 consist of the permutations π1 = (2, 3) and π2 = (1, 4). 〈A〉 = {(), (2, 3), (1, 4), (1, 4)(2, 3)}

is the smallest group containingA. The permutations π1 and π2 are generators of 〈A〉. Because π1(1) = 1 and π1(4) =

4, π1 ∈ Stab({1}, 〈A〉), π1 ∈ Stab({4}, 〈A〉), and π1 ∈ Stab({1}, {4}, 〈A〉). Also, π1 ∈ Stab({2, 3}, 〈A〉) since

elements 2 and 3 are not mapped outside the set {2, 3}. Since π1 maps element 2 to 3, we have Orb({2}, 〈A〉) =

{2, 3}. The orbital partition,O(〈A〉), is ({1, 4}, {2, 3}. We can also consider orbits of sets of elements. For example,

orb({1, 2}, 〈A〉) = ({1, 2}, {1, 3}, {2, 4}, {3, 4}).

For any subgroupH of G and element π ∈ G, the setH ◦ π = {σ ◦ π | σ ∈ H} is a right coset of G.

1.3.2 Order Theory

To effectively deal with symmetry, nodes in the branch-and-bound tree that represent equivalent subproblems must

be recognized and all but one node pruned. To ensure that at least one subproblem is not pruned, pruning techniques

require inducing an order on sets of equivalent subproblems or sets of equivalent solutions. Nodes are pruned or

9

1.3. MATHEMATICAL PRELIMINARIES

kept based on this order. This section provides a brief introduction to concepts in order theory. More information on

ordering can be found in Davey and Priestley [11].

A quasi order . is an order on a set S that is reflexive and transitive, i.e., for all a, b in S, we have that:

Reflexive: a . a

Transitive: a . b and b . c implies a . c

The set S along with the quasi order . is a quasi ordered set.

A total order is a relation, �, on a set S that is antisymmetric, transitive, and total, i.e. for every a, b in S:

Antisymmetric: a � b and b � a implies a = b

Transitive: a � b and b � c implies a � c

Totality: a � b or b � a

Note that totality implies reflexivity. The set S along with a total order � is a totally ordered set. For every total order

�, there is a strict order ≺ with a ≺ b implies a � b and a 6= b.

It is important to note that because . is a quasi order, it is not antisymmetric. The relations a . b and b . a does

not imply that a = b.

1.3.3 Graph Theory

Many symmetric ILPs have their origin in graph theory. A graph G = (V,E) consists of a finite set of vertices, V ,

and a set E of unordered pairs of vertices, called edges. Each edge e = {i, j} ∈ E is incident to vertices i and j. Two

vertices are called adjacent if there is an edge incident to both vertices.

For two disjoint collections of vertices S and M , S covers M if each vertex in M is adjacent to at least one vertex

in S. A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if and only if V ′ ⊆ V and E′ ⊆ E. A clique is a graph

G = (V,E) such that for every i, j ∈ V , the edge (i, j) is in E.

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there exists a bijection φ : V → V ′ where (a, b) ∈ E

if and only if (φ(a), φ(b)) ∈ E′. The function φ is then an isomorphism of G and G′. An isomorphism sending G to

itself is called an automorphism. The set of automorphisms of a graph G is referred to as Aut(G). Aut(G) is a group

which will sometimes be referred to as the permutation group of the graph G.

A graph G = (V,E) is colored if the graph is associated with functions cv : V → R and cE : E → R. For any

v ∈ V , vertex v is assigned color cv(v). Similarly, for any e ∈ E, edge e is colored vE(e). The automorphism group

10

1.4. SYMMETRY GROUPS OF INTEGER LINEAR PROGRAMS

of G colored by cV and cE is a subset of Aut(G(V,E)) containing permutations that map vertices to vertices of like

color and edges to edges of like color.

Aut(G(V,E), cv, cE) = {π ∈ Π|V | | π ∈ Aut(G(V,E)), cV (π(v)) = cV (v) and cE(π(e)) = cE(e) ∀v ∈ V, e ∈ E}.

A bipartite graph G(V, V ′, E) is a graph with vertices V and V ′ where no edge in E is adjacent to either two

vertices in V or two vertices in V ′. A dominating set for a graph G = (V,E) is a subset D of V such that every vertex

in V is adjacent to at least one vertex in D. More information on graph theory can be found in West [82].

1.4 Symmetry Groups of Integer Linear Programs

The symmetry group G(ILP) of an integer program is the collection of permutations in Sn that map every feasible

solution of (ILP) of value t to another feasible solution of (ILP) also of value t [57]. Formally,

G(ILP) def= {π ⊆ Sn | ∀x ∈ F(ILP), π(x) ∈ F and cT π(x) = cT x}.

Computing the symmetry group of a general ILP is NP-hard, and typically more difficult than solving the ILP

itself. As a result, practical methods aimed at exploiting symmetries are forced to use a subset of the symmetry group

that is found by examining the problem formulation.

Given a permutation π ∈ Sn and a permutation σ ∈ Sm, let A(π, σ) be the matrix obtained by permuting the

columns of A by π and the rows of A by σ, i.e., A(π, σ) = PσAPπ , where Pσ and Pπ are appropriate permutation

matrices. The formulation group G(A, b, c) of (ILP) is the set of permutations

G(A, b, c) def= {π ∈ Πn |π(c) = c, ∃ σ ∈ Sm with σ(b) = b such that A(π, σ) = A}.

For any π ∈ G(A, b, c), if x̂ is feasible for (ILP) (or the LP relaxations of (ILP)), then π(x̂) is also feasible. Moreover,

the solutions x̂ and π(x̂) have the same objective value. Thus, G(A, b, c) ⊆ G(ILP). As an example, we consider the

following ILP:

11

1.4. SYMMETRY GROUPS OF INTEGER LINEAR PROGRAMS

Example

min
8∑

i=0

xi

subject to x0 + x1 + x2 + x3 + x6 ≥ 1

x0 + x1 + x2 + x4 + x7 ≥ 1

x0 + x1 + x2 + x5 + x8 ≥ 1

x0 + x3 + x4 + x5 + x6 ≥ 1

x1 + x3 + x4 + x5 + x7 ≥ 1

x2 + x3 + x4 + x5 + x8 ≥ 1

x0 + x3 + x6 + x7 + x8 ≥ 1

x1 + x4 + x6 + x7 + x8 ≥ 1

x2 + x5 + x6 + x7 + x8 ≥ 1

x ∈ {0, 1}9

This problem amounts to finding the smallest dominating set of the graph G in Figure 1.2.

1 2

0

3

4 5

6

7 8

Figure 1.2: Graph Resulting in a Symmetric ILP.

The formulation group G(A, b, c) in this example contains 72 permutations. However, it can be generated using

just 4 permutations. The generators are listed in table 1.2 along with the corresponding σ such that A(π, σ) = A.

12

1.4. SYMMETRY GROUPS OF INTEGER LINEAR PROGRAMS

π σ
(3, 6)(4, 7)(5, 8) (3, 6)(4, 7)(5, 8)
(1, 2)(4, 5)(7, 8) (1, 2)(4, 5)(7, 8)
(1, 3)(2, 6)(5, 7) (1, 3)(2, 6)(5, 7)
(0, 1)(3, 4)(6, 7) (0, 1)(3, 4)(6, 7)

Table 1.2: Generators for G(A,b,c).

Because A is a symmetric matrix, each permutation π and its corresponding σ are identical. For general ILP

problems, it is unlikely that any such pair of permutations will be identical. Indeed, if A is not a square matrix, π and

σ will not act on the same set of elements. For this example, it can be shown that G(A, b, c) = Aut(G).

The orbital partitionO(G(A, b, c)) consists of just one orbit, {0, 1, . . . , 8}. The stabilizer of 0 (i.e. stab({0},G(A, b, c)))

contains only 8 permutations, shown in Table 1.3.

π
(3, 6)(4, 7)(5, 8)
(1, 2)(4, 5)(7, 8)
(1, 3)(2, 6)(5, 7)

Table 1.3: Generators for Stab({0},G(A, b, c)).

The orbits of the stabilizer stab({0},G(A, b, c)) are {0}, {1, 2, 3, 6}, and {4, 5, 7, 8}.

An optimal dominating set for the graph is the set {0, 3, 6}. We can find other equivalent solutions by permuting

this set with any of the permutations in G(A, b, c). For example, consider permuting the set {0, 3, 6} with the last

generator, (0, 1)(3, 4)(6, 7) . In this case, {0, 3, 6} is mapped to the set {1, 4, 7}. The cover consisting of {1, 4, 7}

is then an equivalent optimal solution.

The set of all optimal dominating sets equivalent to {0, 3, 6}, written as {0, 3, 6}G(A,b,c), is the collection of

sets:

{0, 3, 6}G(A,b,c) = {{0, 3, 6}, {1, 4, 7}, {2, 5, 8}}.

Not all optimal dominating sets are equivalent to the set {0, 3, 6}. For example, there is no permutation that maps the

set {0, 3, 6} to {0, 4, 8}. It is easy to see that {0, 3, 6} and {0, 4, 8} are not equivalent by noting the set of vertices

{0, 3, 6} forms a clique in Figure 1.2, where the set of vertices {0, 4, 8} forms an independent set. Another point of

interest can be seen by examining all dominating sets equivalent to {0, 4, 8}.

{0, 4, 8}G(A,b,c) = {{0, 4, 6}, {0, 5, 7}, {1, 3, 8}, {1, 5, 6}, {2, 3, 7}, {2, 5, 6}}.

The number of solutions equivalent to a given solution is solution-dependent, making it difficult to predict how many

equivalent optimal solutions exist.

13

1.5. COMPUTING SYMMETRY GROUPS AND FORMULATION GROUPS

The equivalence of solutions induced by symmetry is a major factor that might confound the branch-and-bound

process. For example, suppose x∗ is an (integral) optimal solution to a binary ILP. At the root node, the decision

is made to branch on variable xj , creating one subproblem by fixing xj = 0, and another by fixing xj = 1. If

∃π ∈ G(ILP) such that [π(x∗)]j = 1− x∗j , then x∗ is a feasible solution for one child node and π(x∗) is feasible for

the other child node. In general, subproblems where feasible regions contain optimal solutions will be more difficult

to solve because the proportion of the integrality gap that must be closed is greater than a subproblem that does not

contain any optimal solution. If the cardinality of G(ILP) is large, then there may be many such subproblems, leading

to long solution times.

Note that the formulation group is very dependent on the problem formulation. For example, consider adding the

constraint
∑8

i=0 2ixi ≥ 0 to Problem 1.2. This constraint does not remove any feasible points from the LP relaxation

and does not remove symmetry from the ILP, but it does remove all of the symmetry from the formulation.

1.5 Computing Symmetry Groups and Formulation Groups

Computation of the formulation group G(A, b, c) is done by computing the automorphism group of a related colored

graph. An ILP is transformed into a colored complete bipartite graph G(A, b, c) = (N,M,E). For vertex ni in the

set N = {n1, n2, . . . , nn}, cV (ni) = ci. For vertex mj in set M = {m1,m2, . . . ,mm}, cV (mj) = bj . For all

(ni,mj) ∈ E, cE((ni,mj)) = aij (edges can be omitted from G(A, b, c) if aij = 0).

Theorem 1.1 The permutation {π, σ} ∈ Sn+m with π ∈ Sn is in stab(N,Aut(G(A, b, c))) if and only if π ∈

G(A, b, c).

Proof Let {π, σ} be in stab(N,Aut(G(A, b, c))). By definition, cv(π(ni)) = cv(ni) for any ni ∈ N .

By the constriction of G(A, b, c) vertices ni and nj in N have the same color only if variables xi and xj have the

same objective value in the ILP. Hence, cπ(i) = ci for all i ∈ N , implying π(c) = c. Similarly, σ(b) = b.

For every edge (i, j) ∈ G(A, b, c), cE((π, σ)(i, j)) = cE((i, j)). Since π ∈ Sn we can rewrite the edge

(π, σ)(i, j) as (π(i), σ(j)), so cE((π(i), σ(j))) = cE((i, j)). Edges (π(i), σ(j)) and (i, j) in G(A, b, c) share the

same color if and only if aπ(i),σ(j) = ai,j . Thus, A = A(π, σ), and π ∈ G.

Let π ∈ G(A, b, c). By the definition of G(A, b, c), there is a corresponding σ ∈ Sm such that A = A(π, σ)

and σ(b) = b. Because π(c) = c and σ(b) = b, the permutation (π, σ) maps vertices of G(a, b, c) to vertices

of the same color. By definition of π, σ, for any i, j, aπ(i),σ(j) = ai,j . The permutation (π, σ) maps the edge

(ni,mj) ∈ G(a, b, c), colored ai,j to ((π, σ)(ni), (π, σ)(mj)) = ((π)(ni), (σ)(mj)), colored aπ(i),σ(j) = ai,j . Thus

(π, σ) is in stab(N,Aut(G(A, b, c)).

14

1.5. COMPUTING SYMMETRY GROUPS AND FORMULATION GROUPS

There are several software packages that can compute the automorphism groups required to perform orbital branch-

ing. The program nauty by McKay [59] has been shown to be quite effective [20], and is used throughout the thesis

to compute symmetry groups.

The complexity of computing the automorphism group of a graph is not known to be polynomial time. However,

nauty computes the formulation groups of the problems studied in this thesis very quickly, generally faster than

solving the LP at a given node. Times required to compute formulation groups are given in Chapter 3. One explanation

for this phenomenon is that the running time of nauty’s backtracking algorithm is correlated to the size of the

symmetry group being computed. For example, computing the automorphism group of the clique on 2000 nodes takes

85 seconds, while graphs of comparable size with little or no symmetry require fractions of a second.

An excellent resource for computational algebra algorithms is Holt [36]. We present two important algorithms

from Holt [36] that are used throughout this thesis. Given a symmetry group G ⊂ Sn with < π1, π2, . . . , πk >= G

and an n-vector z, the orbit of z with respect to G can be found using Algorithm 1.1. The complexity of finding

orb(z,G) is O(k| orb(z,G)|).

Algorithm 1.1 Computing Orbits
Input: Group generators < π1, π2, . . . , πk > of G and n-vector z.
Output: orb(z,G) .

Step 1. Initialize O = {z}, S = {z}.
Step 2. While S is non-empty:
Step 2a. For s ∈ S:
Step 2b. For πi ∈ (π1, π2, . . . , πk):
Step 2c. If πi(s) /∈ O, add πi(s) to O and S.
Step 2d. Remove s from S.
Step 3. Return O.

Sometimes it is beneficial to compute not only orb(z,G), but also to find permutations that map z to each y ∈

orb(z,G). Algorithm 1.1 can be updated for such a purpose. Algorithm 1.2, the orbit-stabilizer algorithm,

returns the set {(i, πi) | i ∈ orb(z,G), π(z) = i}.

Algorithm 1.2 Orbit Stabilizer
Input: Group generators < π1, π2, . . . , πk > of G and n-vector z.
Output: 4 = {(i, πi) | i ∈ orb(z,G), π(z) = i}.

Step 1. Initialize4 = {(z, e)}.
Step 2. For (x, πx) ∈ 4
Step 2a. πi ∈ (π1, π2, . . . , πk):
Step 2b. if there is not a π with (πi(x), π) ∈ 4:
Step 2c. Add (πi(x), πi ◦ πx) to4.
Step 3. Return4.

15

1.6. CONTRIBUTIONS

Computing the symmetry group stab(z,G) can be done using Algorithm 1.2 along with the following theorem

from Holt [36].

Theorem 1.2 Let σx ∈ G be any permutation mapping z to x. stab(z,G) =< {σ−1
π(x)◦πi◦σx | ∀ i ∈ {1, . . . , k}, ∀x ∈

orb(z,G)} >

1.6 Contributions

There are four fundamental contributions of this thesis:

• We develop an effective algorithm, orbital branching, for solving symmetric ILPs. Orbital branching is easily

implemented in standard optimization software and can detect and exploit symmetry that is added to the problem

as a result of branching decisions.

• We improve the current state-of-the-art symmetry breaking procedure, isomorphism pruning, by allowing for

flexible branching. This allows isomorphism pruning to use orbital branching to make branching decisions.

• We suggest and investigate different branching strategies for both orbital branching and isomorphism pruning.

• We develop a way to exploit symmetry when branching on general disjunctions and discuss ways to exploit the

structure of symmetric problems.

Each of these contributions has been implemented in software.

1.7 Outline

The current literature dealing with symmetric ILPs can be divided into two separate approaches. In the first approach,

symmetry is avoided by reformulating the problem. This can be an effective strategy for dealing with symmetry, but

these methods can only be used for problems with specific structures. The second, and more general method, uses the

symmetry to prune nodes in the branch and bound tree. In Chapter 2, we will give a comprehensive literature review

describing current methods for dealing with symmetry.

In Chapter 3 we introduce orbital branching, an effective branching method for integer programs containing a

great deal of symmetry. This method is based on using the symmetry information to partition the variables into orbits.

The orbits are then used to create a valid partitioning of the feasible region that significantly reduces the effects of

symmetry. We also show how to exploit the symmetries present in the problem to fix variables throughout the branch-

and-bound tree. Orbital branching can be easily incorporated into standard ILP software using only available software

for computing orbits of groups arising at subproblems. Through an empirical study on a test suite of symmetric

16

1.7. OUTLINE

integer programs, the question as to the most effective orbit on which to base the branching dichotomy is investigated.

The resulting method is shown to be quite competitive with a similar method known as isomorphism pruning and

significantly better than a state-of-the-art commercial solver on symmetric integer programs.

Unfortunately, orbital branching does not remove all of the negative effects brought about by symmetry. In Chapter

4, the methods of orbital branching and isomorphism pruning are combined to achieve impressive results. Isomorphism

pruning fully exploits symmetry found in a problem formulation, but requires a very strict branching rule. In chapter 4

we show that with a slight revision of the proof of validity of isomorphism pruning, we can remove the branching re-

strictions of isomorphism pruning. Removing the branching restrictions requires a thorough investigation of branching

rules. It is important to take fixings done as a result of symmetry into account when choosing variables for branching.

We show that using orbital branching to make branching decisions, combined with the symmetry-removal power of

isomorphism pruning, can lead to significant improvements in solving symmetric ILPs.

In Chapter 5, the orbital branching methodology is extended so that the branching disjunction can be based on

an arbitrary constraint. Many important families of integer programs are structured such that small instances from

the family are embedded in larger instances. This structural information can be exploited to define a group of strong

constraints on which to base the orbital branching disjunction. The symmetric nature of the problems is further

exploited by enumerating non-isomorphic solutions to instances of the small family and using these solutions to create

a collection of typically easy-to-solve integer programs. The solution of each integer program in the collection is

equivalent to the solution of the original large instance. The effectiveness of this methodology is demonstrated by

computing the optimal incidence width of Steiner Triple Systems that were heretofore unsolvable.

17

Chapter 2

Literature Review

Techniques for dealing with symmetry can be classified into two categories. For certain problem classes, symmetry

can be avoided by reformulation. Literature discussing reformulation techniques will be discussed in Section 2.1.

A second approach is to remove the symmetry from the problem formulation either by fixing variables or adding

additional constraints. This can be done in two ways. Static symmetry-breaking methods detect and exploit symmetry

before the solution procedure begins as a preprocessing step while dynamic methods exploit symmetry during the

branch-and-bound process. Static methods will be discussed in Section 2.3 and dynamic methods will be discussed in

Section 2.4. While many of these methods have been developed by the constraint programming community, they can

easily be described in an ILP context.

2.1 Avoiding Symmetry by Reformulation

A popular method for avoiding the negative effects of symmetry in integer programming is reformulating the problem.

Reformulation techniques attempt to rewrite the problem in such a way that symmetry is removed. Often, reformula-

tion techniques lift the ILP to a higher dimension where the symmetry does not appear. This section presents a popular

reformulation technique that is only applicable to problems with a specific structure. Specifically, this reformulation

method can be used if the variables of the ILP can be expressed as an n ×m matrix where G(ILP) contains all 2n

permutations of the matrix columns. Cutting stock problems (with rolls of identical widths), graph coloring problems,

and generalized assignment problems (with identical machines) are examples of problems with this structure. Since

problem eligible for reformulation have a similar form, the cutting stock problem will be used as an example.

In the cutting stock problem, M items of varying width are cut from rolls of metal. The goal is to minimize the

number of rolls of metal needed to manufacture a predetermined amount of each of the M items. The Kantorovich

model [41] for cutting stock problems is the following

18

2.1. AVOIDING SYMMETRY BY REFORMULATION

min
K∑

k=1

xk
0

s.t.
K∑

k=1

xk
i ≥ bi ∀i ∈ {1, . . . , M}

m∑
i=1

wix
k
i ≤Wxk

0 ∀k ∈ {1, . . . , K}

xk
0 ∈ {0, 1}, xk

i ≥ 0, xk
i ∈ Z

(2.1)

An upper bound on the number of rolls, K, is needed and can be found using heuristics. The variable xk
0 is 1 if roll k

is used and xk
i represents the number of items of type i that are cut on roll k. The width of item i is wi and the demand

is bi. Symmetry arises in this problem when all rolls have the same width W . For any solution to (2.1), multiple

equivalent solutions exist. Specifically, items that are cut on roll 1 can instead be cut on roll 2 (meanwhile, cutting all

items that our solution tells us to cut on roll 2 and instead cut them on roll 1). Specifically, for any rolls k and l, the

permutation πk,l defined by πk,l = (xk
0 , xl

0)(x
k
1 , xl

1)(x
k
2 , xl

2) . . . (xk
m, xl

m) is in the symmetry group of the problem.

If the K × (K + 1) matrix X were defined by xi,j = xj
i for all i ∈ {1, . . . , M} and j ∈ {0, . . . , K}, then the

permutation πk,l corresponds to permuting the kth column with the lth column. Any permutation of the columns of X

correspond to a permutation in the symmetry group of the stock cutting problem.

Gilmore and Gomory [30] proposed a reformulation of the Kantorovich model in terms of pattern variables. Each

pattern Ap = (ap
1, . . . , ap

m)T is an n-vector where ap
i represents the number of items of type i that are cut in pattern

p. Let P be the set of feasible patterns. The reformulation of Gilmore and Gomory is:

min
∑
p∈P

λp

s.t.
∑
p∈P

ap
i λ

p ≥ bi, for i = 1 . . .m

λp ≥ 0, λp ∈ Rn

(2.2)

The reformulation (2.2) does not contain the symmetry that is present in the original formulation (2.1). The solution

λ no longer identifies the specific roll from which pattern i is cut. As such, λ does not give the information required to

implement the cutting. It is up to the user to assign each pattern to a roll. However, the user is better able to recognize

the symmetry that arises from identical rolls and thus, is able to avoid its negative effects.

Similar formulations can be found in the context of graph coloring. Mehrotra and Trick [60] formulate the graph

coloring problem by assigning a variable to every maximal independent set in the graph. Then, they then find the

minimum number of independent sets that cover the set of vertices. Reformulation has been applied to urban transit

19

2.2. REMOVING SYMMETRY IN THE FORMULATION

scheduling [12], airline crew scheduling [3] [81] [79], vehicle routing [15], graph coloring [60], as well as binary

cutting stock problems [80].

Reformulation may be an effective way of avoiding symmetry. However, this method is only applicable to problems

that contain a very specific type of symmetry, i.e., only problems where the variables can be expressed in a matrix

form and all permutations of the columns of the variables are contained in the symmetry group. Even in cases where

decomposition can be used, implementing branching strategies for the column generation problem may be difficult.

2.2 Removing Symmetry in the Formulation

Removing symmetry by reformulation can be a very effective approach, however, it can be difficult to determine how

to reformulate a specific problem. Another class of symmetry-breaking algorithms uses the symmetry group of the

problem to reduce the feasible region by removing sets of equivalent solutions. This strategy of reducing the feasible

region allows for more general techniques than reformulation.

Recall Example 1.4, a dominating set problem on 9 nodes.

min
8∑

i=0

xi

subject to x0 + x1 + x2 + x3 + x6 ≥ 1

x0 + x1 + x2 + x4 + x7 ≥ 1

x0 + x1 + x2 + x5 + x8 ≥ 1

x0 + x3 + x4 + x5 + x6 ≥ 1

x1 + x3 + x4 + x5 + x7 ≥ 1

x2 + x3 + x4 + x5 + x8 ≥ 1

x0 + x3 + x6 + x7 + x8 ≥ 1

x1 + x4 + x6 + x7 + x8 ≥ 1

x2 + x5 + x6 + x7 + x8 ≥ 1

x ∈ {0, 1}9.

Let G, be the symmetric group for Problem (2.3). At the root node, all variables in the problem are symmetric.

Because it is clear that at least one variable must be equal to 1, an arbitrary variable can be chosen and fixed to 1.

20

2.2. REMOVING SYMMETRY IN THE FORMULATION

For example, x0 can be fixed to 1. The reason for fixing x0 to 1 is very intuitive. Any optimal solution to (2.3) must

contain at least one variable with value 1. Suppose that in a given optimal solution, x̂, there is a j with x̂j = 1 for some

j ∈ {0, . . . , 8}. Since all variables are equivalent at the root node, there is a permutation π ∈ G that maps element j

to element 0. Then, π(x̂) is feasible and optimal (by definition of G) with π(x̂0) = 1. By setting x0 = 1, solutions are

removed from the feasible region, but every solution that is removed is symmetric to at least one solution remaining in

the feasible region. Hence, fixing an arbitrary variable to 1 serves to remove some of the problem symmetry as well

as to tighten the LP bound.

A similar technique is used in graph coloring problems. Given a graph G, a coloring is valid if no two adjacent

vertices are assigned the same color. Given a valid coloring, equivalent valid colorings can be generated by relabeling

colors. A typical IP formulation for this problem contains binary variables xj
i that represent if vertex i is colored j and

binary variables yl that represent if any vertex has color l. The mathematical formulation is

min
k∑

l=1

yl

s.t. xl
i + xl

j ≤ 1 ∀ (i, j) ∈ E ∀ l ∈ {1, . . . , k}

xl
i ≤ yl ∀ i ∈ V ∀ l ∈ {1, . . . , k}∑

l

xl
i = 1 ∀ i ∈ V

yl, xl
i ∈ {0, 1}.

(2.3)

The symmetry group of formulation (2.3) contains the permutations

πl,m = (xl
1, x

m
1)(xl

2, xm
2) . . . (xm

n , xk
n) ∀l, m ∈ {1, . . . , k},

simply meaning that colors can be arbitrarily relabeled.

Suppose G contains a clique of size k. No two vertices in the clique can be assigned the same color. Given that

no vertex is currently colored, each of the k vertices in the clique can be arbitrarily colored with each of the first k

colors. As with fixing a variable to 1 in the Problem (1.4), this fixing of colors removes symmetric solutions from the

feasible region and reduces the size of the symmetry group acting on the problem by at least a factor of k!. As before,

this fixing is valid because for each solution that is removed, there is at least one equivalent solution remaining in the

feasible region. These intuitive fixing rules aim to reduce the size of the feasible region (as well as the symmetry)

of the problem instance by removing a large set of feasible solutions. A solution can be removed as long as it is

guaranteed that for each solution removed a representative solution (i.e. an equivalent solution) remains in the feasible

region. This is formalized in [21] where Eric Friedman adapts a notion from geometry. For a permutation group Γ and

a set X ⊂ Rn, a generalized fundamental domain of X with respect to Γ is a subset F of X such that the X can be

21

2.2. REMOVING SYMMETRY IN THE FORMULATION

constructed using the points in F along with the permutations in Γ, i.e., FΓ = X .

Formally, a set F is a generalized fundamental domain of X with respect to Γ if and only if for every x ∈ X , the

set orb(x,Γ)∩F is nonempty. A fundamental domain is minimal if it does not contain a smaller fundamental domain.

Example If X = {(0, 0), (1, 0), (0, 1), (1, 1)} and Γ = {e, π = (1, 2)}, there are three different fundamental

domains. The set X is a trivial a fundamental domain because XΓ = X . Also, the set F1 = {(0, 0), (1, 0), (1, 1)} is

a fundamental domain. This can be seen by noting that the only element in X that is not in F1 is the element (0, 1),

but π((1, 0)) = (0, 1), so FΓ
1 = X . For the same reason, the set F2 = {(0, 0), (0, 1), (1, 1)} is also a fundamental

domain. No two elements in F1 are symmetric, so F1 is a minimal fundamental domain with respect to Γ. Similarly,

F2 is also minimal.

For a given X and symmetry group Γ, there may be more than one minimal fundamental domain. Example 2.2

shows illustrations of fundamental domains.

Example Consider the polyhedron depicted in Figure 2.1.

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

a

b

c

d

e

f

Figure 2.1: Fundamental Domain Example 1

Let Γ contain symmetries that are generated by permutations πrotate(a, b, c, d, e, f) and πreflect = (b, f)(c, e).

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
a

b

c

d

e

f

Figure 2.2: Fundamental Domain Example 2

The shaded area in Figure 2.2 represents a fundamental domain of X and Γ. It would be minimal if not for the

permutation πreflect. A minimal fundamental domain is given in Figure 2.3.

There may be many different minimal domains. Figure 2.4 is another example of a minimal domain that is not convex.

For a polyhedron X ⊆ Rn, a permutation group Γ, and an n-vector c consider the set

Fc(X, Γ) = {x ∈ X|cT x ≥ cT π(x) ∀π ∈ Γ}.

22

2.2. REMOVING SYMMETRY IN THE FORMULATION

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
a

b

c

d

e

f

Figure 2.3: Fundamental Domain Example 3

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�
�

�
�
�
�
�

Figure 2.4: Fundamental Domain Example 4

For any x ∈ F , at least one element y ∈ orb(x,Γ) satisfies the constraints cT y ≥ cT π(x) ∀π ∈ Γ so Fc(X, Γ) is a

fundamental domain of X with respect to Γ. The set Fc(X, Γ) is the fundamental domain generated by c. In cases

where X and Γ are clear, the fundamental domain will be referred to as Fc.

Example Consider Problem (1.4). Let X be the feasible region of the LP relaxation and G be the symmetry group

of the problem. Let c = (3, 2, 1, 0, 0, 0, 0, 0). Because Γ contains 72 permutations, the fundamental domain Fc

is formed by adding 72 inequalities (one for each permutation). A subset of the constraints formed by the generators

given in Table 1.2, are listed in Table 2.1

π Constraint
(3, 6)(4, 7)(5, 8) 3x0 + 2x1 + x2 ≥ 3x0 + 2x1 + x2

(1, 2)(4, 5)(7, 8) 3x0 + 2x1 + x2 ≥ 3x0 + x2 + 2x3

(1, 3)(2, 6)(5, 7) 3x0 + 2x1 + x2 ≥ 3x0 + 2x3 + x6

(0, 1)(3, 4)(6, 7) 3x0 + 2x1 + x2 ≥ 3x1 + 2x0 + x2

Table 2.1: Constraints Generating a Fundamental Domain

Not all inequalities generated by c will be useful, as some constraints may be redundant, evidenced by the first

inequality in Table 2.1. The constraints generated by the vector c can be used to impose an order on the elements of

X . Let .c be the relation on the set X that has x .c y if and only if cT x ≥ cT y . Because .c is not necessarily

antisymmetric, it is a quasi-order (x .c y and y .c does not imply that x = y). Because Γ is finite, for every

x ∈ F , orb(x,Γ) is finite. Thus, for any quasi-order . and any x ∈ F at least one element in orb(x,Γ) satisfies the

constraints

x . π(x) ∀π ∈ Γ. (2.4)

23

2.3. STATIC SYMMETRY-BREAKING METHODS

Hence, constraints (2.4) define a fundamental domain. If a relation � defines a strict total order on the sets orb(x,Γ)

for every x ∈ X , then constraints (2.4) generated by � is a minimal fundamental domain (as only one element from

orb(x,Γ) satisfies constraints (2.4)). However, determining if a quasi order . defines a strict total order on each orbit

is not trivial. One such total order on {0, 1}n comes from enforcing a lexicographic ordering of the variables via

cLex = (2n−1, 2n−2, . . . , 2, 1). FcLex
is a minimal fundamental domain [21] for all X ⊆ {0, 1}n and Γ.

Example For problem (1.4), the constraints of FcLex
that result from the generators of G are

π Lexicographical Constraint
(3,6)(4,7)(5,8) 32x3 + 16x4 + 8x5 + 4x6 + 2x7 + x8 ≥ 32x6 + 16x7 + 8x8 + 4x3 + 2x4 + x5

(1,2)(4,5)(7,8) 128x1 + 64x2 + 16x4 + 8x5 + 2x7 + x8 ≥ 128x2 + 64x1 + 16x5 + 8x4 + 2x8 + x7

(1,3)(2, 6)(5,7) 128x1 + 64x2 + 31x3 + 8x5 + 4x6 + 2x7 ≥ 128x3 + 64x6 + 32x1 + 8x7 + 4x2 + 2x5

(0,1)(3,4)(6,7) 256x0 + 128x1 + 32x3 + 16x4 + 4x6 + 2x7 ≥ 256x1 + 128x0 + 32x4 + 16x3 + 4x7 + 2x6

Table 2.2: Lexicographic Constraints

There is an immediate concern with using lexicographic constraints. Adding constraints that define FcLex
will

cause problems for most numerical methods because of the magnitude of the coefficients in clex. However, these

constraints guarantee that the resulting fundamental domain is minimal for any X ⊆ {0, 1}n and Γ. Despite the

numerical issues, most literature focuses on choosing fundamental domains based on lexicographic ordering (either

generating fundamental domains by selecting lexicographic maximal or minimal elements).

In the context of integer programming, X represents the set of feasible solutions, F , to a problem and Γ represents

the symmetry group of the problem, G. By definition, for any fundamental domain F of F with respect to G(ILP),

any optimal solution in F is symmetric to a solution in F . Hence,

min
x∈F
{cT x} = min

x∈F
{cT x}.

The search of (ILP) can be restricted to a fundamental domain. The issue then becomes how to choose a fundamen-

tal domain. Symmetry-breaking tools that use fundamental domains can be split into two different classes. Static

symmetry-breaking methods determine the fundamental domain at the start of the algorithm, and dynamic methods

determine the fundamental domain during the branching process.

2.3 Static Symmetry-Breaking Methods

Static symmetry-breaking methods choose a fundamental domain prior to starting branch-and-bound. Symmetry

breaking can be done in an ad-hoc fashion by generating collections of problem-specific constraints that define a

fundamental domain. A more general strategy is to use G(ILP) to construct a minimal fundamental domain. If it

24

2.3. STATIC SYMMETRY-BREAKING METHODS

weren’t for the potential numerical issues, the minimal fundamental domain FcLex
would be an ideal fundamental

domain to use. To avoid the potential numerical issues, advanced static symmetry-breaking methods find ways to

implicitly enforce the constraints generated by cLex.

Puget [72] gives symmetry-breaking cuts for two specific types of constraint programming problems: the pigeon-

hole problem and the Ramsey problem. The pigeonhole problem attempts to find a solution (or show no solution

exists) to the problem of placing N pigeons in M holes. Let xj
i be a decision variable that takes the value 1 if pigeon

i is in hole j. The ILP formulation of the problem is

min 0T x

s.t
M∑

j=1

xj
i = 1 ∀i ∈ 1, . . . , N

N∑
i=1

xj
i ≤ 1 ∀j ∈ 1, . . . , M

xj
i ∈ {0, 1}.

(2.5)

The LP relaxation of (2.5) is infeasible if M < N . However, LP bounds are not used in [72] to prune subproblems.

As a result, Puget only prunes nodes in the enumeration tree when there are no feasible branching decisions. Despite

the fact that Problem (2.5) is easily solved with common sense, small instances when M < N are very difficult to

solve via constraint programming methods not relying on LP.

The major difficulty arises from the fact that the pigeons are not unique. The symmetry group Equation 2.5 contains

all N ! permutations of pigeons and all M ! permutations of holes. Subproblems that can be pruned, i.e. those where all

the holes are occupied by a pigeon, are of depth at least M , so the tree is very large (it contains more than 2M nodes).

Many of these subproblems, however, are equivalent.

To combat the symmetry in this problem for any M and N , Puget adds the ordering constraint

M∑
k=1

kxk
i <

M∑
k=1

kxk
i+1 for all i = 1 . . . N − 1. (2.6)

These constraints force an ordering of pigeons and remove the symmetry that was present in the original problem

formulation. The resulting feasible region after adding the ordering constraints is a fundamental domain in the case

where M < N , since the feasible region is empty. Interestingly, even though adding (2.6) removes all the symmetry

from the formulation, in the case where (2.5) is feasible, i.e, M ≥ N , the inequalities in (2.6) only describe a minimal

fundamental domain if M = N . For instance, suppose M = 4 and N = 3. The solution with x1
1 = 1, x2

2 = 1,

and x3
3 = 1 satisfies constraints in (2.6), but so does the symmetric solution x1

1 = 1, x2
2 = 1, and x4

3 = 1. In the

case where N = M , the only feasible solution has xi
i = 1 for all i, so the fundamental domain defined by (2.6)

is minimal. Nevertheless, inequalities in (2.6) make it very easy to show that no solution exists if M < N , as the

25

2.3. STATIC SYMMETRY-BREAKING METHODS

ordering constraints make it easy for the set of fixed variables to create a logical inconsistency. Instances with large

M and N are easily solved via constraint programming when inequalities (2.6) are added to the formulation.

The second problem Puget provides cuts for is the Ramsey problem. Given a complete graph Kn = (V,E) with N

vertices, the Ramsey problem attempts to color the edges of the graph with three colors such that no triangle contains

three edges of the same color. There are only feasible colorings when N ≤ 16, but proving infeasibility for N > 16 is

difficult. The symmetry group, G(Ramsey), of this problem is very large. Since the graph is complete, any relabeling

of vertices will send feasible solutions to feasible solutions (resulting in N ! symmetries). An IP formulation of the

Ramsey problem is

min 0T x

s.t xij0 + xij1 + xij2 = 1 ∀(i, j) ∈ E

xhik + xijk + xhjk ≤ 2 ∀h, i, j ∈ V, k = 0, 1, 2

xijk ∈ {0, 1},

(2.7)

where xijk = 1 if edge (i, j) is colored with color k.

To combat the symmetry Formulation (2.7), Puget adds two different types of constraints. First, the constraints

∑
i∈V \{v0}

x0,i,0 ≥
∑

i∈V \{vj}

xj,i,0 ∀j ∈ V (2.8)

enforce that vertex v0 is adjacent to more edges of color 0 than any other vertex. This is a valid constraint in the

context of symmetry as some vertex in a solution is adjacent to more edges of color 0 than any other vertex, and since

all vertices are symmetric, this property can be arbitrarily assigned to v0. After adding constraints (2.8) to the original

formulation (2.7), the formulation group has changed. Now, vertex v0 is no longer equivalent to any other vertex in the

graph. As a result, permutations that map variables of the type x0,j,k to variables xl,m,p with l 6= 0 are removed from

the formulation’s symmetry group. Interestingly, while constraints (2.8) do remove symmetry from the formulation

group, they may not remove symmetries from the symmetry group of the problem. The symmetry group will not

change in the (unlikely) event that every feasible solution satisfies (2.8).

All variables representing edges adjacent to vertex v0 are still symmetric in the formulation including constraints

(2.8). To remove additional symmetry, constraints are added to make the colors assigned to edges (0, i) an increasing

function of i. This is accomplished by the constraint

2∑
k=0

kx0,j,k ≤
2∑

k=0

kx0,j+1,k ∀j = 0, . . . , n− 1. (2.9)

The symmetry group of the formulation (2.7) with constraints (2.8) and (2.9) added contains only the identity

26

2.3. STATIC SYMMETRY-BREAKING METHODS

permutation, but the feasible region is not a minimal fundamental domain of Equation (2.7) with respect to group

G(Ramsey). Consider the graph in Figure 2.5. This graph represents a feasible solution to (2.7) and also satisfies

constraints (2.8) and (2.9). Permuting vertices v1 and v2 (corresponding to

π = (x0,1,0, x0,2,0)(x0,1,1, x0,2,1)(x0,1,2, x0,2,2)(x1,3,0, x2,3,0)(x1,3,1, x2,3,1)(x1,3,2, x2,3,2) ∈ G(Ramsey)

) maps the graph in Figure 2.5 to the graph in Figure 2.6.

Because π was in the formulation group before constraints (2.8) and (2.9) were added to the formulation, the graphs

in Figure 2.5 and Figure 2.6 are symmetric. But, the graphs in both Figure 2.5 and Figure 2.6 each satisfy constraints

(2.8) and (2.9). It is easy to see that π is not in the symmetry group (when the additional constraints are added) by

considering the feasible graph formed by coloring edge (v0, v2) in Figure 2.5 with color 1, π maps this graph to a

graph that violates (2.9). While the constraints (2.8) and (2.9) remove all symmetry from the problem formulation,

they do not define a fundamental domain. However, the resulting fundamental domain is small enough to allow for

these problems to be solved in a reasonable amount of time.

v0 v1

v2v3

0

0 1

2

12

Figure 2.5: Ramsey Graph for n = 4

Adding constraints like (2.6), (2.8), or (2.9) are common in symmetry-breaking literature. Meller et al. [61]

attack symmetry in an optimal facility layout design using constraints that reduce the size of the fundamental domain.

Sherali and Smith [77] present three different applications where symmetry arises: telecommunications network-

design problems, noise pollution problems, and machine procurement and operation problems. They also discuss

symmetry-reducing constraints for these specific problems. Mendez-Diaz and Zabala present formulations, as well as

symmetry-breaking inequalities, for the graph coloring problem [13] [62].

27

2.3. STATIC SYMMETRY-BREAKING METHODS

v0 v1

v2v3

0

0
12

2

1

Figure 2.6: An Equivalent Ramsey Graph for n = 4

2.3.1 Lexicographic Ordering

The constraints proposed by Puget for the pigeonhole problem and the Ramsey problem can be effective at reducing

symmetry, making a previously intractable problem solvable. There is no guarantee, however, that the fundamental

domains resulting from the addition of these inequalities will be minimal. Further, the constraints added to reduce

the symmetry are very problem-specific. Knowing the actual symmetry group of the problem (or at least a subgroup)

allows for a more general method of solving symmetric problems.

Given G(ILP), a minimal fundamental domain can always be defined by adding lexicographic constraints. Adding

these constraints restricts the search to solutions that are lexicographically smallest among equivalent solutions, (some-

times referred to as “the lexicographic leader”). This technique was used to solve planning problems in [38].

Crawford, Ginsberg, Luks, and Roy [9] outline a method for generating lexicographic inequalities. They also dis-

cuss partial symmetry-breaking methods; strategies that remove most of the symmetry without adding an exponential

number of constraints. Aloul et. al. [2] rewrite these lex-leader constraints in a more efficient way.

Example Consider a simple example of using lexicographic constraints from [29].

28

2.3. STATIC SYMMETRY-BREAKING METHODS

min
6∑

i=0

xi

subject to x0 + x1 + x2 + x3 ≥ 1

x0 + x1 + x2 + x4 ≥ 1

x0 + x1 + x2 + x5 ≥ 1

x0 + x3 + x4 + x5 ≥ 1

x1 + x3 + x4 + x5 ≥ 1

x2 + x3 + x4 + x5 ≥ 1

x0 + x3 ≥ 1

x1 + x4 ≥ 1

x2 + x5 ≥ 1

x ∈ {0, 1}6

Twelve permutations are in the formulation group. These permutations are generated by (0, 3)(1, 4)(2, 5), (0, 1)(3, 4),

and (0, 2)(3, 5). The following constraints will then enforce the lexicographical ordering �lex, and will reduce the

29

2.3. STATIC SYMMETRY-BREAKING METHODS

feasible region to FcLex
:

25x0 + 24x1 + 23x2 + 22x3 + 2x4 + x5 ≥ 25x0 + 24x1 + 23x2 + 22x3 + 2x4 + x5

25x0 + 24x1 + 23x2 + 22x3 + 2x4 + x5 ≥ 25x0 + 24x2 + 23x1 + 22x3 + 2x5 + x4

25x0 + 24x1 + 23x2 + 22x3 + 2x4 + x5 ≥ 25x1 + 24x0 + 23x2 + 22x4 + 2x3 + x5

25x0 + 24x1 + 23x2 + 22x3 + 2x4 + x5 ≥ 25x2 + 24x1 + 23x0 + 22x5 + 2x4 + x3

25x0 + 24x1 + 23x2 + 22x3 + 2x4 + x5 ≥ 25x1 + 24x2 + 23x0 + 22x4 + 2x5 + xG

25x0 + 24x1 + 23x2 + 22x3 + 2x4 + x5 ≥ 25x2 + 24x0 + 23x1 + 22x5 + 2x3 + x4

25x0 + 24x1 + 23x2 + 22x3 + 2x4 + x5 ≥ 25x3 + 24x4 + 23x5 + 22x0 + 2x1 + x2

25x0 + 24x1 + 23x2 + 22x3 + 2x4 + x5 ≥ 25x3 + 24x5 + 23x4 + 22x0 + 2x2 + x1

25x0 + 24x1 + 23x2 + 22x3 + 2x4 + x5 ≥ 25x4 + 24x3 + 23x5 + 22x1 + 2x0 + x2

25x0 + 24x1 + 23x2 + 22x3 + 2x4 + x5 ≥ 25x5 + 24x4 + 23x3 + 22x2 + 2x1 + x0

25x0 + 24x1 + 23x2 + 22x3 + 2x4 + x5 ≥ 25x4 + 24x5 + 23x3 + 22x1 + 2x2 + x0

25x0 + 24x1 + 23x2 + 22x3 + 2x4 + x5 ≥ 25x5 + 24x3 + 23x4 + 22x2 + 2x0 + x1.

Note that there is one constraint for every permutation in the symmetry group. Enforcing these lexicographical

constraints by using linear constraints may cause numerical stability issues, as mentioned previously. However, there

is hope that some of these numerical issues can be avoided by pre-processing the constraints. The lexicographic

inequalities are likely to contain redundancies. Also, inequalities may be simplified in such a way as to remove some

of the scaling issues.

Consider the second constraint,

25x0 + 24x1 + 23x2 + 22x3 + 2x4 + x5 ≥ 25x0 + 24x2 + 23x1 + 22x3 + 2x5 + x4.

This constraint can be written as 23x1 + 22x2 + 2x4 + x5 ≥ 23x2 + 22x1 + 2x5 + x4 (because x0 = x0 and x3 = x3

are always true). If x1 > x2, then the constraint is satisfied independently of the values of x4 and x5. If x1 = x2,

the constraint reduces to 2x4 + x5 ≥ 2x5 + x4, or just x4 ≥ x5. Thus, the original constraint can be rewritten as

30

2.3. STATIC SYMMETRY-BREAKING METHODS

2x1 + x4 ≥ 2x2 + x5. Similarly, all constraints can be rewritten as:

0 ≥ 0

2x1 + x4 ≥ 2x2 + x5

2x0 + x3 ≥ 2x1 + x4

2x0 + x3 ≥ 2x2 + x5

8x0 + 4x1 + 2x3 + x4 ≥ 8x1 + 4x2 + 2x4 + x5

8x0 + 4x1 + 2x3 + x4 ≥ 8x2 + 4x0 + 2x3 + x5

4x0 + 2x1 + x2 ≥ 4x3 + 2x4 + x5

4x0 + 2x1 + x2 ≥ 4x3 + 2x5 + x4

4x0 + 2x1 + x2 ≥ 4x4 + 2x3 + x5

4x0 + 2x1 + x2 ≥ 4x5 + 2x4 + x3

16x0 + 8x1 + 4x2 + 2x3 + x4 ≥ 16x4 + 8x5 + 4x3 + 2x1 + x2

16x0 + 8x1 + 4x2 + 2x3 + x4 ≥ 16x5 + 8x3 + 4x4 + 2x2 + x0.

The collection of inequalities can be further strengthened by considering the collection of inequalities as a whole.

Note that constraints 2 and 3 imply constraint 4, so constraint 4 is not necessary. The 12 constraints can be reduced to

a set of 8 non-redundant constraints:

2x1 + x4 ≥ 2x2 + x5

2x0 + x3 ≥ 2x1 + x4

4x0 + 2x1 + x2 ≥ 4x3 + 2x4 + x5

4x0 + 2x1 + x2 ≥ 4x3 + 2x5 + x4

4x0 + 2x1 + x2 ≥ 4x4 + 2x3 + x5

4x0 + 2x1 + x2 ≥ 4x5 + 2x4 + x3

8x0 + 4x1 + 2x2 + x3 ≥ 8x4 + 4x5 + 2x3 + x1

4x0 + 2x1 + x2 ≥ 4x5 + 2x3 + x4.

Adding these 8 processed constraints will significantly reduce the stability issues that may occur if the original 12

31

2.3. STATIC SYMMETRY-BREAKING METHODS

constraints were added. It is natural to ask the question by how much should processing be expected to help?. Since

many lexicographic constraints are redundant, are an exponential number of lexicographic constraints necessary to

remove all the symmetry? Luks and Roy examined this question in [52]. Unfortunately, even with relatively small

symmetry groups, an exponentially large set of lexicographic constraints may be required to enforce the lexicographic

ordering of feasible solutions. Even if it were possible to efficiently process a collection of lexicographic constraints,

the quantity and the scale of the processed constraints may overwhelm the LP solver.

2.3.2 Static Symmetry Breaking via Orbitopes

Explicitly stating all the lexicographic inequalities (as in Table 2.2) is not practical for many reasonably-sized prob-

lems. One avenue of research is to find classes of problems for that there are efficient ways to enforce lexicographic

ordering without adding the constraints to the LP formulation. This is the purpose of [39]. In their work, Kaibel and

Pfetsch consider the set of all 0/1 matrices of size p × q,Mp,q. Given a symmetry group G acting on the columns of

a matrix, they define the full orbitope Op,q(G) to be the set of matrices ofMp,q that are lexicographically maximal

within their orbits (where the ordering of the variables is row-by-row). For example, the 0/1 matrix:

X =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

1 1 1 0 0

1 1 1 0 0

0 0 0 0 1

1 1 1 0 0


does not have lexicographically-decreasing columns, so it is not in the orbitope O8,5(S5). The permutation (4, 5)

32

2.3. STATIC SYMMETRY-BREAKING METHODS

swaps columns 4 and 5, giving the matrix:

X ′ =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

1 1 1 0 0

1 1 1 0 0

0 0 0 1 0

1 1 1 0 0


The matrix X ′ has lexicographically-decreasing columns, so it is in O8,5(S5).

Kaibel and Pfetsch focus their attention on both packing and partitioning orbitopes, where either the cyclic group

(Cq) or the complete symmetric group (Sq) acts on the columns. The packing orbitope, O≤
p,q(G) ⊂ Op,q(G) consists

of all lexicographically maximal 0/1 matrices where each row contains at most a single 1. The partitioning orbitope,

O=
p,q(G) ⊂ Op,q(G) consists of all lexicographically maximal matrices where each row contains exactly a single 1.

In [39], Kaibel and Pfetsch provide linear descriptions of all facet-defining inequalities for the convex hull of

orbitopes O≤
p,q(C

q), O≤
p,q(S

q), O=
p,q(C

q), and O=
p,q(S

q). They also provide separation algorithms for all inequalities

that run in polynomial time. The facet-defining inequalities have only {−1, 0, 1} coefficients, avoiding the numerical

issues that arise when lexicographic constraints are used to eliminate symmetry. However, to completely describe the

polytope O≤
p,q(S

q) and O=
p,q(S

q), an exponential number of linear inequalities is required.

This technique can be applied to classes of integer programming problems as follows. Elements in a partitioning

orbitope represent possible solutions to IP formulations of set-partitioning problems such as graph coloring, while

the packing orbitope represents solutions to IP formulations of set-packing problems. For example, imagine a set-

partitioning problem in which items are placed in one of q indistinguishable sets. The variable xi,j = 1 if item i is

placed in set j. A solution to the problem can be represented as a p × q matrix, where p is the number of items and

q is the number of sets. Since the sets are indistinguishable, any permutation of the sets will map feasible partitions

to other feasible partitions. Therefore, every permutation of the columns is in the symmetry group. Symmetry in

the formulation can be removed by adding the additional constraint that the solution must also be an element of

the orbitope Op,q(Sq). Kaibel and Pfetsch [39] show that enforcing membership in either O≤
p,q(C

q) or O=
p,q(C

q) is

simple. Ensuring that the first column is the lexicographically largest column in the matrix is enough to guarantee that

the matrix is in the appropriate orbitope. Note also that Cq contains only q− 1 permutations, so only q− 1 constraints

are needed to enforce a lexicographic ordering.

33

2.3. STATIC SYMMETRY-BREAKING METHODS

Enforcing membership in either O≤
p,q(S

q) or O≤
p,q(S

q) is not as simple as it is for the cyclic group Cq. Kaibel

and Pfetsch note that there exists a projection of O=
p,q(S

q) that is affinely isomorphic to O≤
p−1,q−1(S

q−1), so they

restrict their attention to the orbitope O=
p,q(S

q). The main result of their work is that shifted column inequalities (SCI)

complete a necessary and sufficient linear description of O≤
p,q(S

q). To describe the shifted column inequalities some

notation is necessary. A bar is formed by indices of the matrix

B = {(i, j), (i, j + 1), . . . , (i, q)}

for some 2 ≤ i ≤ p, 2 ≤ j ≤ min{i, q}. A shifted column (SC) is a set of indices

S = {(i1, j1), (i2, j2), . . . , (iη, jη)}

where i1 ≤ i2 ≤ iη, j1 ≤ j2 ≤ jη ≤ j, and no two elements in S share the same diagonal in the matrix. For any bar

B and shifted column S, they call
∑

(i,j)∈B xi,j ≤
∑

(i,j)∈S a shifted column inequality. The orbitope O=
p,q(S

q) can

be completely described by non-negativity constraints, the row-sum equations
∑

j xi,j = 1 for all i, and the shifted

column inequalities formed by all bars and shifted columns.

Example Figures 2.7 through 2.9 are three different shifted columns and bars. A “+” denotes elements in the bar

while a “−” denotes elements in the shifted column. The inequality derived from the shifted column and the bar in

Figure 2.7 is

x9,5 + x9,6 + x9,7 ≤ x4,4 + x5,4 + x6,4 + x7,4 + x8,4.

The inequality derived from the shifted column and the bar in Figure 2.8 is

x9,5 + x9,6 + x9,7 ≤ x2,2 + x4,3 + x5,3 + x7,4 + x8,4.

The inequality derived from the shifted column and the bar in Figure 2.9 is

x9,5 + x9,6 + x9,7 ≤ x1,1 + x2,1 + x4,2 + x5,2 + x6,2.

Note that in partitioning problems
∑

(i,j)∈B xi,j ≤ 1. If a SCI is violated, it must be because
∑

(i,j)∈B xi,j = 1

and
∑

(i,j)∈S = 0. Consider an example of a matrix that violates the first SCI shown above. Clearly the matrix in

Figure 2.10 is not lexicographically maximal, as column 4 can be swapped with column 5 to create a lexicographically

larger matrix.

34

2.3. STATIC SYMMETRY-BREAKING METHODS

-

-

-

-

-

+ + +

Figure 2.7: Shifted Column 1

-

-

-

-

-

+ + +

Figure 2.8: Shifted Column 2

35

2.3. STATIC SYMMETRY-BREAKING METHODS

-

-

-

-

-

+ + +

Figure 2.9: Shifted Column 3

0

0

0

0

0

10 0 0 0 0 0

Figure 2.10: Matrix that does not satisfy SCI

36

2.3. STATIC SYMMETRY-BREAKING METHODS

In [40], Kaibel, Peinhardt, and Pfetsch use the linear time separation algorithm for these SCIs to fix variables

throughout the enumeration tree. They call their fixing orbitopal fixing. They also test orbitopal fixing on a class

of graph partitioning problems and compare it to a more general symmetry breaking method, isomorphism pruning,

which will be detailed in Section 2.4.1. Unlike isomorphism pruning, using orbitopal fixing does not restrict branching

behavior, and the results suggest that the gain in performance as a result of using orbitopal fixing over isomorphism

pruning is a result of the flexible branching.

2.3.3 Double Lex

Orbitopal fixing considers symmetry that acts on the columns of the matrix. It is possible for symmetry to act on both

the columns and the rows. For instance, the pigeonhole problem could be formulated using variable xij to indicate

that pigeon i is in hole j. Since both the pigeons and the holes are indistinguishable, permutations in the symmetry

group act on both the columns and the rows.

If solution matrix X is a m × n matrix, the symmetry group of the problem contains m!n! symmetries. A sub-

set of the symmetries, m! of the symmetries, can be broken by requiring the rows of X to be lexicographically

ordered (where row i is lexicographically larger than row j if i < j), or n! symmetries can be broken by requiring

the columns to be lexicographically ordered. Flener et al. [18] shows that, in fact, requiring both the rows and the

columns to be lexicographically ordered in the same direction results in a fundamental domain. However, enforcing

lexicographically-increasing columns and decreasing rows does not. Enforcing this lexicographic ordering requires

at most n! + m! many constraints, or can be accomplished using fixing algorithms such as orbitopal fixing (where

lexicographic ordering is enforced on the columns of X and the columns of XT). However, adding constraints that

enforce lexicographically-increasing rows and columns does not remove all symmetry. Example (2.10) shows a case

where two equivalent solutions both have lexicographically-increasing rows and columns.

Example Suppose the following feasible solution is found for a problem whose symmetry group contains all permu-

tations of the rows and all permutation of the columns:


0 0 1

0 1 A

1 0 B


For any values of A and B, this solution will have both lexicographically-increasing rows and columns. Let πi,j be a

column permutation that swaps columns i and j and let ρm,n be a row permutation that swaps rows m and n. These

37

2.4. DYNAMIC SYMMETRY BREAKING

permutations act on th current solution as follows:
0 0 1

0 1 A

1 0 B

→ρ2,3


0 0 1

1 0 B

0 1 A

→π1,2


0 0 1

0 1 B

1 0 A

 . (2.10)

This sequence of permutations gives a new matrix that also has lexicographically-increasing rows and columns that

are isomorphic to the original.

2.4 Dynamic Symmetry Breaking

Static symmetry-breaking methods can be very effective at solving highly symmetric problems. Methods such as

adding symmetry breaking constraints only require an alteration of the problem formulation and do not require special

software. Also, knowing the domain explicitly at every node in the tree makes it possible to fix variables based on the

fundamental domain constraints (implicit or explicit).

Static symmetry-breaking methods have some limitations. The first, as previously mentioned, is the potentially

large number of inequalities needed to remove all of the symmetry from the problem. This problem can sometimes

be avoided with clever algorithms. Secondly, restricting the search to an arbitrarily chosen fundamental domain could

distort the branching process by changing the relative importance of the variables. For example, restricting the feasible

region to the set of lexicographically minimal solutions would significantly increase the importance of variables with

small indices. Algorithms that, in theory, have no branching restrictions may require branching in a rigid way to

achieve the best results.

Static methods can make finding optimal solutions more difficult, as the solution found must also be in the chosen

fundamental domain. Adding symmetry-breaking constraints to the root node may in fact remove optimal solutions

that, along with a specified branching rule, would have been easier to find than the equivalent optimal solution remain-

ing in the fundamental domain. This has been studied in the context of constraint programming in [25], where the

authors show that branching strategies can drastically alter the time required to find solutions. The problem caused

by pruning these easily-found optimal solutions can be overcome with more intelligent branching. For instance, if the

set of representative solutions is chosen based on a lexicographic order, then branching in that order would avoid this

problem. However, rules like this are not ideal, as branching is very important even in integer programs that do not

contain symmetry. Therefore, choosing a branching rule a priori is not desirable.

Dynamic symmetry-breaking strategies differ from static methods because they construct the fundamental domain

during the solution process, not a priori. Because the fundamental domain is not predefined, the branching decisions

can influence the fundamental domain, and not vice versa.

38

2.4. DYNAMIC SYMMETRY BREAKING

Because the fundamental domain is defined during the branching process, dynamic symmetry breaking methods

cannot use off-the-shelf software. Also, because the domain is not fully defined at nodes in the tree, fewer variables

can be fixed than with static methods.

2.4.1 Isomorphism Pruning

The leading approach for solving

min
x∈{0,1}n

{cT x | Ax ≤ b}, BIP

where (BIP) is highly symmetric (|G(BIP)| is large), is isomorphism pruning, developed for integer programming

by Margot [54, 55]. Let the set F a
1 be the set of variables that have been fixed to 1 in subproblem a of a branch-and-

bound tree and F a
0 be the set of variables fixed to zero. The fundamental idea behind isomorphism pruning is that for

each node a in the branch-and-bound tree, the orbits orb(F a
1 ,G(BIP)) of the equivalent sets of variables to F a

1 are

computed. If there is a node b = (F b
1 , F b

0) elsewhere in the enumeration tree such that F b
1 ∈ orb(F a

1 ,G(BIP)), then

the node a need not be evaluated and is pruned by isomorphism. A very distinct and powerful advantage of this method

is that no nodes whose sets of fixed variables are isomorphic will be evaluated. One disadvantage of this method is

that computing orb(F a
1 ,G(IP)) can require computational effort on the order of O(n|F a

1 |!) in the worst case. A more

significant disadvantage of isomorphism pruning is that orb(F a
1 ,G(BIP)) may contain many subsets equivalent to

F a
1 , and the entire enumeration tree must be compared against this list to ensure that a is not isomorphic to any other

node b. In a series of papers, Margot offers a way around this second disadvantage [54, 55]. The solution is to declare

one unique representative among the members of orb(F a
1 ,G(BIP)). Then, if F a

1 is not the unique representative, the

node a may safely be pruned. The advantage of this extension is that it is trivial to check whether or not node a may

be pruned once the orbits orb(F a
1 ,G(IP)) are computed.

Margot uses the concept of lexicographical ordering to determine a minimal fundamental domain. Rather than

adding lexicographic inequalities, he determines rules for pruning nodes in the branch-and-bound. In his first paper

[54] on isomorphism pruning, he restricts the search to the minimal fundamental domain FcLex
. A key theorem of

[54] is that if F a
1 is not the lexicographically-smallest element of orb(F a

1 ,G(IP)), then node a can be pruned by

isomorphism. This theorem holds only if a specific branching rule is used. This branching rule requires branching on

variable xi at every node of depth i in the branch-and-bound tree. The isomorphism pruning described in [54] is a

static symmetry-breaking method. This is changed in [55].

The dynamic isomorphism pruning method described in [55] is based on the realization that variables are assigned

indices arbitrarily. Branching based on the index of a variable should not be expected to produce favorable results.

39

2.4. DYNAMIC SYMMETRY BREAKING

However, variables can be re-indexed so as to reflect a desired branching decision. This re-indexing is done by referring

to variables not by their index but by their rank. The rank is determined by the branching behavior. A variable is given

rank i the first time a node at depth i is reached in the branch-and-bound tree. The variable chosen for branching at that

node, using any branching strategy, is assigned rank i. Once that branching decision is made, however, that variable is

essentially given index i, and must be branched on at all other nodes of the same depth. As a result, the fundamental

domain formed by Margot [55] is based on the lexicographic order of the ranks of the variables.

Isomorphism pruning allows for the use of some traditional integer programming methodologies, such as cut-

generation based on implications derived from preprocessing and variable fixing based on reduced costs. In isomor-

phism pruning, for a variable fixing to be valid, all optimal solutions must be in agreement with the fixing. A powerful

idea, called orbit setting, is to combine the variable fixing with symmetry considerations in order to fix many addi-

tional variables. For instance, if a variable can be set to zero as a result of any logical implication, then all variables

sharing the same orbit can also be fixed to zero.

2.4.2 Symmetry Breaking via Dominance Detection

Symmetry Breaking via Dominance Detection (SBDD) [16] [19] [28] [35] [70] [74] is a state-of-the-art method for

dealing with symmetry in constraint programming. Like isomorphism pruning, SBDD checks at every node whether

the current node can be pruned due to symmetry considerations. Unlike isomorphism pruning, SBDD does not look

for other nodes in the tree that are isomorphic to the current node. Instead, it searches for nodes that dominate the

current node. Node a dominates node b if ∃π ∈ G(ILP) with π(Fb) ⊆ Fa. Note that π does not need to map Fb

onto Fa. In other words, b is dominated by a if the feasible region of b is equivalent to a subset of the feasible region

of a.

Example Recall the set covering problem in Example 1.4

40

2.4. DYNAMIC SYMMETRY BREAKING

min
8∑

i=0

xi

subject to

x0 + x1 + x2 + x3 + x6 ≥ 1

x0 + x1 + x2 + x4 + x7 ≥ 1

x0 + x1 + x2 + x5 + x8 ≥ 1

x0 + x3 + x4 + x5 + x6 ≥ 1

x1 + x3 + x4 + x5 + x7 ≥ 1

x2 + x3 + x4 + x5 + x8 ≥ 1

x0 + x3 + x6 + x7 + x8 ≥ 1

x1 + x4 + x6 + x7 + x8 ≥ 1

x2 + x5 + x6 + x7 + x8 ≥ 1

x ∈ B9

Suppose the node a in the enumeration tree represents the subproblem formed by fixing x0 to 1. Let b be a node

formed by setting x0 = 0 and x1 = 1.

Clearly Fa and Fb are not equivalent since Fa has a dimension of 8 while Fb has a dimension of 7. Consider

the permutation π = (0, 1)(3, 4)(6, 7) (recall this is a generator for the symmetry group of the problem). For any

x ∈ Fb, π(x)0 = x1 = 1, so π(x) ∈ Fa. π maps every element of Fb to an element in Fa, node a dominates node b.

The goal of the SBDD algorithm is to prune dominated nodes from the enumeration tree. To ensure that one

representative of each solution is kept, a node is pruned only if it is dominated by a node to its left in the tree (for an

arbitrary orientation of the tree). Testing for dominance may be computationally burdensome, as there could be an

exponentially large set of nodes to the left of the current node. However, the number of domination tests required is

significantly reduced by noticing that all parent nodes dominate their children. Instead of testing every node to the left

of the current node, it is only necessary to test nodes whose parents are ancestors of the current node. If these nodes

do not dominate the current node, then their children will not dominate the current node either.

SBDD guarantees that no equivalent nodes are processed. Unfortunately, this can still be a very computationally

expensive approach in deep trees. If node a has depth i, it is possible to perform this dominance check up to i times.

Testing for dominance is equivalent to solving subgraph isomorphism problems, and is known to be NP-complete. The

41

2.4. DYNAMIC SYMMETRY BREAKING

deeper the enumeration tree gets, the more costly this algorithm will be. Of course, dominance detection does not have

to be performed at every node. Fahle et al. [16] have achieved better results by testing for dominance intermittently

throughout the tree.

One potential problem with SBDD is that it may lead to the pruning of nodes in the tree much deeper is necessary

(although this problem is remedied by additional variable fixing algorithms). While a node may not be dominated by

any single node found to the left in the tree, it may still be dominated by some collection of such nodes.

Example Let Figure 2.11 represent a branch-and-bound tree for an ILP with 4 variables. Let G = {e,

pi = (1, 4)(2, 3)} be the symmetry group of the ILP.

A

B

C

Root Node

x1 = 1 x1 = 0

x2 = 1 x2 = 0

x3 = 1

FC
1 = {3}

FC
0 = {1, 2}

Figure 2.11: SBDD Example

At node C in the tree, SBDD tests if node C is dominated by either nodes A or B. Node A cannot dominate node C

because the solution [0, 0, 1, 0] is feasible at C and π([0, 0, 1, 0]) = [0, 1, 0, 0] is not feasible at node A. Node

B does not dominate C because the solution [0, 0, 1, 1] is feasible at C and π([0, 0, 1, 1]) = [1, 1, 0, 0] is not

feasible at node B. As a result, node C is not pruned by SBDD. However, every feasible solution in C is equivalent to

some feasible solution in either A or B. Note that node C would have been pruned by isomorphism pruning because

π(FC
1) = {2} is lexicographically smaller than FC

1 = {3}. In this particular case, it would be easy to set x4 to 0 at

the parent node of B or x3 to 0 at the parent node of C by using algorithms like orbit setting, avoiding the processing

of unnecessary nodes. Using variable fixing algorithms like orbit setting will avoid this problem.

42

2.4. DYNAMIC SYMMETRY BREAKING

2.4.3 SBDS

Symmetry Breaking During Search (SBDS) [6] [27] [26][28] is another approach to dynamic symmetry breaking. At

every node of the search tree, SBDS adds constraints that ensure that no two isomorphic solutions are allowed. While

SBDS was developed for constraint programming, it will be discussed in terms of integer programs where the decision

variables are binary.

In SBDS, at the node a = (F a
1 , F a

0), a variable xi, i ∈ Na, is chosen for branching. The disjunction imposed,

however, is not the standard xi = 1 ∨ xi = 0. Instead, the branching disjunction is

∑
j∈F a

1

xj + xi = |F a
1 |+ 1 ∨

∑
j∈F a

1

π(xj) + π(xi) ≤ |F a
1 | ∀π ∈ G(ILP).

Note that the left branch is equivalent to fixing xi to 1. The disjunction mentioned above is trivial if G contains only

the identity permutation. In this case, it reduces to xi = 1 ∨ xi = 0. The case where symmetry is present in the

problem is best described in the context of set covering. The left child is created by adding i to the cover. Constraints

added to the right child ensure that no permutation variables in F a
1 ∪ j appear in a cover found to the right of a in the

tree. If such a cover was found, it would be equivalent to a cover found in the left child of a. Consider the following

example:

Example To demonstrate SBDS, the set covering problem from Example 1.4 is used.

43

2.4. DYNAMIC SYMMETRY BREAKING

min
8∑

i=0

xi

subject to

x0 + x1 + x2 + x3 + x6 ≥ 1

x0 + x1 + x2 + x4 + x7 ≥ 1

x0 + x1 + x2 + x5 + x8 ≥ 1

x0 + x3 + x4 + x5 + x6 ≥ 1

x1 + x3 + x4 + x5 + x7 ≥ 1

x2 + x3 + x4 + x5 + x8 ≥ 1

x0 + x3 + x6 + x7 + x8 ≥ 1

x1 + x4 + x6 + x7 + x8 ≥ 1

x2 + x5 + x6 + x7 + x8 ≥ 1

x ∈ B9

Recall that the symmetry group of this ILP is generated by permutations found in Table 2.3.

π
(3, 6)(4, 7)(5, 8)
(1, 2)(4, 5)(7, 8)
(1, 3)(2, 6)(5, 7)
(0, 1)(3, 4)(6, 7)

Table 2.3: Generators for SBDS Example

At the root node, x0 is chosen for branching. The left node then has x0 = 1, while the right node is formed by adding

the constraints π(xi) ≤ 0 ∀π ∈ G(ILP). Because all variables are equivalent at the root node, the constraints added

to the right child fix all variables to zero. This makes the right problem infeasible.

The second branch is not as easy. Suppose x1 was branched on. Again, the left child is formed by fixing x1 to 1.

The set of constraints π(x0) + π(x1) ≤ 1 for every π ∈ G are added to the right child. The constraints are:

i x0 + x1 ≤ 1

ii x0 + x2 ≤ 1

iii x0 + x3 ≤ 1

iv x0 + x6 ≤ 1

44

2.4. DYNAMIC SYMMETRY BREAKING

v x1 + x2 ≤ 1

vi x1 + x4 ≤ 1

vii x1 + x7 ≤ 1

viii x2 + x5 ≤ 1

ix x2 + x8 ≤ 1

x x3 + x4 ≤ 1

xi x3 + x5 ≤ 1

xii x3 + x6 ≤ 1

xiii x4 + x5 ≤ 1

xiv x4 + x8 ≤ 1

xv x5 + x9 ≤ 1

xvi x6 + x7 ≤ 1

xvii x6 + x8 ≤ 1

xviii x7 + x9 ≤ 1

In this example, only 18 constraints are listed, even though the symmetry group G contains 72 elements. This is

because constraints generated by each permutation may be redundant. For instance, the permutation (3, 6)(4, 7)(5, 8)

is in the G, however, it leaves the inequality x0 + x1 ≤ 1 unchanged. Also note that these constraints are not ill-

conditioned like the lexicographic constraints, but an exponential number may exist.

SBDS guarantees that all optimal solutions found are non-isomorphic. Also, each canonical solution is the leftmost

solution (amongst other isomorphic solutions) in the tree. The implication of this structure is that unlike the static

symmetry-breaking methods, for any branching strategy, the first optimal solution that would have been found without

using symmetry breaking will still be found with the SBDS. The major disadvantage of this method, however, is the

large number of constraints added to the subproblems. To reduce the number of inequalities added, Puget, in [73]

only adds constraints for the permutations that leave the sets F a
1 and F a

0 alone (i.e. permutations that are in both

stab(F a
1 ,G) and stab(F a

0 ,G). He calls this method the STAB method.

Example Using the STAB method, only the following constraints are added to the second subproblem:

i x0 + x1 ≤ 1

ii x0 + x2 ≤ 1

iii x0 + x3 ≤ 1

iv x0 + x6 ≤ 1

While the STAB method can significantly reduce the number of constraints needed, it does not guarantee that all

generated solutions will be non-isomorphic.

45

2.5. SUMMARY

2.4.4 Using Local Symmetry

In [63], Meseguer and Torras are not concerned with solving a given ILP, but instead focus on attempting to quickly

find optimal or near optimal solutions. They examine how different branching strategies can affect the efficiency of

finding a desired solution in cases where the ILP has a large amount of symmetry. Because their motivation is not to

prove optimality, their strategy in branching is different than the above methods. They wish to maximize the number

of solutions feasible to each subproblem in the tree. This is accomplished a general ILP by using the minimum domain

heuristic. This heuristic chooses a branching variable with the smallest domain. The intuition behind this heuristic is

to minimize the number of children early in the tree. This heuristic is discussed in [34] [78]. A result is that the chosen

variable maximizes the number of final states considered in the subproblem. This is favorable because the goal of the

CSP is to find a solution, and thus considering a wider set of final states would increase the likelihood of finding a

solution. This branching strategy is not applicable to binary integer programs, since the domain of any free variable is

{0, 1}, but the intuition of this branching rule can be adapted for problems with symmetry.

Generally, it is not sufficient to consider only subproblems with a large number of solutions. In fact, it is desirable

for the subproblem to consider a large number of non-isomorphic solutions. The heuristic presented in [63], the

variety-maximization heuristic aims to do just that. When all variables are binary, the variety-maximization heuristic

always chooses to fix a variable from the largest orbit. This will break as many symmetries as possible, resulting in a

subproblem with a higher density of non-isomorphic solutions. Of special interest is that the approach in [63] uses the

local symmetry group of the subproblem to generate orbits, i.e., it includes symmetries that come about as a result of

the branching process.

This paper is noteworthy in the context of this thesis for two reasons. First, it introduces the concept of branching

on orbits and even develops a branching rule for orbits. This idea is discussed in great detail in Chapter 3. Also, this

paper introduces an attempt to exploit symmetry that is introduced into a problem as a result of fixing variables. Using

the concept of a local symmetry group is also discussed in Chapter 3.

2.5 Summary

There have been two major efforts to deal with symmetry in integer programming. The first, symmetry removal

by reformulation, is a side-effect of methods developed to improve lower bounds. It is very effective at removing

symmetry, but is only applicable to a specific type of problem. Also, the reformulation requires adding a potentially

large number of variables to the problem. A more general method of mitigating the effects of symmetry is to use the

symmetry group of the problem formulation to reduce the size of the feasible region. This method is very useful, as it

is the only way to solve even small sized problems that cannot be reformulated.

46

2.5. SUMMARY

Many methods that use symmetry to reduce the feasible region for a general problem require the use of sophis-

ticated algebra packages. For example, isomorphic pruning, SBDS, and SBDD all require a significant amount of

algebraic computations. This can make implementing these methods very complicated. In Chapter 3 we discuss

an easily-implemented branching method that uses ideas from Meseguer and Torras [63] to solve ILP instances, by

choosing a small, but not necessarily minimal, fundamental domain.

Most symmetry breaking methods, for instance, isomorphism pruning or orbitopal fixing, either explicitly restrict

branching decisions or distort the value of branching on variables. Chapter 4 discusses a revision to isomorphism

pruning that not only removes the branching restrictions, but doesn’t distort branching information in the process.

47

Chapter 3

Orbital Branching

In this chapter, we will discuss a branching method called orbital branching. It is an easily implemented way to

exploit symmetry in integer programming. Also, orbital branching provides a way to take advantage of symmetry that

is introduced into the enumeration tree through the branch-and-bound process. Fixing variables can lead to changes

in the structure of the problem that can have a considerable effect on the symmetry group. These fixings can create

subproblems whose symmetry groups contain new symmetries and can allow for additional variables to be set at any

nodes throughout the branch-and-bound tree.

In problems containing a great deal of symmetry, branching on a variable may lead to the fixing of the values

of additional variables. It is important to consider these effects when choosing a variable on which to branch. For

instance, fixing a single variable to either 1 or 0 may not affect the corresponding LP solution. However, variables that

can be set as a result of the fixing may have a significant affect on the value of the resulting LP solution. In orbital

branching, we attempt to develop branching rules that takes into account information provided by the symmetry group

to better choose branching variables. The outline of the chapter is as follows: Section 3.1 develops the basic algorithm

for solving an integer program using only the symmetry found in the original problem. Section 3.2 presents a way to

further fix variables using symmetry. Section 3.4 discusses branching rules and gives computational results. Orbital

branching does not fully exploit the symmetry. A discussion of how symmetry can remain and how branching rules

can effect the use of symmetry can be found in Section 3.5. A comparison of orbital branching with other symmetry

breaking methods is found in Section 3.6.1.

48

3.1. ORBITAL BRANCHING

3.1 Orbital Branching

3.1.1 Method

Orbital branching is an intuitive way of exploiting the symmetry group G(ILP) during branching decisions. The

classic 0-1 variable branching dichotomy does not take advantage of the problem information encoded in the symmetry

group. The presence of symmetry provides ways of strengthening both branching disjunctions and variable fixing

algorithms. Symmetry can be exploited ether by fixing variables by symmetry considerations either at the node or

during branching. Algorithms discussed in Chapter 2 such as orbital setting and zero-fixing use symmetry to fix

variables only at the node. Orbital branching fixes variables during branching. By using symmetry considerations to

strengthen branching decisions, the affects of branching on a given variable are better known at the time the branching

decision is made. Thus results in better branching decisions.

To take advantage of information provided by symmetry, orbital branching uses orbits of variables to create the

branching dichotomy, not individual variables. Informally, suppose that at the current subproblem there is an orbit of

cardinality k. In orbital branching, the current subproblem is split into k + 1 subproblems: the first k subproblems are

obtained by fixing each variable in the orbit to one while the (k+1)st subproblem is obtained by fixing all variables in

the orbit to zero. For any pair of variables xi and xj with i and j sharing an orbit, the subproblem created when xi is

fixed to one is essentially equivalent to the subproblem created when xj is fixed to one. Therefore, we can keep in the

subproblem list only one representative subproblem, pruning the (k − 1) equivalent subproblems. This is formalized

below.

3.1.2 Description of Methods

Let Ga be the symmetry group of the subproblem represented by node a in the branch-and-bound tree. Let O =

{i1, i2, . . . , i|O|} ⊆ Na be an orbit of the symmetry group Ga. Given a subproblem a, the disjunction

xi1 = 1 ∨ xi2 = 1 ∨ . . . xiO
= 1 ∨

∑
i∈O

xi = 0 (3.1)

splits the feasible region. In what follows, it will be shown that for any two variables xj and xk with i, j ∈ O, the two

children a(j) and a(k) of a, obtained by fixing respectively xj and xk to 1, have the same optimal solution value. As

a consequence, disjunction (3.1) can be replaced by the binary disjunction

xh = 1 ∨
∑
i∈O

xi = 0, (3.2)

where h is an arbitrary element in O. Note that the additional variable fixings in 3.2 can be done by the orbit-setting

algorithm in isomorphism pruning and equivalent algorithms in constraint programming literature. Formally, we have

49

3.1. ORBITAL BRANCHING

Theorem 3.1.

Theorem 3.1 Let O be an orbit in the orbital partitioning O(Ga), and let j, k be two variable indices in O. If

a(j) = (F a
1 ∪ {j}, F a

0) and a(k) = (F a
1 ∪ {k}, F a

0) are the child nodes created when branching on variables xj and

xk, then z∗(a(j)) = z∗(a(k)).

Proof. Let x∗ be an optimal solution of a(j) with value z∗(a(j)). Obviously x∗ is also feasible for a. Since j and

k are in the same orbit O, there exists a permutation π ∈ Ga such that π(j) = k. By definition, π(x∗) is a feasible

solution of a with value z∗(a(j)) such that xk = 1. Therefore, π(x∗) is feasible for a(k), and z∗(a(k)) = z∗(a(j)).

The basic orbital branching method is formalized in Algorithm 3.1.

Algorithm 3.1 Orbital Branching
Input: Subproblem a = (F a

1 , F a
0), non-integral solution x̂.

Output: Two child subproblems b and c.

Step 1. Compute orbital partition O(Ga) = {O1, O2, . . . , Op}.
Step 2. Select orbit Oj∗ , j∗ ∈ {1, 2, . . . , p}.
Step 3. Choose arbitrary k ∈ Oj∗ . Return subproblems b = (F a

1 ∪ {k}, F a
0) and c = (F a

1 , F a
0 ∪Oj∗).

A general binary ILP is then solved by using LP-based branch-and-bound, where children of processed nodes are

created by algorithm 3.1. The consequence of Theorem 3.1 is that the search space is limited, but orbital branching

also has the relevant effect of reducing the likelihood of encountering symmetric solutions. Namely, no solutions

in the left and right child nodes of the current node will be symmetric with respect to the local symmetry. This is

formalized in Theorem 3.2. Methods for selecting an orbit on which to branch (Step 2 of algorithm 3.1) are discussed

in Section 3.3.2.

Theorem 3.2 Let b and c be any two subproblems in the enumeration tree. Let a be the first common ancestor of b

and c. If a 6= {b, c} then there 6 ∃x ∈ Fb such that ∃π ∈ Ga with π(x) ∈ Fc.

Proof. We will show this by contradiction. Suppose that ∃x ∈ Fb and a permutation π ∈ Ga such that π(x) ∈ Fc.

Let Oi ∈ O(Ga) be the orbit chosen to branch on at subproblem a. W.l.o.g. we can assume xk = 1 for some k ∈ Oi,

that is, b is in the left branch of a. We have that xk = [π(x)]π(k) = 1, but π(k) ∈ Oi. By the orbital branching

dichotomy, π(k) ∈ F c
0 , so π(x) 6∈ Fc.

Note that by using the group Ga, orbital branching attempts to use symmetry found at all nodes in the enumeration tree,

not just the symmetry found at the root node. This makes it possible to prune nodes whose corresponding solutions

are not symmetric in the original ILP. As a result, the area searched by orbital branching need not be a fundamental

domain of F with respect to the symmetry group found at the root node.

50

3.1. ORBITAL BRANCHING

3.1.3 Illustrative Example

Example In order to demonstrate the effects of orbital branching, consider the following example. Let G = (V,E)

be the graph in Figure 3.1 and the associated PILP:

max
∑
i∈V

xi

xi + xj ≤ 1 ∀{i, j} ∈ E,

xi ∈ {0, 1} ∀i ∈ V

which corresponds to computing the stability number of G.

12

11

2

3

13

14

15

16

4

5

17

1819

20

6

7

21

22

23

24

9

10

1

8

Figure 3.1: Example

The LP relaxation of the root subproblem, r, gives an upper bound of 12. Applying Step 1 of Algorithm 3.1 at

the root node results in a group Gr containing 4096 permutations and an orbital partitionO(Gr) containing two orbits,

namely, O1 = {1,. . . ,8} and O2 = {9, . . . , 24}. Thanks to the structure of the problem, in which each constraint

corresponds to an edge of G, the orbits of Gr can be intuitively visualized on the graph.

Step 2 of Algorithm 3.1 selects an orbit on which to base the branching dichotomy. Suppose the largest orbit O2

is chosen, and the branching index k = 9 ∈ O2 is used. Then, two subproblems b and c are generated as follows:

F b
1 = {9} and F b

0 = ∅; F c
1 = ∅ and F c

0 = {9, . . . , 24}. The structure of subproblems b and c, where fixed variables

have been removed, is drawn in Figure 3.2. The LP relaxation of subproblem c is 4. Because a solution of size 8 is

assumed to be known, node c can be pruned by bound. However, node b has an LP relaxation value of 11.5 and cannot

be pruned.

51

3.2. ENHANCEMENTS TO ORBITAL BRANCHING

12

11

2

3

13

14

15

16

4

5

17

1819

20

6

7

21

22

23

24

8

2

3

4

56

7

1

8

subproblem b subproblem c

Figure 3.2: Child subproblems

The advantage of orbital branching over classical branching on a variable is highlighted by completely executing

two branch-and-bound algorithms on the PILP of Example 3.1.3. It is assumed that a feasible solution of (optimal)

value 8 is found at the root node. In the first algorithm, the branching decision is carried out by branching on the

largest orbit. In the second algorithm, ordinary branching is performed on the variable corresponding to the vertex of

G with maximum degree in the remaining graph, a typically effective strategy for stable set problems [76]. In Figures

3.3 and 3.4, the complete enumeration trees obtained by orbital branching and branching on variables, respectively,

are drawn. At each node a, the variables fixed (F a
1 , F a

0) and the value of the LP relaxation zLP are reported. Orbital

branching results in fewer evaluated subproblems: 21 vs. 49 for the variable-branching dichotomy.

An insightful explanation of orbital branching’s improved performance is obtained by examining the structure of

subproblems. For instance, Figure 3.5 shows the graphs remaining at subproblems 9 and 19 of the variable-branching

enumeration tree. The graphs are isomorphic, but both subproblems are evaluated when branching on variables. In

contrast, orbital branching breaks such a symmetry at the root subproblem. The complete catalog of graphs and orbital

partitions for each subproblem in the orbital branching branch-and-bound tree is reported in the Appendix. Looking

at the catalog of subproblems, one can observe that no isomorphic subproblems are evaluated when orbital branching

is used on this example. This is not, however, true in general (see Section 3.5).

3.2 Enhancements to Orbital Branching

This section demonstrates how additional variables may be fixed during branch-and-bound by considering the impli-

cations of symmetry. This section also discusses how to perform orbital branching by considering a subgroup of the

original symmetry group. Orbital branching is compared to a related technique for exploiting symmetry in integer

programs, isomorphism pruning. The section concludes with a brief discussion on how to most effectively employ

52

3.2. ENHANCEMENTS TO ORBITAL BRANCHING

9

5

1

2

z L
P


11
.5

F
02



 F
12


{9
}

z L
P


4

F
03


{9
,..

.,2
4}

 F
13



z L
P


12
 F

01



 F
11



3

4

z L
P


9.
5

F
05


{1
1,

12
,2

3,
24

}

F
15


{9
}

8
6

7

z L
P


11

F
04



F
14


{9
,1

1}

z L
P


9

F
06


{1
1,

12
,

23
,2

4}

F
16


{9
,1

5}

z
L

P


7.
5

F
07


{1
1,

12
,1

5,
16

,

19
,2

0,
23

,2
4

}

F
17


{9
}

z L
P


9

F
09


{1
5,

16
,2

1,
22

}

F
19


{9
,1

1}

z L
P


10
.5

F
08



F
18


{9
,1

1,
15

}

10

12

14

16

11

13

z L
P


10

F
010



F
110


{9
,1

1,
15

,1
9}

 z L
P


9.
5

F
012



F
112


{3
,9

,1
1,

15
,1

9}

z L
P


8.
5

F
011


{1
9,

20
,2

1,
22

}

F
111


{9
,1

1,
15

}

z L
P


7

F
013


{3
,5

,1
3,

14
,1

7,
18

}

F
113


{9
,1

1,
15

,1
9}

15

17

z L
P


7.
5

F
015


{2
1,

22
,2

3,
24

}

F
115


{3
,9

,1
1,

15
,1

9}

z L
P


9

F
014



F
114


{3
,9

,1
1,

15
,1

9,
21

}

z L
P


8.
5

F
016



F
114


{3
,5

,9
,1

1,

15
,1

9,
21

}

z L
P


6

F
017


{5
,1

7,
18

,

23
,2

4}

F
117


{3
,9

,1
1,

15
,1

9,
21

}

18
19

z L
P


8.
5

F
018


{1
5,

16
,

21
,2

2}

F
118


{9
,1

1,
17

}

z L
P


7

F
019


{1
5,

16
,

17
,1

8,
19

,

20
,2

1,
22

}

F
119


{9
,1

1}

20
21

z L
P


8.
5

F
026


{1
1,

12
,

23
,2

4}

F
126


{9
,1

5,
17

}

z L
P


8

F
028


{1
1,

12
,1

7,

18
,2

3,
24

}

F
128


{9
,1

5}

Figure 3.3: Enumeration tree with orbital branching

53

3.2. ENHANCEMENTS TO ORBITAL BRANCHING

1

2

4

6

3

7

5

8
9

10
11

12
13

14
15

18
19

20
21

22
23

24
25

16
17

26

28
29

27

32
33

34
35 36

37

44

46
47

45

30
31

39

42
43

48
49

x 1
 =

 1
x 1

 =
 0

x 5
 =

 1
x 5

 =
 0

x 7
 =

 1
x 7

 =
 0 x 7

 =
 1

x 7
 =

 0

x 3
 =

 1
x 3

 =
 0

x 3
 =

 1x 3
 =

 0

x 6
 =

 1
x 6

 =
 0

x 5
 =

 1
x 5

 =
 0

x 7
 =

 1
x 7

 =
 0

x 7
 =

 1
x 7

 =
 0

x 2
 =

 1
x 2

 =
 0

x 2
 =

 1
x 2

 =
 0

x 8
 =

 1
x 8

 =
 0

x 3
 =

 1
x 3

 =
 0

x 2
 =

 1
x 2

 =
 0
x 6

 =
 1

x 6
 =

 0

x 3
 =

 1
x 3

 =
 0

x 4
 =

 1
x 4

 =
 0

38

40
41

x 8
 =

 1

x 2
 =

 1
x 2

 =
 0

x 2
 =

 1
x 2

 =
 0

x 2
 =

 1
x 2

 =
 0

x 8
 =

 1
x 8

 =
 0

x 8
 =

 1
x 8

 =
 0

z L
P =

 1
2

z L
P =

 1
0.

5

z L
P =

 9
z L

P =
 1

0
z L

P =
 1

0

z L
P =

 9
z L

P =
 9

.5
z L

P =
 9

z L
P =

 9
.5

z L
P =

 9

z L
P =

 9

z L
P =

 9

z L
P =

 9
z L

P =
 9

z L
P =

 9

z L
P =

 9
.5

z L
P =

 9
.5

z L
P =

 9
.5

z L
P =

 9
z L

P =
 9

z L
P =

 1
0

z L
P =

 1
0.

5

z L
P =

 1
1

z L
P =

 1
1.

5

x 8
 =

 0

z L
P =

 8
.5

z L
P =

 8
.5

z L
P =

 8
.5

z L
P =

 8
.5

z L

P =
 8

.5

z L
P =

 8
.5

z L
P =

 8
.5

z L
P =

 8
.5

z L
P =

 8
.5
 z

LP
 =

 8
.5

z L
P =

 8
z L

P =
 8

.5

z L

P =
 8

.5

z L
P =

 8
.5

z L
P =

 8
.5

z L
P =

 8
.5
 z

LP
 =

 8
.5

z L
P =

 8

z L
P =

 8
.5

z L

P =
 8

.5
 z

LP
 =

 8
.5
 z

LP
 =

 8
.5
 z

LP
 =

 8
.5
 z

LP
 =

 8
.5

z L
P =

 8

Figure 3.4: Enumeration tree with branching on variable

54

3.2. ENHANCEMENTS TO ORBITAL BRANCHING

12

11

3

13

14

15

16

4

17

1819

20

6
21

22

23

24

12

11

2

3

13

14

15

16

19

20

21

22

23

24

9

10

8

subproblem 9 subproblem 19

Figure 3.5: Isomorphic Subproblems when Branching on Variables

orbital branching on integer programs whose optimal solution has a large support.

3.2.1 Orbital Fixing

As Theorem 3.2 demonstrates, using orbital branching ensures that no two nodes that are equivalent with respect to the

symmetry found at their first common ancestor can be created. It is possible, however, for two child subproblems to

be equivalent with respect to a symmetry group found elsewhere in the tree. In order to combat this type of symmetry,

orbital fixing is performed.

Permutations in the symmetry group Ga tend to stabilize the sets of elements representing fixed variables. By

considering a larger symmetry group, one that does not stabilize the set F a
0 , variables can be found that can be fixed

to zero. For a = (F a
1 , F a

0), let â represent the subproblem â = (F a
1 , ∅), where all variables in F a

0 are free variables. If

there exists an orbit O in the orbital partition O(Gâ) that contains variables such that O ∩ F a
0 6= ∅ and O ∩Na 6= ∅,

then all variables in O can be fixed to zero. In the following theorem, it is shown that orbital fixing excludes feasible

solutions only if there exists a feasible solution of the same objective value to the left of the current node in the branch-

and-bound tree. (It is assumed that the enumeration tree is oriented so that the branch with an additional variable fixed

to one is the left branch). Similar methods of fixing variables are discussed in isomorphism pruning (orbit setting) and

in constraint programming literature (zero-fixing).

Orbital fixing is able to fix variables by ensuring that if any optimal solution is removed by the fixing, then there is

an optimal solution found somewhere to the left of the current node. To aid in the development, the concept of a focus

node is introduced. For x ∈ F(a), we call node b(a, x) a focus node of a with respect to x if ∃y ∈ F(b) such that

eT x = eT y and b is found to the left of a in the tree.

55

3.2. ENHANCEMENTS TO ORBITAL BRANCHING

Theorem 3.3 Let {O1, O2, . . . Oq} be an orbital partitioning of Gâ at node a, and let the set

S
def= {j ∈ Na | ∃k ∈ F a

0 and j, k ∈ O` for some ` ∈ {1, 2, . . . q}}

be the set of free variables that share an orbit with a variable fixed to zero at a. If x ∈ F(a) with xi = 1 for some

i ∈ S, then either there exists a focus node for a with respect to x or x is not an optimal solution.

Proof:

If S is nonempty, then there exists j ∈ F a
0 , i ∈ S, and π ∈ Gâ, with π(i) = j. W.l.o.g., suppose that j is any of

the first of such variables fixed to zero on the path from the root node to a and let c be the first subproblem in which j

is fixed. Let ρ(c) be the parent node of c. For any x feasible at a with xi = 1, π(x) is not feasible at a or at c (since

π(i) = j and j ∈ F c
0 ⊆ fa

0 . However, by our choice of j as the first fixed variable, x is feasible in ρ(c) and has the

same objective value of x.

The variable xj could have been fixed either (i) as a result of a branching decision, or (ii) because it was deduced

that no optimal solution exists with xj = 1 at node ρ(c) (and the fixing applied to the child nodes), or (iii) by orbital

fixing (at ρ(c)).

i If j was fixed by orbital branching, then the left child of ρ(c) has xh = 1 for some h ∈ orb(j,Gρ(c)). Let π′ ∈ Gρ(c)

have π′(j) = h. Then π′(π(x)) is feasible in the left node with the same objective value of x. The left child

node of ρ(c) is then the focus node of a with respect to x.

ii If it was deduced that no optimal solution feasible at ρ(c) exists with xj = 1, then since π(x) is feasible in ρ(c)

with xj = 1, and π preserves the objective value, x cannot be an optimal solution.

iii Lastly, j could have been fixed by orbital fixing. This implies that the set S is nonempty in ρ(c) and the argument

can be repeated until the first ancestor d of a is reached such that F d
0 does not contain variables fixed by orbital

fixing. Therefore, a sequence of permutations π1, . . . , πr have been found such that πr ◦ πr−1 ◦ . . . ◦ π1 ◦ π(x)

is feasible in d and has the same value of x.

Then, either argument (i) or (ii) can be applied. That is, either there is a focus node f of d with respect to

πr ◦ πr−1 ◦ . . . ◦ π1 ◦ π(x) (which would also be a focus node for a with respect to x), or j was fixed by an

optimality condition (which implies πr ◦ πr−1 ◦ . . . ◦ π1 ◦ π(x) and thus x is not optimal).

There may be elements in S that do not share an orbit with j. One can show that these elements can also be fixed by

adding the fixed variables to F0, updating S, and repeating the argument. As long as S is nonempty, each iteration

will fix at least one variable.

56

3.2. ENHANCEMENTS TO ORBITAL BRANCHING

Algorithm 3.2 Orbital Branching with Orbital Fixing
Input: Subproblem a = (F a

1 , F a
0) (with free variables Na = In \ F a

1 \ F a
0), fractional solution x̂.

Output: Two child nodes b and c.

Step 1. Compute orbital partition O(Gâ) = {Ô1, Ô2, . . . , Ôq}. Let S
def= {j ∈ Na | ∃k ∈ F a

0 and (j ∩ k) ∈
Ô` for some ` ∈ {1, 2, . . . q}}.

Step 2. Compute orbital partition O(Ga) = {O1, O2, . . . , Op}.
Step 3. Select orbit Oj∗ , j∗ ∈ {1, 2, . . . , p}.
Step 4. Choose arbitrary k ∈ Oj∗ . Return child subproblems b = (F a

1 ∪ {k}, F a
0 ∪ S) and c = (F a

1 , F a
0 ∪

Oj∗ ∪ S).

An immediate consequence of Theorem 3.3 is that for all i ∈ F a
0 and for all j ∈ orb(i,Gâ), one can set xj = 0.

Orbital branching is updated to include orbital fixing in Algorithm 3.2. With orbital fixing, the set S of additional

variables set to zero depends on F a
0 . Variables may appear in F a

0 due to a branching decision or due to traditional

methods for variable fixing in integer programming, e.g., reduced cost fixing or implication-based fixing. Orbital

fixing, then, enhances traditional variable-fixing methods by including the symmetry present at a node of the branch-

and-bound tree.

Example (continued) When orbital branching with orbital fixing is applied to the PILP of Example 3.1.3, it gen-

erates the enumeration tree shown in Figure 3.6. Orbital fixing is performed at subproblem 6, a node that has

F 6
0 = {11, 12, 23, 24} and F 6

1 = {9, 15}. The group G6̂ yields the orbits: {2, 3} {5, 8} {6, 7} {11, 12, 13, 14}

{17, 18, 23, 24} {19, 20, 21, 22}. The orbit {11, 12, 13, 14} contains variables that have already been set to zero:

{11, 12, 13, 14} ∩ F a
0 = {13, 14}. Therefore, the variables x13 and x14 are fixed to 0 by orbital fixing. In the same

way, considering the orbit {17, 18, 23, 24}, orbital fixing sets variables x17 and x18 to 0. All the variables fixed to 0

by orbital fixing are underlined in Figure 3.6.

The effect of orbital fixing is clear at subproblem 6, where the optimal value of the LP relaxation is reduced from

9 to 7, as compared to the algorithm without orbital fixing, avoiding further branching (see the tree of Figure 3.3).

The example also helps illustrate the existence of a focus node if orbital fixing is performed (Theorem 3.3). Define

a as the subproblem found at node 6. The set of variables fixed by orbital fixing is S = {13, 14, 17, 18}. Consider

the solution x ∈ F(a): x2 = x5 = x8 = x9 = x13 = x15 = x19 = x21 = 1, and all other variables set

to 0. The solution x is removed from Fa by orbital fixing because there is a solution to the left of node a with

the same cardinality. Following the proof of Theorem 3.3, i = 13 and j ∈ orb({i},G6̂) with xj ∈ F 6
0 , i.e.,

j = 12. A permutation π ∈ G6̂ such that π(12) = 13 is: [(2, 3), (12, 13), (11, 14)]. Then, x̄ = π(x), that is,

x̄3 = x̄5 = x̄8 = x̄9 = x̄12 = x̄15 = x̄19 = x̄21 = 1, and all other variables set to 0. Notice that x̄ 6∈ F(a), since

x12 = 1, but x̄ is feasible in F2. By definition, subproblem 5 is the subproblem c in the proof of Theorem 3.3, and

subproblem 2 is the subproblem ρ(c). The solution x̄ is not feasible at node 4, but x̄ is equivalent to a feasible solution

57

3.2. ENHANCEMENTS TO ORBITAL BRANCHING

9

5

1

2

z L
P


11
.5

F
02



 F
12


{9
}

z L
P


4

F
03


{9
,..

.,2
4}

 F
13



z L
P


12
 F

01



 F
11



3

4

z L
P


9.
5

F
05


{1
1,

12
,2

3,
24

}
F

15


{9
}

8
6

7

z L
P


11

F
04



F
14


{9
,1

1}

z L
P


7

F
06


{1
1,

12
,1

3,
14

,1
7,

18
,2

3,
24

}

F
16


{9
,1

5}

z
L

P


7.
5

F
07


{1
1,

12
,1

5,
16

,1
9,

20
,2

3,
24

}

F
17


{9
}

z L
P


9

F
09


{1
5,

16
,2

1,
22

}

F
19


{9
,1

1}

z L
P


10
.5

F
08



F
18


{9
,1

1,
15

}

10

12

14

16

11

13

z L
P


10

F
010



F
110


{9
,1

1,
15

,1
9}

 z L
P


9.
5

F
012



F
112


{3
,9

,1
1,

15
,1

9}

z L
P


8.
5

F
011


{1
9,

20
,2

1,
22

}

F
111


{9
,1

1,
15

}

z L
P


7

F
013


{3
,5

,

13
,1

4,
17

,1
8}

F
113


{9
,1

1,

15
,1

9}

15

17

z L
P


7.
5

F
015


{2
1,

22
,2

3,
24

}

F
115


{3
,9

,1
1,

15
,1

9}

z L
P


9

F
014



F
114


{3
,9

,1
1,

15
,1

9,
21

}

z L
P


8.
5

F
016



F
114


{3
,5

,9
,1

1,

15
,1

9,
21

}

z L
P


6

F
017


{5
,1

7,
18

,

23
,2

4}

F
117


{3
,9

,1
1,

15
,1

9,
21

}

18
19

z L
P


7.
5

F
018


{1
3,

14
,1

5,

16
,2

1,
22

}

F
118


{9
,1

1,
17

}

z L
P


7

F
019


{1
5,

16
,1

7,
18

,1
9,

20
,2

1,
22

}

F
119


{9
,1

1}

Figure 3.6: Enumeration tree with orbital branching and orbital fixing

58

3.3. IMPLEMENTATION

in node 4 with respect the symmetry group G2.

Node 4 was created by fixing x11 to 1. Thus, we have h = 11 and π′ ∈ G2 can be defined as: (11, 12). Finally,

x̃ = π′(x̄) = π′(π(x)) is: x̃3 = x̃7 = x̃9 = x̃11 = x̃15 = x̃17 = x̃19 = x̃23 = 1, and all other variables set to 0. This

is feasible for subproblem 4. Thus, 4 is a focus node for a with respect to solution x.

3.2.2 Reversing Orbital Branching

One of the advantages of orbital branching is that the “right” branch, in which all variables in the branching orbit O are

fixed to zero, typically changes the optimal value of the LP relaxation significantly, and the left branch, in which one

variable in O is fixed to one, also has a significant impact on the problem. In some classes of ILPs, fixing a variable

to zero can have more impact than fixing a variable to one. This is typically true in instances in where the number of

ones in an optimal solution is larger than 1/2 the number of variables. In such cases, orbital branching is much more

efficient if all variables are complemented, or equivalently if the orbital branching dichotomy (3.2) is replaced by its

complement. Margot [55] also makes a similar observation for his isomorphism pruning algorithm, and he solves the

complemented versions of such instances. Orbital branching opts for the former way of exploiting this fact, where the

“left” branch fixes one variable to zero and orbital fixing fixes variables to one instead of zero.

3.3 Implementation

The orbital branching method has been implemented using the user application functions of MINTO v3.1 [65]. The

branching dichotomy of Algorithm 3.1 or 3.2 is implemented in the appl divide() method, and reduced cost

fixing is implemented in appl bounds(). The entire implementation, including code, for all the branching rules

subsequently introduced in Section 3.3.2, consists of slightly over 1000 lines of code. All advanced ILP features of

MINTO were used, including clique inequalities, which can be useful for instances of (3.3). In this section, we discuss

the features of the implementation that are specific to orbital branching—the computation of the symmetry groups and

orbital branching rules.

3.3.1 Using a Subgroup of the Original Symmetry Group

Computation of the symmetry group Ga is discussed in Section 1.5. All known algorithms that compute the symmetry

group of a given graph have worst-case exponential running times. Thus, computing the symmetry group Ga at each

node a may be computationally prohibitive. It is shown via computational results in Section 3.4 that this is often

not the case. However, in the case that recomputing the full symmetry group Ga is too costly, there is an alternative.

Orbital branching can use the symmetry group stab(F a
1 ,Gr), where Gr is the symmetry group of the root node, to

59

3.3. IMPLEMENTATION

create orbits at every node in the tree. In this method, the original global symmetry group Gr, is computed once and

only the stabilizers are computed at nodes in the tree. Using stabilizers is typically more computationally efficient

than re-computing the symmetry groups from scratch. In order to distinguish between the two symmetry groups that

could be used in orbital branching at node a, stab(F a
1 ,Gr) is referred to as the global symmetry group (because only

the symmetry group found at the root node is used), and Ga is referred to as the local symmetry group.

When using the global symmetry group the decrease in computational overhead for computing orbits comes at

a price. As Theorems 3.4 and 3.5 demonstrate, the global group stab(F a
1 ,Gr) is a subset of the local group Ga.

As a result, when using the global group, the branching dichotomy and fixing mechanisms are weaker (as the orbits

generated by the global group will be a subdivision of the orbits generated by the local group).

Theorem 3.4 stab(F a
1 ,Gr) ⊆ Gâ.

Proof Let π be any permutation in stab(F a
1 ,Gr). The permutation π preserves objective values and feasibility in r.

Since â = (F a
1 , ∅) and π stabilizes the set F a

1 , for any x ∈ F â, π(x) is feasible at the root node r and has π(x)i = 1

for all i ∈ F a
1 . The solution π(x) is also feasible in â. Thus, π ∈ Gâ.

Orbital fixing does not change the result of Theorem 3.4. Specifically, if Sa is the set of indices of variables fixed

to zero by orbital fixing at node a, then the orbits from the group Gâ are a subdivision of orbits from the group Ga∗ ,

where subproblem a∗ = (F a
1 , F a

0 ∪ Sa).

Theorem 3.5 Gâ ⊆ Ga∗ .

Proof. For any π ∈ Gâ, π preserves objective values and feasibility in F â. Note also that Fa∗ ⊆ F â. For any

x ∈ Fa∗ , π(x) ∈ F â. If π(x) /∈ Fa∗ , then there must be some i ∈ F a
0 ∪ Sa with π(x)i = 1. However, because

F a
0 ∪ Sa is a union of orbits, π−1(i) must also be in F a

0 ∪ Sa, but π(x)i = 1 only if xπ−1(i) = 1, a contradiction.

The global symmetry group Gr for the ILP minx∈{0,1}n{cT x|Ax ≤ b} can be approximated by the formulation

group G(A, b, c). However, as discussed in Chapter 1, the formulation of a problem can have a significant effect on

how well G(A, b, c) approximates Gr. While it is not clear what the best approach is for generating a good formulation

to a specific problem instance, it is reasonable to assume that the formulation of the root node was chosen in a

way that it represents a reasonable approximation to Gr. However, it is not reasonable to expect all subproblems

to be formulated in a way that provides an accurate approximation to the local symmetry group. The set of fixed

variables that define the subproblem may render collections of constraints in the subproblem formulation redundant.

These redundant constraints may result in a significantly decreased local formulation group. To avoid issues resulting

from poor formulations, this chapter focuses on set covering and set packing problems. In both cases, all variables

60

3.3. IMPLEMENTATION

represented by the sets F a
1 and F a

0 are removed from the formulation for subproblem a. Constraints that include

variables i for all i ∈ F a
1 are also removed. In the set packing case, all variables not in F a

1 that appear in removed

constraints are also removed from the subproblem (and included in F a
0). The symmetry group of node a found by

using the subproblem processed in this way will be referred to as G(Aa, ba, ca).

3.3.2 Branching Rules

The orbital branching rule introduced in Section 3.1 leaves significant freedom in choosing the orbit on which to

base the branching (Step 2 of Algorithm 3.1). In this section, mechanisms for deciding on which orbit to branch are

discussed. A fractional solution x̂ and orbits O1, O2, . . . Op (consisting of all currently free variables) of the orbital

partition O(Ga) are given as input to the branching decision for the subproblem at node a. Output of the branching

decision is an index j∗ of an orbit on which to base the orbital branching. Six different branching rules are tested.

Rule 1: Branch Largest The first rule chooses to branch on the largest orbit Oj∗ :

j∗ ∈ arg max
j∈{1,...,p}

|Oj |.

Rule 2: Branch Largest LP Solution The second rule branches on the orbit Oj∗ , whose variables have the largest

total solution value in the fractional solution x̂:

j∗ ∈ arg max
j∈{1,...,p}

x̂(Oj).

Rule 3: Strong Branching The third rule is a strong branching rule. For each orbit j, two tentative children are

created and their bounds z+
j and z−j are computed by solving the resulting linear programs. The orbit j∗, for which

the product of the change in linear program bounds is largest, is used for branching:

j∗ ∈ arg max
j∈{1,...,p}

(|eT x̂− z+
j |)(|e

T x̂− z−j |).

A combination of the bound changes

j∗ ∈ arg max
j∈{1,...,p}

(3 min(|eT x̂− z+
j |, |e

T x̂− z−j |) + max(|eT x̂− z+
j |, |e

T x̂− z−j |)),

was also suggested by [48], but the computational results with the max product of the change were slightly stronger.

Note that if one of the potential children in the strong branching procedure was be pruned, either by bound or by

infeasibility, then the bounds on the variables may be fixed to their values on the alternate child node. This is referred

61

3.4. COMPUTATIONAL EXPERIMENTS

to as strong branching fixing, and the computational results in the Appendix report the number of variables fixed in this

manner. As discussed at the end of Section 3.2.1, variables fixed by strong branching fixing may allow for additional

variables to be fixed by orbital fixing.

Rule 4: Break Symmetry Left: This rule is similar to strong branching, but instead of fixing a variable and computing

the change in objective value bounds, a variable is fixed and the change in the size of the symmetry group is computed.

Specifically, for each orbit j, the size of the symmetry group in the resulting left branch is computed as if orbit j

(including variable index ij) was chosen for branching. Recall a(j) = (F a
1 ∪ {j}, F a

0). The orbit that reduces the

symmetry by as much as possible:

j∗ ∈ arg min
j∈{1,...,p}

(
|Ga(ij)|

)
is chosen for branching.

Rule 5: Keep Symmetry Left This branching rule is the same as Rule 4, except that the orbit for which the size of

the child’s symmetry group would remain the largest:

j∗ ∈ arg max
j∈{1,...,p}

(
|Ga(ij)|

)
.

is chosen for branching.

Rule 6: Branch Max Product Left This rule attempts to branch on a large orbit at the current level while also keeping

a large orbit at the second level on which to base the branching dichotomy. For each orbit O1, O2, . . . , Op, the orbits

P j
1 , P j

2 , . . . , P j
q of the symmetry group Ga(ij) of the left child nodes are computed for some variable index ij ∈ Oj .

The orbit j∗ for which the product of the orbit size and the largest orbit of the child subproblem is largest:

j∗ ∈ arg max
j∈{1,...p}

(
|Oj |(max

k∈{1,...q}
|P j

k |)
)

.

is chosen for branching.

3.4 Computational Experiments

In this section, empirical evidence of the effectiveness of orbital branching is given. The impact of choosing the orbit

on which branching is based is investigated, and the positive effect of orbital fixing is demonstrated. The computations

are based on the instances whose characteristics are given in Table 3.1. The instances beginning with cod are used

to compute maximum cardinality binary error-correcting codes [50]. The instances whose names begin with cov

are covering design problems [64], the instance f5 is the “football pool problem” on five matches [33], and the

62

3.4. COMPUTATIONAL EXPERIMENTS

Name Variables Group Size
cod83 256 10,321,920
cod93 512 185,794,560
cod105 1024 3,715,891,200
cov1053 252 3,628,800
cov1054 252 3,628,800
cov1075 120 3,628,800
cov1076 120 3,628,800
cov954 126 362,880

f5 243 933,120
sts45 45 360
sts63 63 72,576
sts81 81 1,965,150,720

Table 3.1: Symmetric Integer Programs

instances sts are used to compute the incidence width of the well-known Steiner-triple systems [22]. The cov

formulations have been strengthened with a number of Schöenheim inequalities, derived by Margot [56]. The sts

instances typically have roughly 2/3 of the variables equal to one in an optimal solution, so for these instances, the

orbital branching dichotomy is reversed, as explained in Section 3.2.2. All instances, save for f5, are available from

Margot’s web site: http://wpweb2.tepper.cmu.edu/fmargot/lpsym.html.

The computations were run on machines with AMD Opteron processors clocked at 1.8GHz and having 2GB of

RAM. The COIN-OR software Clp was used to solve the linear programs at nodes of the branch and bound tree. For

each instance, the (known) optimal solution value was set a priori to aid pruning and reduce the random impact of

finding a feasible solution in the search (with a tolerance of .05). Nodes were searched in a depth-first fashion. When

the size of the maximum orbit in the orbital partitioning was less than or equal to two, nearly all of the symmetry in

the problem was eliminated by the branching procedure, and there was little use in performing orbital branching. In

this case, we used MINTO’s default branching strategy [48]. If orbital branching is not performed at a node, then there

is little likelihood that it will be effective at the node’s children. In this case, we saved the computational overhead of

re-computing the symmetry group, and simply allowed MINTO to choose a branching variable. The CPU time was

limited in all cases to four hours, and a limit of 1,000,000 nodes evaluated was imposed.

Table 3.2 shows the results of an experiment designed to compare the performance of the six different orbital

branching rules introduced in Section 3.3.2. In this experiment, reduced cost fixing, orbital fixing, and the local

symmetry group Ga were used. The CPU time required (in seconds) for orbital branching to solve each instance in

the test suite for the six different is reported. A complete table showing the number of nodes, CPU time, CPU time

computing automorphism groups, the number of variables fixed by reduced cost fixing, orbital fixing, strong branching

fixing, and the deepest tree level at which orbital branching was performed for a variety of parameter settings is shown

in Table 3.7 in the Appendix.

63

3.4. COMPUTATIONAL EXPERIMENTS

Instance Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6
cod83 11 4 5 6 8 5
cod93 1677 1557 2368 3269 242 399
cod105 239 238 345 255 424 229
cov954 5 4 24 8 17 5

cov1053 103 617 768 346 105 90
cov1054 14400 14400 14400 14400 181 14400
cov1075 69 50 216 14400 210 128
cov1076 14400 14400 14400 14400 1560 14400

f5 64 80 668 42 34 64
sts45 8 8 95 8 8 8
sts63 93 91 1132 1630 161 137
sts81 127 164 13465 3423 434 3371

Times Best 2 6 0 1 5 2

Table 3.2: CPU Time for Orbital Branching Using Local Symmetry Group

pgflastimage

Figure 3.7: Performance Profile of Branching Rules

In order to succinctly present the computational results, the performance profiles of Dolan and Moré [14] are

used. A performance profile is a relative measure of the effectiveness of one solution method in relation to a group of

solution methods on a fixed set of problem instances. A performance profile for a solution method m is essentially a

plot of the probability that the performance of m (measured in this case with CPU time) on a given instance in the test

suite is within a factor of β of the best method for that instance. Methods whose corresponding profile lines are the

highest are the most effective. Figure 3.7 shows a performance profile of the results of the first experiment, the CPU

times in Table 3.2.

The most effective branching method is Branching Rule 5—the method that keeps the size of the symmetry group

large on the left branch. (This method gives the “highest” line in Fig. 3.7). In fact, this branching method is the only

one that is able to solve all of the instances in the test suite within the four hour time limit. This result is somewhat

surprising. Anecdotally, symmetry has long been thought to be a significant hurdle for solving integer programs.

One might expect that methods in which symmetry was removed as quickly as possible would have been the most

effective. The computational results are counter to this intuition. Instead, if effective methods for exploiting problem

symmetry (like those in orbital branching) are present, the results indicate that keeping a large amount of symmetry

in the subproblems may be effective in some cases. As orbital branching does not exploit all symmetry available, it is

important to determine if Branching Rule 5 is effective because it moves the LP bounds quickly or because it is able

to exploit more symmetry than other rules. This is discussed in Section 3.5.

A second experiment was aimed at measuring the impact of using the global symmetry group stab(F a
1 ,G(A, b, c))

64

3.4. COMPUTATIONAL EXPERIMENTS

instead of the local symmetry group stab(F a
1 ,G(A, b, c)), discussed in Section 3.3.1, when making a branching deci-

sion. Table 3.3 shows the CPU time (in seconds) that orbital branching, equipped with reduced cost fixing and orbital

fixing, required on the instances in the test suite, for the different branching rules employing the global symmetry

group.

Instance Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6
cod83 10 3 5 1 1 5
cod93 1677 1556 2361 166 167 396
cod105 237 237 359 234 242 237
cov954 5 4 23 13 6 5

cov1053 103 619 761 280 240 89
cov1054 14400 14400 14400 14400 179 14400
cov1075 55 42 202 14400 152 95
cov1076 14400 14400 14400 14400 1415 14400

f5 64 79 664 44 45 64
sts45 8 8 50 8 8 8
sts63 104 90 101 20 20 81
sts81 29 28 73 39 39 3383

Times Best 1 4 0 6 6 1

Table 3.3: CPU Time for Orbital Branching Using Global Symmetry Group

Again, Branching Rule 5 was by far the most effective. A side-by-side comparison of Tables 3.2 and 3.3 indicates

that, in general, using the global symmetry group is more effective than attempting to exploit symmetry that may

only be locally present at a node. Figure 3.8 shows a performance profile comparing the CPU time required to solve

the instances using Branching Rule 5 with both the local and global symmetry groups. Surprisingly, the improved

performance of the global symmetry group comes not only from the improved efficiency of the branching calculations,

but in many cases, the number of nodes is reduced, as shown in Table 3.4. These computational results run counter to

Theorem 3.4, which states that orbits from the global symmetry group are a subdivision of orbits from the local group.

Since the orbits of the local group are no smaller, one would expect that orbital branching’s enumeration tree would

also be smaller in this case.

pgflastimage

Figure 3.8: Performance Profile of Local versus Global Symmetry Groups

A third comparison worthy of note is the impact of performing orbital fixing, as introduced in Section 3.2.1.

Using branching Rule 5, each instance in Table 3.1 was run both with and without orbital fixing. Figure 3.9 shows

a performance profile comparing the results in the two cases. The results shows that orbital fixing has a significant

positive impact.

65

3.5. INCOMPLETE SYMMETRY REMOVAL

Instance Local Symmetry Global Symmetry
cod83 195 25
cod93 1577 1361

cod105 23 11
cov954 449 249

cov1053 3139 9775
cov1054 1249 1249
cov1075 381 381
cov1076 31943 31943

f5 717 1125
sts45 4507 4709
sts63 9993 5533
sts81 83961 6293

Geo. Mean 1651 1081

Table 3.4: Number of Nodes in Orbital Branching Enumeration Tree with Different Symmetry Groups

pgflastimage

Figure 3.9: Performance Profile of Impact of Orbital Fixing

The final comparison made in the chapter is between different branch and bound techniques for solving the sym-

metric test instances. Five different algorithms were compared: the isomorphism pruning algorithm of Margot, orbital

branching (using branching Rule 5 and the global symmetry group), MINTO’s default algorithm, CPLEX v11.0 with-

out symmetry handling, and CPLEX v11.0 with symmetry handling. (The symmetry handling was changed in CPLEX

by setting the option symmetry to 0 or 5 respectively). As orbital branching is implemented in the MINTO frame-

work, the MINTO default results demonstrate the direct impact of orbital branching on the symmetric test instances.

Table 3.5 summarizes the results of the comparison. The results for isomorphism pruning are taken directly from

Margot’s paper using the most sophisticated of his branching rules “BC4” [55]. The paper does not report results on

f5. The CPLEX results were obtained on an Intel Pentium 4 CPU clocked at 2.0GHz, as this was the only machine on

which a CPLEX license was available. Since the results were obtained on three different computer architectures and

each used a different LP solver for the child subproblems, the CPU times should be interpreted appropriately. The re-

sults clearly show that isomorphism pruning and orbital branching are the most effective methods for these symmetric

instances.

3.5 Incomplete Symmetry Removal

This section focuses on how symmetry can remain when using orbital branching. Consider again the PILP, with

symmetry group G, associated with Figure 3.1, using the branching ordering shown in Figure 3.10.

At every given node, the symmetry group is computed twice, once to perform orbital fixing, and again to generate

66

3.5. INCOMPLETE SYMMETRY REMOVAL

Isomorphism Orbital MINTO CPLEX v11 CPLEX v11
Pruning Branching Default w/o Sym w/Sym

Instance Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes
cod83 19 33 1 25 14400 346963 89 8351 100 9338
cod93 651 103 167 1361 14400 43305 14400 289928 14400 287998

cod105 2000 15 242 11 14400 4 3025 2188 2611 816
cov954 24 126 6 249 1180 39213 11 1266 11 1266

cov1053 35 111 240 9775 14400 207430 3508 262187 3556 262628
cov1054 130 108 179 1249 14400 32679 14400 101478 14400 94949
cov1075 118 169 152 381 14400 144064 868 20663 1170 21076
cov1076 3634 5121 1415 31943 14400 180147 14400 184600 14400 173900

f5 N/A N/A 45 1125 14400 176611 1713 111505 1592 107816
sts45 31 513 8 4709 223 58683 18 32980 12 19931
sts63 120 1247 20 5533 14400 1475000 5410 4681239 5488 4805781
sts81 68 199 39 6293 14400 1557850 14400 13425146 14400 13361288

Table 3.5: Comparison of Different Solvers on Test Instances

B

A

C

D

E

x9 = 1

x2 + x8 = 0

x7 = 1

x19 = 1

x2 = 1

Figure 3.10: Subset of Enumeration Tree

67

3.5. INCOMPLETE SYMMETRY REMOVAL

the orbits used for branching. Thus, two graphs are created for every node and the symmetry group of each graph

is computed. Figure 3.11 represents both graphs formed by fixing x9 to 1. Solid vertices and edges in Figure 3.11

represent edges and vertices that appear in both graphs, while hashed edges and vertices are only in the graph used to

compute Gâ.

1 2

3

4

5
6

7

8

10 11 12

13

14

15

16

17181920

21

22

23

24

Figure 3.11: Graph of subproblem A

1

3

4

5
6

7

8

10 11 12

13

14

15

16

17181920

21

22

23

24

Figure 3.12: Graph of subproblem B

Figure 3.11 represents a case where stab(FA
1 ,G) = GÂ = GA∗

. This will not be true in general. Node B, shown

in Figure 3.12, is more interesting. While stab(FB
1 ,G) = GB̂ , node B is a nontrivial case where GB̂ ⊂ GB∗

. Note that

GB∗
contains the reflection permutation πr = (4, 8)(5, 7)(15, 23)(16, 24)(17, 21)(18, 22) and no reflection appears

in GB̂ . Also worth noting is that πr is not a newly found symmetry. The permutation πr is the projection of the

permutation

(1, 3)(4, 8)(5, 7)(9, 13)(10, 14)(15, 23)(16, 24)(17, 21)(18, 22)

found in G.

At node C of Figure 3.13, stab(FC
1 ,G) = GĈ = GC∗

. Also, no orbital fixing can be done. Node D of Figure 3.14,

is another graph where GD̂ ⊂ GD∗
. Here too, no orbital fixing can be done.

68

3.5. INCOMPLETE SYMMETRY REMOVAL

1 2

3

4

5
6

7

8

10 11 12

13

14

15

16

17181920

21

22

23

24

Figure 3.13: Graph of subproblem C

1 2

3

4

5
6

8

10 11 12

13

14

15

16

17181920

21

22

23

24

Figure 3.14: Graph of subproblem D

69

3.5. INCOMPLETE SYMMETRY REMOVAL

The graph shown in Figure 3.15 is isomorphic to a subgraph of Figure 3.12. This can be seen by rotating the graph

90 degrees clockwise. Any feasible solution in node E will be equivalent to a solution feasible at node B. The variable

x19 could have been fixed to 0 at node D, but neither orbital branching nor orbital fixing allowed us to do this.

1 2

3

4

5
6

8

10 11 12

13

14

15

16

171820

21

22

23

24

Figure 3.15: Graph of subproblem E

If SBDS (Section 2.4.3) was used instead of orbital branching, the set of constraints π(x9 + x2) ≤ 1, for all

π ∈ G, would have been added to node C. This can be seen by noting that for any solution with π(x9 + x2) = 2, the

permutation π−1 ∈ G maps that solution to a solution in B. Orbital branching implicitly enforces this constraint only

for π ∈ Stab(FC
1 ,G), as these are the only constraints that can fix variables at the current node. When future variables

are fixed to 1 (in this case x7), orbital branching does not go back in the tree to check either for violated inequalities or

for inequalities that may allow us to fix variables (in this case, the inequality x7 + x19 ≤ 1 at node D). Orbital fixing

is a way to capture some of these forgotten inequalities, but orbital fixing’s effectiveness can be very dependent on the

ordering of the branching. If x19 had been chosen to branch on at node C instead of x7, then orbital fixing would have

fixed x7 to 0, satisfying the inequality x7 + x19 ≤ 1. Observe that stab({9, 19},G) contains the horizontal reflection

permutation πh, and that πh(7) = 8, so elements 7 and 8 would have shared the same orbit. Since x8 = 0, orbital

fixing would fix x7 to 0. While changing the branching ordering may avoid problems associated with the particular

permutation πh, it may miss permutations that are handled easily by the original branching decision.

3.5.1 Symmetry Removal by Branching Rule

The branching strategies developed for orbital branching serve two purposes: to exploit symmetry and to move the

LP bounds. In this section, the branching rules discussed in Section 3.3.2 are examined in order to determine how

effective they are at exploiting symmetry.

In order to test the ability of a branching rule to exploit symmetry, all near-optimal solutions found during orbital

branching are counted and the size of the set of solutions is compared to the size of the true set of non-isomorphic

solutions. If a particular branching rule removes all symmetry, the collection of solutions generated will have a

70

3.6. COMPARISON WITH OTHER METHODS

cardinality equal to the number of all near optimal non-isomorphic solutions. If an algorithm fails to exploit symmetry,

the size of the collection will be much larger. Table 3.5.1 shows the computational results.

Instance k Smallest Largest Keep Symmetry Remove Symmetry Actual
cod83 1 647 3037 376 * 14
cod105 0 2 2 2 2 2
sts27 0 4 7 4 7 1
sts45 1 716 1474 540 1637 37
sts63 1 628 4489 463 179 87
sts81 1 8 8 8 * 2

Table 3.6: Number of Solutions Generated Within k of Optimal

These results from Table 3.5.1 used a time limit of 2 hours. A “*” denotes instances where the branching method

was unable to finish. The results indicate that both branching on the smallest orbit and branching to keep symmetry are

more effective than branching on the largest orbit and branching to remove symmetry. These results can be supported

by considering Theorem 3.2. This theorem states that for any two distinct nodes a and b, no solution feasible in a is

isomorphic to a solution feasible in b with respect to the symmetry group of the pair of node’s first common ancestor.

The branching rule, “Keep Symmetry Left” tries to keep as much symmetry in the tree as possible. Ideally, the first

common ancestor of any pair of nodes has a large symmetry group, making is less likely that the pair of nodes contains

equivalent solutions.

Branching to keep symmetry is very similar to branching on the smallest orbit. Branching on an orbit of size k

decreases the size of the child’s symmetry group by at most a multiple of 1
k . In practice, the symmetry group of the

left child will not be much larger than 1
k times smaller than the parent’s. Therefor, it is likely that branching on the

smallest orbit also creates the smallest symmetry group in the left child. Unfortunately, intuition would indicate that

branching on small orbits would lead to small changes in the LP bound, as there are fewer variables in the orbit to fix

to zero in the right branch.

3.6 Comparison with Other Methods

3.6.1 Isomorphism Pruning

Isomorphism pruning, discussed in Chapter 1 and 4 is a powerful tool to exploit symmetry, however, it requires a rigid

branching rule. Orbital branching does not suffer from this inflexibility. By not focusing on pruning all isomorphic

nodes, but rather eliminating the symmetry through branching, orbital branching offers a great deal more flexibility in

the choice of branching entity. Another advantage of orbital branching is that it allows for the use of symmetry group

Ga, symmetry introduced as a result of the branching process. While using the local group has not been shown to be

effective in these studies, there may be classes of problems where symmetry tends to enter the tree, and in these cases,

71

3.6. COMPARISON WITH OTHER METHODS

using the local symmetry group may be more effective.

Both methods allow for the use of traditional integer programming methodologies such as cutting planes and fixing

variables based on considerations such as reduced costs and implications derived from preprocessing. In isomorphism

pruning, for a variable fixing to be valid, it must be that all non-isomorphic optimal solutions are in agreement with

the fixing. Orbital branching does not suffer from this limitation. A powerful idea in both methods is to combine the

variable fixing with symmetry considerations in order to fix many additional variables. This idea is called orbit setting

in [55] and orbital fixing in this work (see Sec. 3.2.1).

3.6.2 Symmetry Breaking Inequalities

Throughout this thesis we have been concerned with removing variables by fixing variables. This can significantly

reduce the number of feasible solutions in a given subproblem that are isomorphic to solutions found elsewhere (to

the left) in the tree. As mentioned before, this fixing does not guarantee that all such isomorphic solutions will be

eliminated. Orbital branching, as well as isomorphism pruning, only concerns itself with variables that, if fixed to a

certain value at a subproblem, will cause all corresponding feasible solutions to be isomorphic.

Neither orbital branching nor isomorphism pruning attempts to actually remove all isomorphic solutions that are

feasible at a given subproblem. This is a much more difficult task. Doing so would guarantee no two isomorphic

nodes were processed and may actually further decrease the number of nodes needed to solve the problem. It has been

observed many times, and in fact it is the basis of SBDS (see section 2.4.3), that if we branch on variable xi at node a

we can add the constraint ∑
k∈π(F a

1 ∪i)

xk ≤ |F a
1 |

for every π ∈ Gr to the right branch. It should be clear that this is a valid branching rule and does in fact remove

all feasible integer solutions that are symmetric to solutions to the left of the node from the feasible region. It is also

possible to explain orbital branching in terms of this method of symmetry removal.

For instance, suppose variable xi is chosen to branch on at node a. In the right node xi = 0. Consider any variable

xj that shares an orbit with xi at a. We know that there is a permutation π ∈ stab(F a
1 , Gr) that sends i to j, so, for

this π the constraint
∑

{k∈π(F a
1 ∪i)} xk ≤ |F a

1 | becomes
∑

{k∈F a
1 ∪j} xk = |F a

1 |+ xj ≤ |F a
1 |, so we have that xj = 0

for every j sharing an orbit with i.

By explaining orbital branching in terms of this method, our proof for the validity of the global version of orbital

fixing becomes more clear. Recall that if there exists a mixed-zero-free orbit Oj in stab(F a
1 ,Gr), then we can fix

all variables in Oj to zero. This can be more easily seen by considering the variable xi in Oi that was fixed to zero

first in the enumeration tree, at node b, by the constraint
∑

i∈{F b
1∪i} xi ≤ |F b

1 |. For any free variable j in Oi there

is a permutation π ∈ Stab(F a
1 ,Gr) sending i to j. We have then that

∑
i∈π(F b

1) xi = |F b
1 | because F b

1 ⊂ F a
1 , and

72

3.7. SUMMARY

π(F b
1) ⊂ F a

1 by π being a stabilizer. That means that the constraint
∑

i∈π(F a
1 ∪i) xi ≤ |F a

1 | fixes xj to zero.

Not only does this description of orbital branching give more descriptive proofs to some of the fundamental theo-

rems in this chapter, it also describes orbital branching in such a way that would be easily comparable to SBDS. By

branching on orbits and performing orbit setting, orbital branching is able to take advantage of many of the inequalities

that are introduced during SBDS without the overhead required by SBDS.

3.7 Summary

In this chapter, we presented a simple way to capture and exploit the symmetry of an integer program when branching.

We showed, through a set of experiments, that orbital branching outperforms CPLEX, a state-of-the-art solver, when

a high degree of symmetry is present. Orbital branching also seems to be of comparable quality to the isomorphism

pruning method of Margot [55] and we will discuss a powerful combination of the two methods in Chapter 4. Further,

we feel that the simplicity and flexibility of orbital branching makes it an attractive candidate for further study. In

Chapter 5 we discuss ways to extend the orbital branching method on more general types of branching disjunctions.

73

3.7. SUMMARY

Deepest
Nauty Nauty # Fixed # Fixed #Fixed Orbital

Instance Branching Rule Time Nodes Calls Time by RCF by OF by SBF Level
cod105 Break Symmetry 254.5 17 7 15.0 0 1020 0 7
cod105 Keep Symmetry 423.9 23 10 21.6 216 1228 0 8
cod105 Branch Largest LP 237.9 7 2 4.2 0 0 0 2
cod105 Branch Largest 239.2 9 3 6.4 0 0 0 3
cod105 Max Prod. Orbit Size 229.5 9 3 6.1 1 960 0 3
cod105 Strong Branch 344.7 7 2 4.2 0 1024 1532 2
cod83 Break Symmetry 6.2 143 41 1.3 325 548 0 15
cod83 Keep Symmetry 8.2 195 73 2.3 251 942 0 18
cod83 Branch Largest LP 3.6 57 18 0.5 328 864 0 7
cod83 Branch Largest 10.6 193 14 0.4 233 588 0 7
cod83 Max Prod. Orbit Size 4.8 105 19 0.6 69 642 0 11
cod83 Strong Branch 5.3 21 9 0.4 16 762 412 6
cod93 Break Symmetry 3268.8 37297 557 58.4 106725 6202 0 26
cod93 Keep Symmetry 242.5 1577 303 32.9 11473 2422 0 44
cod93 Branch Largest LP 1557.1 14461 13 1.9 201292 348 0 7
cod93 Branch Largest 1677.3 16439 15 2.2 205636 1060 0 7
cod93 Max Prod. Orbit Size 398.9 3503 59 6.8 41907 704 0 25
cod93 Strong Branch 2367.9 161 79 8.2 437 2400 13478 15

cov1053 Break Symmetry 345.8 15321 800 28.7 0 2418 0 35
cov1053 Keep Symmetry 105.4 3139 520 18.7 0 1696 0 31
cov1053 Branch Largest LP 616.7 20725 61 2.1 0 988 0 19
cov1053 Branch Largest 103.5 3437 55 1.9 0 1094 0 17
cov1053 Max Prod. Orbit Size 90.2 2859 71 2.5 0 1466 0 20
cov1053 Strong Branch 768.4 777 387 14.1 0 2834 16462 43
cov1054 Break Symmetry 14400.0 110116 1 0.2 0 0 0 0
cov1054 Keep Symmetry 181.3 1249 103 18.5 0 454 0 15
cov1054 Branch Largest LP 14400.0 104126 6 1.1 56 88 0 5
cov1054 Branch Largest 14400.0 105500 10 1.7 0 0 0 7
cov1054 Max Prod. Orbit Size 14400.0 104172 12 2.0 0 176 0 8
cov1054 Strong Branch 14400.0 846 430 79.3 0 220 12846 57
cov1075 Break Symmetry 14400.0 408822 1 0.8 862268 0 0 0
cov1075 Keep Symmetry 209.7 381 181 189.8 413 962 0 15
cov1075 Branch Largest LP 49.8 495 22 23.3 1400 520 0 9
cov1075 Branch Largest 68.6 461 43 44.3 1333 900 0 13
cov1075 Max Prod. Orbit Size 128.4 543 98 102.0 1028 1090 0 21
cov1075 Strong Branch 215.5 71 34 37.4 126 92 1858 10
cov1076 Break Symmetry 14400.0 496533 1 0.7 720913 0 0 0
cov1076 Keep Symmetry 1559.9 31943 786 657.0 21902 960 0 20
cov1076 Branch Largest LP 14400.0 498573 20 15.8 631691 222 0 7
cov1076 Branch Largest 14400.0 504396 40 34.0 495631 388 0 9
cov1076 Max Prod. Orbit Size 14400.0 498258 133 110.2 638795 532 0 18
cov1076 Strong Branch 14400.0 4989 2498 2327.4 2798 1256 71682 27
cov954 Break Symmetry 8.4 237 69 4.4 423 272 0 11
cov954 Keep Symmetry 17.3 449 170 11.0 677 948 0 15
cov954 Branch Largest LP 3.8 153 11 0.7 638 0 0 6
cov954 Branch Largest 5.3 249 20 1.2 818 304 0 12
cov954 Max Prod. Orbit Size 4.8 217 18 1.1 699 132 0 11
cov954 Strong Branch 24.0 63 30 1.9 65 160 1724 11

f5 Break Symmetry 42.5 995 117 2.5 3515 1356 0 14
f5 Keep Symmetry 34.5 717 78 1.5 2102 598 0 14
f5 Branch Largest LP 79.8 2573 31 0.6 7660 252 0 8
f5 Branch Largest 64.1 1829 35 0.6 9710 430 0 11
f5 Max Prod. Orbit Size 64.3 1835 38 0.7 9678 418 0 13
f5 Strong Branch 668.2 123 60 1.1 169 736 8610 15

sts45 Break Symmetry 7.6 4571 11 0.7 1 0 0 4
sts45 Keep Symmetry 8.1 4507 16 1.3 2 0 0 6
sts45 Branch Largest LP 7.8 4683 6 0.6 3 0 0 3
sts45 Branch Largest 8.1 4917 4 0.4 1 0 0 2
sts45 Max Prod. Orbit Size 8.1 4917 4 0.4 1 0 0 2
sts45 Strong Branch 94.5 1417 707 43.0 0 0 7984 16
sts63 Break Symmetry 1630.3 666623 10 6.9 720 126 0 43
sts63 Keep Symmetry 160.8 9993 155 135.7 12 0 0 11
sts63 Branch Largest LP 91.4 32627 17 12.6 7 0 0 9
sts63 Branch Largest 92.7 33785 15 9.1 19 0 0 7
sts63 Max Prod. Orbit Size 136.8 31261 73 57.3 48 0 0 10
sts63 Strong Branch 1132.1 3157 1577 913.6 0 0 16858 24
sts81 Break Symmetry 3422.7 1000000 5 2.4 235 0 0 4
sts81 Keep Symmetry 434.1 83961 38 128.0 8 0 0 15
sts81 Branch Largest LP 164.0 25739 20 68.7 5 0 0 13
sts81 Branch Largest 127.0 11323 28 84.6 0 0 0 13
sts81 Max Prod. Orbit Size 3370.8 1000000 1 0.1 200 0 0 0
sts81 Strong Branch 13465.4 11291 5644 12074.9 1 0 62098 30

Table 3.7: Performance of Orbital Branching Rules (Local Symmetry) on Symmetric ILPs

74

3.7. SUMMARY

Deepest
Nauty Nauty # Fixed # Fixed #Fixed Orbital

Instance Branching Rule Time Nodes Calls Time by RCF by OF by SBF Level
cod105 Break Symmetry 234.1 11 4 7.1 0 1020 0 4
cod105 Keep Symmetry 242.5 11 4 7.1 0 1020 0 4
cod105 Branch Largest LP 237.2 7 2 3.6 0 0 0 2
cod105 Branch Largest 237.3 9 3 5.5 0 0 0 3
cod105 Max Prod. Orbit Size 237.5 9 3 5.3 1 960 0 3
cod105 Strong Branch 359.1 7 2 3.6 0 1024 1532 2
cod83 Break Symmetry 1.3 25 11 0.3 37 906 0 7
cod83 Keep Symmetry 1.3 25 11 0.3 37 906 0 7
cod83 Branch Largest LP 3.4 57 18 0.4 328 864 0 7
cod83 Branch Largest 10.4 193 14 0.3 233 588 0 7
cod83 Max Prod. Orbit Size 4.6 105 19 0.4 69 642 0 11
cod83 Strong Branch 5.2 21 9 0.3 16 762 412 6
cod93 Break Symmetry 165.7 1361 80 8.4 7397 3378 0 14
cod93 Keep Symmetry 167.2 1361 80 8.4 7397 3378 0 14
cod93 Branch Largest LP 1555.7 14461 13 1.5 201292 348 0 7
cod93 Branch Largest 1677.2 16439 15 1.7 205636 1060 0 7
cod93 Max Prod. Orbit Size 395.7 3503 59 4.1 41907 704 0 25
cod93 Strong Branch 2361.0 161 79 3.8 437 2400 13478 15

cov1053 Break Symmetry 280.5 11271 1276 23.7 0 3454 0 33
cov1053 Keep Symmetry 240.2 9775 248 4.7 0 724 0 25
cov1053 Branch Largest LP 619.3 20903 56 1.1 0 988 0 19
cov1053 Branch Largest 102.6 3437 55 1.2 0 1094 0 17
cov1053 Max Prod. Orbit Size 89.2 2859 71 1.6 0 1466 0 20
cov1053 Strong Branch 761.0 777 387 7.6 0 2830 16464 43
cov1054 Break Symmetry 14400.0 110307 1 0.2 0 0 0 0
cov1054 Keep Symmetry 178.8 1249 103 15.2 0 454 0 15
cov1054 Branch Largest LP 14400.0 104161 6 0.9 56 88 0 5
cov1054 Branch Largest 14400.0 105846 10 1.4 0 0 0 7
cov1054 Max Prod. Orbit Size 14400.0 104184 12 1.7 0 176 0 8
cov1054 Strong Branch 14400.0 846 430 52.7 0 220 12846 57
cov1075 Break Symmetry 14400.0 410572 1 0.8 865517 0 0 0
cov1075 Keep Symmetry 152.2 381 181 133.0 413 962 0 15
cov1075 Branch Largest LP 41.9 495 22 15.7 1400 520 0 9
cov1075 Branch Largest 54.6 461 43 30.6 1333 900 0 13
cov1075 Max Prod. Orbit Size 95.2 543 98 69.2 1028 1090 0 21
cov1075 Strong Branch 201.6 71 34 23.9 126 92 1858 10
cov1076 Break Symmetry 14400.0 495919 1 0.7 719961 0 0 0
cov1076 Keep Symmetry 1415.0 31943 786 516.2 21902 960 0 20
cov1076 Branch Largest LP 14400.0 496393 20 13.1 628579 222 0 7
cov1076 Branch Largest 14400.0 504849 40 26.2 496164 388 0 9
cov1076 Max Prod. Orbit Size 14400.0 497593 133 86.5 637905 532 0 18
cov1076 Strong Branch 14400.0 5280 2642 1692.9 2971 1288 76298 27
cov954 Break Symmetry 12.7 373 150 7.1 632 524 0 13
cov954 Keep Symmetry 6.2 249 42 1.9 748 48 0 11
cov954 Branch Largest LP 3.6 153 11 0.5 638 0 0 6
cov954 Branch Largest 5.0 249 20 0.9 818 304 0 12
cov954 Max Prod. Orbit Size 4.6 217 18 0.8 699 132 0 11
cov954 Strong Branch 23.5 63 30 1.3 65 160 1724 11

f5 Break Symmetry 44.5 1125 292 4.6 2983 2994 0 17
f5 Keep Symmetry 44.6 1125 292 4.6 2983 2994 0 17
f5 Branch Largest LP 79.5 2573 31 0.4 7660 252 0 8
f5 Branch Largest 63.8 1829 35 0.4 9710 430 0 11
f5 Max Prod. Orbit Size 63.9 1835 38 0.5 9678 418 0 13
f5 Strong Branch 664.4 123 60 0.4 169 736 8610 15

sts45 Break Symmetry 7.9 4709 16 0.8 0 0 0 6
sts45 Keep Symmetry 7.8 4709 16 0.7 0 0 0 6
sts45 Branch Largest LP 7.8 4683 6 0.5 3 0 0 3
sts45 Branch Largest 8.1 4917 4 0.4 1 0 0 2
sts45 Max Prod. Orbit Size 8.1 4917 4 0.4 1 0 0 2
sts45 Strong Branch 49.9 1287 642 3.2 0 148 7150 16
sts63 Break Symmetry 20.1 5533 93 5.5 1 308 0 11
sts63 Keep Symmetry 20.1 5533 93 5.6 1 308 0 11
sts63 Branch Largest LP 90.1 36579 16 1.7 19 32 0 9
sts63 Branch Largest 103.8 43349 14 1.7 17 32 0 7
sts63 Max Prod. Orbit Size 81.1 30133 53 4.6 47 176 0 8
sts63 Strong Branch 101.4 1377 687 10.5 0 676 6710 24
sts81 Break Symmetry 39.1 6293 112 14.3 0 670 0 17
sts81 Keep Symmetry 38.9 6293 112 14.3 0 670 0 17
sts81 Branch Largest LP 27.9 5649 41 6.0 0 562 0 14
sts81 Branch Largest 28.9 5823 46 5.7 0 410 0 14
sts81 Max Prod. Orbit Size 3382.5 1000000 1 0.1 200 0 0 0
sts81 Strong Branch 73.5 573 285 19.8 0 1112 2514 22

Table 3.8: Performance of Orbital Branching Rules (Global Symmetry) on Symmetric ILPs

75

3.7. SUMMARY

Figure 3.16: Example 3.1.3: Structure of Subproblems and Orbits in Orbital Branching.

1

12

11

2

3

13

14

15

16

4

5

17

1819

20

6

7

21

22

23

24

9

10

1

8

{1, 2, 3, 4, 5, 6, 7, 8}
{9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24}

2

12

11

2

3

13

14

15

16

4

5

17

1819

20

6

7

21

22

23

24

8

3

2

3

4

56

7

1

8

{2, 8}{3, 7}{4, 6}{5} {1, 2, 3, 4, 5, 6, 7, 8}
{11, 12, 23, 24}{13, 14, 21, 22}
{15, 16, 19, 20}{17, 18}

4

3

13

14

15

16

4

5

17

1819

20

6

7

21

22

23

24

8

5

2

3

13

14

15

16

4

5

17

1819

20

6

7

21

22

8

{3, 8}{4, 7} {5, 6} {2, 8}{3, 7}{4, 6}{5}
{13, 14, 23, 24} {13, 14, 21, 22}{15, 16, 19, 20}
{15, 16, 21, 22}{17, 18, 19, 20} {17, 18}

76

3.7. SUMMARY

6

2

3

13

14

5

17

1819

20

6

7

21

22

8

7

2

3

13

14

4

5

17

18

6

7

21

22

8

{2}{3}{5}{8}{6, 7} {2, 8}{3, 7}{4, 6}{5}

{13, 14}{17, 18}{19, 20, 21, 22} {13, 14, 21, 22}{17, 18}

8

3

13

14

5

17

1819

20

6

7

21

22

23

24

8

9

3

13

14

4

5

17

1819

20

6

7

23

24

8

{3, 13, 14}{5, 8}{6, 7} {3, 8}{4, 7} {5, 6}

{17, 18, 23, 24}{19, 20, 21, 22} {13,14,23,24}{17,18,19,20}

10

3

13

14

5

17

18

7

21

22

23

24

8

11

3

13

14

5

17

18

6

7

23

24

8

{3, 13, 14, 5, 17, 18}{7, 8} {3, 13, 14}{5, 8}{6, 7}

{21, 22, 23, 24} {17,18,23,24}

77

3.7. SUMMARY

12

5

17

18

7

21

22

23

24

8

13

7

21

22

23

24

8

{5, 17, 18}{7, 8} {7, 8}

{21, 22, 23, 24} {21, 22, 23, 24}

14

5

17

18

23

24

8

15

5

17

18

7

8

{5, 17, 18, 23, 24} {5, 17, 18}{7, 8}

16

23

24

8

17

{8, 23, 24}

78

3.7. SUMMARY

18

3

13

14

4

19

20

6

7

23

24

8

19

3

13

14

4

56

7

23

24

8

20

2

3

13

14

5

17

18

7

21

22

8

21

2

3

13

14

5

17

18

6

7

21

22

8

79

Chapter 4

Flexible Isomorphism Pruning

Orbital branching, introduced in Chapter 3, is an easily-implemented method of mitigating many of the negative effects

of symmetry. However, orbital branching does not completely remove the effects of symmetry. Specifically, the

feasible region searched by a branch-and-bound algorithm using orbital branching may not be a minimal fundamental

domain of the integer linear program. Isomorphism pruning, developed for ILP by François Margot [54] [55], is a

method that reduces the feasible region to a minimal fundamental domain for a general ILP instance. This fundamental

domain is based on lexicographic ordering. Isomorphism pruning is able to avoid numerical issues caused by including

lexicographic constraints by providing a clever way to search for violated constraints. In this chapter, we present

isomorphism pruning in a way that can be combined with orbital branching.

Restricting the feasible region to a minimal fundamental domain is important for many reasons. Most obviously,

a smaller feasible region often leads to smaller branch-and-bound trees. Furthermore, if the fundamental domain is

minimal, then no isomorphic subproblems are evaluated. This minimality guarantee is especially important if one

wishes to generate all non-isomorphic optimal solutions to an instance. This is a significant advantage over orbital

branching. To ensure that the set of solutions generated in orbital branching is non-isomorphic, each solution generated

must be compared to all other solutions to check for isomorphism.

Isomorphism pruning can be a very powerful tool for solving symmetric integer programs, but it suffers from a

lack of flexibility in the choice of branching variable. Isomorphism pruning branching only on individual variables

while orbital branching branches orbits, allowing for the fixing of additional variables. This fact might seem like a

considerable drawback for isomorphism pruning. However, fixing algorithms performed at individual nodes such as

orbital fixing (setting) are able to easily fix all variables that would have been fixed by the orbital branching disjunction

at the child node. A major difference, then, between orbital branching and isomorphism pruning is that the information

provided by fixing variables via symmetry considerations is not used to select the variable on which to branch. Even

80

4.1. ISOMORPHISM PRUNING

if such information was available, due to the branching restrictions of isomorphism pruning, the information would be

used only infrequently.

Section 4.1 demonstrates how to remove the branching restrictions for isomorphism pruning. In general, branching

strategies can drastically affect the solution times for integer programs, so the hope is that a similar improvement can

be achieved by relaxing strict branching requirements for isomorphism pruning. In addition to detailing the updated

isomorphism pruning algorithm, Section 4.3 examines different branching rules that can be used in conjunction with

isomorphism pruning in order to best exploit information provided by symmetry. Section 4.1 shows a basic algorithm

that tests for violated lexicographic inequalities. Section 4.2 discusses implementation issues and presents an algorithm

similar to orbital fixing that fixes variable by using information provided by symmetry. Section 4.3 gives computational

results.

4.1 Isomorphism Pruning

The basic concepts of isomorphism pruning were introduced in Section 2.4.1. To summarize, the idea of isomorphism

pruning is to restrict the feasible region of an ILP to a minimal fundamental domain based on a lexicographic ordering

enforced by the linear inequalities

n∑
i=1

2n−ixi ≥
n∑

i=1

2n−iπ(xi) ∀ π ∈ G(ILP). (4.1)

A key theorem in [54] offers a way to test for violated inequalities if branching variables are chosen by the minimum

indexed branching (MIB) rule. MIB is a branching rule that always chooses the free variable with the smallest index

for branching. Given the MIB branching rule, for any node a = (F a
1 , F a

0) in the enumeration tree, if there is a

π ∈ G(ILP) with
∑

i∈F a
1

2n−iπ(xi) >
∑

i∈(F a
1) 2n−ixi, then at least one constraint of (4.1) is violated. In [55],

Margot provides a new, slightly more flexible branching rule called the ranked branching rule. Inequalities defining

the minimal fundamental domain, as well as tests for violated inequalities were also updated to accommodate this new

branching rule. Before this work can be described, some notation must be introduced.

4.1.1 The Rank and Lexicographic Ordering

Isomorphism pruning requires a total order on the elements of {0, 1}n using a relation�. Let G(ILP) be the symmetry

group of the ILP. If � induces a total order, then for each x ∈ {0, 1}n, one and only one element y ∈ orb(x,G(ILP))

satisfies the inequalities y � π(x) for all π ∈ G(ILP). This set of inequalities x � π(x) for all π ∈ G defines a

minimal fundamental domain of {0, 1}n with respect to G(ILP). In the work Margot [54] � is the relation defining a

lexicographic ordering. The ranked branching rule is based on using a different relation to define the total order.

81

4.1. ISOMORPHISM PRUNING

A fundamental domain (but not necessarily minimal) can be defined by using a quasi-order on {0, 1}n. For any

function R : {1, . . . , n} → N, the relation x .R y holds if and only if
∑

i 2n−R(i)xi ≥
∑

i 2n−R(i)yi. Because .R

produces a quasi-order on the set {0, 1}n, the constraints

x .R π(x) ∀π ∈ G (4.2)

define a fundamental domain because every orbit has at least one element that satisfies (4.2). The fundamental domain

is not necessarily minimal on {0, 1}n with respect to G. Note that because . is a quasi-order, there may be x ∈ {0, 1}n

and y ∈ orb(x,G), x 6= y, with x . y and y . x. In this case, both x and y are isomorphic solutions that may satisfy

inequalities (4.2). However, if .R is total order on {0, 1}n, then the constraints (4.2) produce a minimal fundamental

domain. In fact, as long as .R defines a total order on the set orb(x,G) for every x ∈ {0, 1}n, the fundamental

domain is minimal.

Throughout this chapter a function R : {1, . . . , n} → R will be referred to as a rank. R is the complete rank if R

is an invertible function mapping elements of the set {1, . . . , n} to {1, . . . , n}. If R is a complete rank, .R induces a

total order on {0, 1}n, so to distinguish .R from a quasi-order, .R will be written as�R. If R is the identity function,

we write the ordering �R as �e and call it the standard ordering.

The relation .R acts on sets F ⊆ {1, . . . , n} and G ⊆ {1, . . . , n} in the natural way: F .R G holds if and only

if
∑

i∈F 2n−R(i) ≥
∑

i∈G 2n−R(i). A set G = σ(F) for some σ ∈ G with

G .R π(F) ∀π ∈ G

is the smallest-image of F with respect to .R and G. If G is the smallest-image of F with respect to .R and G, then

G is also its own smallest-image. A rank function R acts on a set F ⊆ {1, . . . , n} by:

R(F) = {R(i)| ∀i ∈ F}

Theorem 4.1 π(F) .R F for some π ∈ G for some rank function R if and only if R(π(F)) �e R(F).

Proof: π(F) .R F ⇔
∑

i∈π(F) 2n−R(i) >
∑

i∈F 2n−R(i) ⇔
∑

i∈R[π(F)] 2
n−i >

∑
i∈R[F] 2

n−i ⇔ R(π(F)) �e

R(F).

4.1.2 The Rank and Isomorphism Pruning

Margot is able to provide some flexibility in the branching decision of isomorphism pruning by restricting the feasible

region to the minimal fundamental domain using a ranked branching rule. The ranked branching rule is a method for

dynamically creating a complete rank (inducing a total order) using the branching decisions. Let a = (F a
1 , F a

0), with

82

4.1. ISOMORPHISM PRUNING

|F a
1 |+ |F a

0 | = d be the deepest node currently explored in the search tree. Further, let S(d) = {i1, i2, . . . , id} be the

(ordered) indices of the variables fixed by branching decisions. The rank, Md for Margot’s ranked branching rule is

Md(ij) = j for j = 1, . . . , d

Md(k) = n + 1 for k /∈ S(d).

The ranked branching rule requires that the variable with the lowest rank is chosen to branch on. If node a, of depth d,

is not the deepest node in the current tree, then there is a free variable xi with M(i) = d. In this case, xi is chosen for

branching. If a is the deepest node in the tree, then there are no such elements of rank d. In this case, any of the free

variables (all having rank n + 1) may be chosen for branching.

Example Figure 4.1 shows a branch-and-bound tree generated by the ranked branching rule for a problem with n = 6

variables. The rank M2, defined by the nodes up to depth 2 in the tree, is:

M2(6) = 1

M2(3) = 2

M2(i) = 7 ∀i ∈ {1, 2, 4, 5}.

Because node M was the first node of depth 4 to branch, all nodes of depth 4, L, N , O, and P , must branch on x4.

The rank M6 is

M2(6) = 1

M2(3) = 2

M2(5) = 3

M2(1) = 4

M2(4) = 5

M2(2) = 6

The total order defined by the relation �Mn is only known when a node in the tree of depth n has been processed.

While we are solving a subproblem a with depth d we may not know the constraints

x �Mn π(x) ∀π ∈ G(ILP) (4.3)

explicitly because we do not yet know Mn. However, if at least one of the constraints generated by the quasi-order

defined by Md,

x .Md π(x) ∀π ∈ G(ILP), (4.4)

83

4.1. ISOMORPHISM PRUNING

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

B
A

B C

D E F

G H I J

L M N P

x6 = 1 x6 = 0

x3 = 0
x3 = 1 x3 = 0

x5 = 0 x5 = 0
x5 = 1 x5 = 0

x1 = 0 x1 = 0 x1 = 0 x1 = 1 x1 = 0

x4 = 0

x2 = 0

O

Q

R

Figure 4.1: Ranked Branching Rule

is violated, then there must be a constraint in (4.3) that is violated. Theorem 4.2 is a key theorem of Margot [55].

Theorem 4.2 If there is a node a of depth d for which at least one of the constraints (4.4) is violated, then at least

one inequality (4.3) is violated.

The ranked branching rule restricts the feasible region to the fundamental domain defined by constraints (4.3). As a

result of Theorem 4.2, node a can be pruned if one of the constraints (4.4) is violated. Note that isomorphism pruning

with the minimum index branching rule is a special case of isomorphism pruning with the ranked branching rule;

specifically, it is the case in which the rank function is the identity. The inequalities in (4.3) and (4.4) are called rank

inequalities generated by Mn and Md, respectively.

4.1.3 Relaxing Depth-Dependent Rank

The minimal fundamental domain generated using the ranked branching rule on a complete rank function R can also

be described as follows. Let T (R) be a graph representing the branch-and-bound tree generated by the branching

decisions implied by R, where nodes are only pruned if the LP relaxation is infeasible (not including the constraints

(4.3)), and not by bound. Each node at depth n in T (R) has all variables fixed and therefore corresponds to a feasible

integral solution of the ILP. The tree is ordered by letting the branch xi = 1 be the left branch. The fundamental

domain defined by R consists only of the leftmost element of each collection of equivalent feasible solutions. This

is an important property of the tree that can be exploited in order to remove the restrictions of minimum indexed

branching and the ranked branching rule.

The feasible region of any node in the tree may contain equivalent solutions. Many of the equivalent solutions may

satisfy constraints generated by the rank function Md. Via branching or inequalities, one cannot expect to remove all

the symmetry in the current node, but the implicit constraints added by branching (by updating the rank from Md to

Md+1) remove symmetry between the child nodes. This is formalized in Theorem 4.3.

84

4.1. ISOMORPHISM PRUNING

Theorem 4.3 Let x and y be feasible at node a with y ∈ orb(x,G(ILP)). If x is feasible in the left child of a and y

is feasible in the right child, then y will violate a rank inequality generated by Md+1. In fact, this is true for all ranks

Mk with k ≥ d + 1.

Proof

n∑
i=1

2n−Mk[i]xi ≥
∑
i∈F a

1

2n−Mk[i] + 2n−(d+1) ≥
∑
i∈F a

1

2n−Mk[i] +
n∑

i=d+2

2n−i ≥
n∑

i=1

2n−Mk[i]yi

Theorem 4.3 implies that adding the constraints x .Md+1 π(x) ∀π ∈ G(ILP) to the child nodes are enough to

ensure that no feasible solution in the right child is equivalent to a feasible solution in the left. Therefore, restricting

the branching decisions for descendents of the right child based on branching decisions in descendents of the left

child is not necessary. This insight allows for the defining of a ranked branching rule that removes the restrictions on

branching variables that arise in isomorphism pruning.

The relative rank for node a with |F a
1 |+ |F a

0 | = d, Ma, is similar to rank Md in that it tracks the order in which

variables were branched on from the root node to a. However, unlike the ranked branching rule, nodes at the same

depth do not necessarily have the same history of variables fixed by branching. Now, the set S(a) = {i1, i2, . . . , id},

a function of the node, contains the (ordered) indices of the variables fixed by branching decisions from the root node

to the node a. The relative rank Ma is

Ma(ij) = j for j = 1, . . . , d

Ma(k) = n + 1 for k /∈ S(a).

As with .Md , .Ma induces only a quasi-order on {0, 1}n. However, as Theorems 4.4 and 4.5 will demonstrate,

the collection of quasi-orders corresponding to all nodes in the tree can be used to define a minimal fundamental

domain. At every node a in the tree, the following constraints are enforced implicitly:

x .Ma π(x) ∀π ∈ G(ILP) (4.5)

Theorem 4.4 Let T ′(B) be the enumeration tree generated by any branching rule B where nodes are pruned only if

the resulting linear relaxation, with the rank constraints (4.5), is infeasible. Nodes are not pruned by bound. The set

of feasible solutions corresponding to nodes at depth n in T ′(B) is a fundamental domain of the set of all integral

feasible solutions of the ILP with respect to G(ILP).

Proof: The theorem is proven by contradiction. Suppose there is a feasible solution x for which no members of

orb(x,G) are feasible at any nodes of T ′(B) at depth n. All solutions in orb(x,G), then, must be feasible in a node

that was pruned by isomorphism. WLOG, let x be an element in orb(x,G) that was feasible in the leftmost such

85

4.2. IMPLEMENTATION

node and call that node a. Node a was pruned because there exists a π ∈ G(ILP) with π(F a
1) ≺Ma F a

1 . Let i

be the smallest element that is in only one of Ma[F a
1] or Ra

r [π(F a
1)]. Because π(F a

1) ≺Ma F a
1 , it must be that

i ∈ Ma[π(F a
1)]. Let node b be ancestor node of a where variable xi was branched on. Because i ∈ F a

0 , node a is to

the right of node b. By our choice of i, we have π(x)j = 1 for all j ∈ F c
1 and π(x)j = 0 for all j ∈ F c

0 . We also have

π(x)i = 1, so π(x) is to the left of c, contradicting our choice of x.

Theorem 4.5 The set of all solutions feasible to subproblems corresponding to nodes at depth n in T ′(B) is a minimal

fundamental domain of the set of feasible solutions with respect to symmetry group G(ILP).

Proof: Again, suppose not. Let π ∈ G send some feasible solution x to another feasible solution π(x), neither of which

are pruned in T ′(B). Let z be the node T ′(B) of depth n corresponding to solution x. Let c be the first common

ancestor of x and π(x), and assume π(x) is to the left of x in T ′(B). As a result of Theorem 4.3, π(x) ≺Ma x implies

π(x) ≺Mz x, so node z is not in T ′(B).

Unfortunately, removing all solutions that violate one of the inequalities (4.5) is not practical. It is only practical

to test whether the set of fixed variables implies a violated inequality. As a result, it is possible that an optimal solution

to the LP relaxation at a node may not satisfy (4.5). There may be cases in which a node would have been pruned by

bound if all constraints in (4.5) had been added to the LP relaxation, but it is not pruned with isomorphism pruning.

This can happen if the node contains some solutions that are elements of the fundamental domain, but all optimal and

near optimal solutions to the LP relaxation violate constraints (4.5). Completely removing all solutions of a given

node that violate constraints (4.5) from the feasible region creates too many numerical issues for it to be a worthwhile

strategy. Nevertheless, there are opportunities to remove some solutions that violate inequalities (4.5) from the feasible

region of a given subproblem via fixing variables. Section 4.2.2 will discuss this strategy.

4.2 Implementation

4.2.1 The Smallest-Image Set function in GAP

The testing required to prune nodes in the enumeration tree by isomorphism pruning requires computational algebra

algorithms not found in integer programming software. Instead, we use the computational algebra package GAP

[23]. The GAP algorithm that is used to test for violated inequalities of the form (4.5) is described in Section 4.2.1.

We describe a variable fixing algorithm in Section 4.2.2. The algorithm used to test for violated rank inequalities is

designed to be used only once. As a result, many computations are repeated when we test for violated inequalities

at every node in the tree. In Section 4.2.3 we will discuss ways to speed up the testing algorithm. The algorithm we

use is based on code written by Steve Linton for the SmallestImageSet function [49] in the GAP package GRAPE

86

4.2. IMPLEMENTATION

[24]. To explain the two enhancements to the SmallestImageSet function specific to isomorphism pruning, we must

describe SmallestImageSet in some detail in Section 4.2.1.

The GAP function SmallestImageSet takes as input the set F and the symmetry group G and outputs the

unique set F ′ ∈ orb(F,G) with

F ′ �e π(F) ∀π ∈ G.

The SmallestImageSet function can be used to prune nodes by isomorphism if the Minimum Indexed Branching

rule is used.

Example Let G be the group generated by the permutations in Table 4.1.

π
(3, 6)(4, 7)(5, 8)
(1, 2)(4, 5)(7, 8)
(1, 3)(2, 6)(5, 7)
(1, 9)(3, 4)(6, 7)

Table 4.1: Generators of G

Table 4.2 gives a collection of sets and their associated smallest-image with respect to G. We also give a permutation

that maps each set to its smallest-image.

F Smallest-Image Permutation Mapping F to Smallest-Image
(5) (1) (1, 6, 5)(2, 9, 3, 4, 7, 8)

(2,6) (1,3) (1, 7, 6, 3, 5,2)(4, 8, 9)
(1,6) (1,3) (2, 7, 9, 4)(3, 5, 8, 6)

(1,6,7) (1,2,4) (1, 2, 8, 7)(4, 9, 5, 6)
(1,2,6) (1,2,3) (3, 6)(4, 7)(5, 8)

(1,2,6,7,9) (1,2,3,4,5) (1, 5, 6)(2, 3, 7)(4, 8, 9)

Table 4.2: Examples of the SmallestImageSet Function

The SmallestImageSet function is not able to test for pruning using any relation other than �e. For an

arbitrary complete rank R, the inputs to SmallestImageSet must be altered to use the relation �R. To alter the

input, variables are identified not by their index, but by their rank, so R is a mapping from an index space to a rank

space. The standard relation �e can then be used to relate elements in the rank space.

Example Let R be such that:

Table 4.2 shows the mapping of the input sets in Table 4.2 from index space to rank space.

The symmetry group must also be altered to account for the variable mapping. For a complete rank function R, a

87

4.2. IMPLEMENTATION

R(1) = 1
R(2) = 2
R(3) = 7
R(4) = 4
R(5) = 6
R(6) = 9
R(7) = 3
R(8) = 5
R(9) = 8.

Set Rank of Set
(5) (6)

(2,6) (2,9)
(1,6) (1,9)

(1,6,7) (1,9,3)
(1,2,6) (1,2,9)

(1,2,6,7,9) (1,2,3,8,9)

Table 4.3: Mapping from Index Space to Rank Space

permutation r ∈ Sn with r(i) = R(i) is created for all i ∈ {1, . . . , n}. The group Gr = r ◦ G ◦ r−1 is the conjugate

of G by r. The GAP function ConjugateGroup performs this operation.

Example Table 4.4 shows the conjugated permutations using the rank R of the generators given in Table 4.1 from

Example 4.2.1. The old and new generators are given in Table 4.4.

Original Generator Conjugate Generator
(3, 6)(4, 7)(5, 8) (3,4)(5,6)(7,9)
(1, 2)(4, 5)(7, 8) (1,2)(3,5)(4,6)
(1, 3)(2, 6)(5, 7) (1,7)(2,9)(3,6)
(1, 9)(3, 4)(6, 7) (1,8)(3,9)(4,7)

Table 4.4: Conjugating a Symmetry Group

A Corollary to Theorem 4.1 is the following:

Corollary 4.6 For a complete rank R, x �R π(x) for all π ∈ G, if and only if R(x) �e R(π(x)) for all π ∈ GR.

The conjugation required to map G from index space to rank space requires a complete rank. However, the rank

associated with nodes of the tree that are not of depth n are not complete ranks. It suffices to arbitrarily assign each

variable a unique rank from {d + 1, . . . , n}, to form a complete rank. In what follows, we assume that the variables

have already been mapped to rank space and the group conjugated, so that only the relation ≺e is used. Because ≺e is

assumed, the relation will not be specifically stated.

88

4.2. IMPLEMENTATION

The SmallestImageSet function requires finding the set of permutations in G that obeys a set of permutation

constraints, P = {i1 → j1, i2 → j2, . . . , il → jl}. Generating the set of permutations in G that satisfy P is done

by an iterative process. Initially π = e. At every iteration k ≤ l, a permutation σ ∈ stab(j1, j2, . . . , jk−1,G) with

σ(π(ik)) = jk is found and π is updated to π ← σ ◦ π. The collection of permutations stab(j1, j2, . . . , jl,G) ◦ π

contains all permutations that satisfy the permutation constraint P . Note that stab(j1, j2, . . . , jl,G) ◦ π ⊂ G is not

necessarily a subgroup (it may not contain the identity permutation). The key thing to note is that, while there may

be several permutations that map π(ik) to jk, the choice of σ does not affect the final collection of permutations. The

basic permutation generation method is formalized in Algorithm 4.1.

Algorithm 4.1 Generating Permutations Satisfying Constraints
Input: Group G, set of constraints P .
Output: Set S ⊆ G satisfying P .

Step 1. Let Γ = G, π = e
Step 2. For every (ik → jk) ∈ P:
Step 2a. Find σ ∈ Γ with σ(ik) = jk. If none exists return ∅
Step 2b. Update: Γ = stab(jk, Γ), π = σ ◦ π
Step 3. Return Γ ◦ π

The GAP SmallestImageSet function uses a branching tree to construct a permutation that maps F to its

smallest-image. The branching decision at each node imposes a permutation constraint (ik → jk for some ik ∈ F).

As such, each node a at depth k is identified by a set of k permutation constraints, Pa = {i1 → j1, . . . , ik → jk}.

Each permutation at node a must map the element ih to the element jh for all permutation constraints at node a as

well as, of course, be in G.

Using Algorithm 4.1, the collection Sa ⊂ G of feasible permutations at node a may be generated. In the permu-

tation tree, the set of currently unmapped elements in F a, called remseta, is examined. Let ma = min{π(f)|f ∈

remseta, π ∈ Sa} be the minimum that some element on remseta can be mapped to using permutations in Sa. There

may be multiple elements in remseta that can be mapped to ma. For every element i ∈ remseta that can be mapped to

ma using a permutation in Sa, the algorithm creates a child node with the additional permutation constraint i→ ma.

For node a at depth k, if ma is greater than F [k+1], then every permutation π ∈ Sa maps F to a lexicographically

larger set, i.e., F ≺e π(F). In this case, node a can be pruned. If, ma < Fk+1, then children of a are formed with

the additional constraint (i→ ma) for some i ∈ remseta. Every permutation feasible at a that satisfies this constraint

maps the set F to a lexicographically smaller set. Thus, if ma < Fk+1, then F is not a smallest-image. It is not

necessary to know the smallest-image of F for isomorphism pruning, only that F is not it. Therefore, any node a such

that ma < Fk+1 can be pruned by isomorphism. A proof of correctness for SmallestImageSet is given in Linton

[49].

Example Consider the graph in Figure 4.2.

89

4.2. IMPLEMENTATION

12

11

2

3

13

14

15

16

4

5

17

1819

20

6

7

21

22

23

24

9

10

1

8

Figure 4.2: SmallestImageSet Example

The symmetry group of Figure 4.2, G, is generated by clockwise rotations of 45 degrees,

rotate45 = (1, 2, . . . , 8)(9, 11, . . . , 23)(10, 12, . . . , 24),

as well as reflecting about the line intersecting nodes 1 and 5,

reflect1,5 = (2, 8)(3, 7)(4, 6)(11, 24)(12, 23) . . . (15, 20)(16, 19).

Let F be the set {1, 3, 4}. We wish to find the smallest-image of F with respect to the group G. The search tree is

shown in Figure 4.3.

90

4.2. IMPLEMENTATION

1→ 4

Remset = ∅

7

6

π7([1, 3, 4]) = [1, 2, 4]

π7 = i ◦ π6

3

4→ 1

1

2 4

π2(3) = 3

Remset = [3, 4]

π2(4) = 4

π1 = i

Remset = [1, 3, 4]

orb(π1(1), G) = (1, . . . , 8)

mini ∈ (1, . . . , 8) = 1

orb(π2(3), stab(1, G)) = (3, 7)

Remset = [1, 3]

π4(1) = 6

π4(3) = 8

3 4

65

Remset = [1, 4]

π3(1) = 7

π3(4) = 2

Remset = [1]

π5(1) = 7

min(6) = 6

min(3, 4, 6, 7) = 3 min(2, 3, 7, 8) = 2

Remset = [1]

orb(π5(1), stab(1, 2, G)) = (6) orb(π6(1), stab(1, 2, G)) = (4)

π6(1) = 4

π2 = i ◦ π1 = i π3 = r−1
90 ◦ π1 = r−1

90 π4 = r−1
135 ◦ π1 = r−1

135

π5 = π3 ◦ i

3→ 1

1→ 1

4→ 2
3→ 2

orb(π3(1), stab(1, G)) = (3, 7) orb(π4(1), stab(1, G)) = (3, 6)

π6 = reflect1,5 ◦ π4

min(4) = 4

Branchable: π−1
1 (orb(π1(1), G)) ∩Remst = [1, 3, 4]

orb(π2(4), stab(1, G)) = (4, 6) orb(π3(4), stab(1, G)) = (2, 8) orb(π4(4), stab(1, G)) = (2, 8)

Branchable: π−1
5 (orb(6, stab(1, 2, G))) ∩Remset = [1]

min(2, 3, 6, 8) = 2

Branchable: π−1
3 (orb(2, stab(1, G))) ∩Remset = [4]

Branchable: π−1
4 (orb(2, stab(1, G))) ∩Remset = [3]

Branchable: π−1
6 (orb(4, stab(1, 2, G))) ∩Remset = [1]

Branchable: π−1
2 (orb(3, stab(1, G))) ∩Remset = [3]

Figure 4.3: Permutation Tree for SmallestImageSet Example

91

4.2. IMPLEMENTATION

At node 1 of the tree, elements 1, 3, and 4 all share the same orbit, (1, . . . , 8). The smallest element of the orbit

is 1, so the branching decision is based on which element’s image will be 1. Since all elements in F can be mapped to

1, three children are created.

Node 2 is formed by adding the permutation constraint 1 → 1. The identity permutation, e, is feasible at node 1

and maps element 1 to element 1, so π2 = e. The smallest element that either element 3 or element 4 can be mapped

to is 3, so no permutation in stab(1,G) can map F to a set that is lexicographically smaller than the set [1, 3].

Node 3 is formed by adding the permutation constraint 3 → 1. The permutation r−1
90 = r2

45
−1 is feasible in

the root node and also maps element 3 to element 1, π3 = r−1
90 . The permutation π3 maps element 1 to 7 and

element 4 to 2, so the algorithm must find the smallest element that is either in orb({7}, stab({1},G)) = {3, 7} or

orb({2}, stab({1},G)) = {2, 8}. Only element 4 can be mapped to element 2 (by the permutation e◦π3), so only one

child node is created. If SmallestImageSet was being used for isomorphism pruning, then the search would be

terminated at this point because m3 = 2 < F2 = 3. The permutation e◦π3 maps the set [1, 3, 4] to a lexicographically

smaller set [1, 2, 7]. To find the smallest-image, the algorithm must continue, but because m3 = 2 < 3 = m2, node

2 can be pruned.

The processing of node 4 is similar to node 3. The element m4 = 2, so no nodes can be pruned. Only one element

in remset4 can be mapped to 2, using reflect1,5, so there is only one child of node 4. Node 6 has π6 = reflect1,5◦π4.

Node 5 can be pruned after processing node 6 because π6 maps element 1 to element 4, i.e., m6 = 4 < m5 = 6.

Node 7 is then formed by including the permutation constraint 1→ 4 and yields the permutation π7 that maps the set

[1, 3, 4] to [1, 2, 4]. At this point the tree is complete. The set [1, 2, 4] is the smallest image of F with respect to G.

4.2.2 Smallest-Image Fixing

During the call to SmallestImageSet, a set of variables that can be fixed to zero may be identified. This operation

is called smallest-image fixing. This section discusses how smallest-image fixing is performed.

Node a, of the tree created by the SmallestImageSet function, is defined by sets of permutation constraints.

For any node a of depth k in the tree, if F is its own smallest-image, then no element in remseta can be mapped to an

element i with i < Fk+1.

Theorem 4.7 Suppose MIB was used as a branching rule throughout the branch-and-bound tree. Let xj be the next

variable chosen for branching by MIB. If, at node a of the permutation tree, there is a permutation π ∈ Sa with

π(j) < Fk+1, then the set F ∪ {j} is not its own smallest-image. As a result, if xj was branched on, the subproblem

formed by setting xj to one would be pruned by isomorphism. Thus, xj may be fixed at 0.

Proof: Because π ∈ Sa, π maps elements of F to F1, F2, . . . , Fk.

92

4.2. IMPLEMENTATION

2π(F1)+2π(F2)+ . . .+2π(F|F |)+2π(j) ≥ 2F1 +2F2 + . . .+2Fk +2π(j) > 2F1 +2Fk + . . .+2Fk +2j +
∑n

i=j+1 2i.

So, π(F ∪ {j}) ≺e F ∪ {j}.

Theorem 4.7 can be easily extended to general branching strategies. The importance of variable xj in Theorem 4.7

is that it was the variable with the smallest free index. With flexible branching, any variable chosen for branching is

given the smallest free rank. Thus, any free variable xj , if there is a node a in the permutation tree such that there

exists a π ∈ Sa with π(j) < Fk+1, then the set F ∪ {j} will not be its own smallest-image with respect to the rank

vector associated with the current branch-and-bound node.

Example Consider again the graph in Figure 4.2 and assume that one wanted to find the largest independent set in the

graph. Let Figure 4.3 be the current branch-and-bound tree. For the sake of simplicity, assume for this problem that

MIB is used as a branching rule. Using MIB ensures the rank of an element is equal to the element itself. In his case,

no conjugation of the symmetry group is needed, so ranks are omitted below.

x1 = 1

x2 = 0

x3 = 1

x4 = 1

A

B

C

D

E

Figure 4.4: Branch and Bound Tree for Isomorphism Fixing Example

We know from Example 4.2.1 that the set F = [1, 3, 4] is not its own smallest-image with respect to the symmetry

group G, so node E can be pruned. Smallest-image fixing, applied at node D, fixes x4 to zero, eliminating the need to

create node E. Consider the tree in Figure 4.5, required to show that the set FD = [1, 3] is its smallest image.

If G is a descendent of D, then FD
1 ≺e FG

1 . As a result, for any two elements i and j in FG, if FG is its own

smallest-image, then there does not exist a permutation mapping {i, j} to {1, 2}. This is precisely the information

that can be used to fix additional variables by isomorphism fixing. Consider node 2 in Figure 4.5. Since node 2 has

93

4.2. IMPLEMENTATION

$\pi_5([1,3]) = [1,3]$

2

4

3

5

$\pi_4([1,3]) = [1,3]$

1

2

π2(3) = 3

π1 = i

orb(π1(1), G) = (1, . . . , 8)

orb(π2(3), stab(1, G)) = (3, 7)

π2 = i ◦ π1 = i

1→ 1

min(1, . . . , 8) = 1

3

3→ 1

Remset = [1, 3]

Branchable: π−1
1 (orb(π1(1), G)) ∩Remst = [1, 3]

Remset = [3]

π3 = r−1
90 ◦ π1 = r−1

90

Remset = [1, 4]

π3(1) = 7

orb(π3(1), stab(1, G)) = (3, 7)

min(3, 7) = 3

Branchable: π−1
3 (orb(3, stab(1, G))) ∩Remset = [3]

min(3, 7) = 3

Branchable: π−1
2 (orb(3, stab(1, G))) ∩Remset = [3]

Remset = ∅

3→ 3

Remset = ∅

1→ 3

π4 = i ◦ π2i = i
π5 = reflect1,5π3

Figure 4.5: Permutation for Isomorphism Fixing Example

94

4.3. COMPUTATIONAL EXPERIMENTS

the permutation constraint 1→ 1, if FG is its own smallest-image, then FG must not contain any element that can be

mapped to the element 2 by permutations feasible at node 2, (i.e., stab(1,G) ◦ e). Because stab(1,G) ◦ e contains a

permutation that maps element 8 to element 2, we can fix x8 to zero at the current node in the branch-and-bound tree.

Interestingly, the fixing of x8 to 0 would also have occurred with orbital branching at node B in the branching tree, as

depicted in Figure 4.4 .

Variables can also be fixed via smallest-image fixing at node 3 in Figure 4.5. A variable that can be mapped to 2

using the symmetry group stab(1, G) ◦ π3 can be fixed to zero. In addition, π3 ◦ orb(2, stab(1, G)) = [2, 4], so x4

can be fixed to zero. This fixing would have been done by orbital fixing at node C. However, it is possible to find

variables that can only be fixed using this method, and not by orbital branching or orbital fixing.

4.2.3 Speedups to SmallestImageSet

Smallest-image fixing gives information that can be exploited at every node in the branch-and-bound tree to speed

up the call to SmallestImageSet. At every node a that is not pruned, F a
1 is its smallest-image. Also, for any

currently free variable xi, if F ∪ {i} is not its smallest-image, then the permutation mapping F ∪ {i} to a smaller

image must send i to an element in F . If this is not the case, xi would have been fixed by smallest-image fixing. When

testing if F ∪ {i} is its own smallest-image, the permutation constraint i → Fj can be used as the initial branching

disjunction for each j ∈ {1, . . . , |F |}. This will make the permutation tree smaller and avoid processing nodes in the

permutation tree that are identical to nodes in the parent’s permutation tree. We have not implemented this change to

Linton’s implementation of SmallestImageSet in GAP.

4.3 Computational Experiments

In this section, we give empirical evidence of the effectiveness of combining flexible isomorphism pruning with orbital

branching. Because of the flexibility introduced to isomorphism pruning in this chapter, orbital branching can be used

in conjunction with isomorphism pruning. We investigate the impact of choosing the orbit on which branching is

based, and we demonstrate the positive effect of fixing based on information learned while computing a set’s smallest-

image. The computations are based on the instances whose characteristics are given in Table 4.5. Most of these

instances are described in Chapter 3.

The computations were run on machines with AMD Opteron processors clocked at 1.8GHz and having 2GB of

RAM. The COIN-OR software Clp was used to solve the linear programs at nodes of the branch and bound tree. For

each instance, the (known) optimal solution value was set a priori to aid in pruning and reduce the random impact of

finding a feasible solution in the search. Nodes were searched in a depth-first fashion.

One major drawback of having a rigid branching rule is that free variables that are given integer values in the LP

95

4.3. COMPUTATIONAL EXPERIMENTS

Name Variables Group Size
cod83 256 10,321,920
cod93 512 185,794,560
cod105 1024 3,715,891,200
codbt05 243 933,120
codbt15 486
codbt42 144
codbt61 192
codbt71 384
codbt80 256
cov1053 252 3,628,800
cov1054 2252 3,628,800
cov1075 120 3,628,800
cov1076 120 3,628,800
cov954 126 362,880
sts45 45 360
sts63 63 72,576
sts81 81 1,965,150,720

Table 4.5: Symmetric Integer Programs

relaxation may be chosen for branching. When this happens, the LP relaxation in at least one of the child nodes does

not change. The effect of branching on integer solutions was investigated. Table 4.6 compares the size of the tree

using the MIB rule with a slightly relaxed rule that branches on the minimum-indexed fractional variable.

As Table 4.6 shows, the flexibility of branching only on fractional variables can significantly reduce the size of

the branch-and-bound tree. For these computations, only reduced-cost fixing and fixing based on symmetry were used

to set variables at nodes throughout the branch-and-bound tree. More advanced algorithms for fixing may lessen the

impact of flexible branching as variables that are set to a value do not need to be branched on even in the MIB rule.

The branching rules used for these computations are described in Section 3.3.2.

Rule 1: Branch Largest

Rule 2: Branch Largest IP Solution

Rule 3: Strong Branching

Rule 4: Break Symmetry Left

Rule 5: Keep Symmetry Left

Table 4.7 shows the results of an experiment designed to compare the performance of the five different branching

rules introduced in Section 3.3.2. In this experiment, reduced cost fixing and smallest-image fixing were used, and the

CPU time required (in seconds) for both isomorphism pruning with the minimum index rule and flexible isomorphism

pruning are reported.

96

4.3. COMPUTATIONAL EXPERIMENTS

Instance Min Index Min Fractional Index
Nodes Nodes

cod(10,5) 11 7
cod(8,3) 23 23
cod(9,3) 257 271

codbt(0,5) 1199 1065
codbt(1,5) 825 791
codbt(4,2) 889 591
codbt(6,1) 29 29
codbt(7,1) 1 1
codbt(8,0) 78 158
cov(10,5,3) 603 357
cov(10,5,4) 401 319
cov(10,7,5) 347 391
cov(10,7,6) 19911 13523
cov(9,5,4) 525 239

sts45 3085 1311
sts63 4866 3081
sts81 485 445

Table 4.6: Flexibility in Min Index Branching

Rule 1 Rule 2 Rule 4 Rule 4 Rule 5
Instance Size Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes

cod (8,3) 8 33 8 35 23 23 15 53 17 81
cod (9,3) 285 1211 464 2611 - - 1060 1459 400 537

codbt (0,5) 100 1511 40 183 538 77 376 1765 115 679
codbt (3,3) 3 7 3 7 10 7 5 13 9 19
codbt (4,2) 7 243 5 73 20 29 26 359 25 497
codbt (6,1) 2 9 2 9 4 7 4 13 7 29
codbt (8,0) 11 13 12 25 17 11 15 19 16 23
cov (9,5,4) 9 257 6 103 12 31 ? ? 10 143
cov (10,5,3) 35 559 134 2193 122 107 130 1331
cov (10,7,5) 39 407 19 81 137 45 40 333
sts 45 13 2515 16 3307 38 859 52 4015 17 1733
sts 63 62 5901 57 5563 147 1987 175 6463 55 3721
sts 81 743 395 758 419 73 341 2715 589 356 689

Table 4.7: Comparison of Branching Rules

97

4.3. COMPUTATIONAL EXPERIMENTS

SI Fixing No SI Fixing
Instance Size Nodes Nodes

cod (8,3) 33 33
cod (9,3) 1211 1347

codbt (0,5) 1511 1569
codbt (1,5) 955
codbt (4,2) 243 247
codbt (6,1) 9 9
codbt (8,0) 13 25
cov (9,5,4) 257 269
cov (10,5,3) 559 571
cov (10,7,5) 407 433
sts 45 2515 2905
sts 63 5901 6709
sts 81 395 503

Table 4.8: Impact of Smallest-Image Fixing

The most effective branching method is Rule 1, the method that branches on the largest orbit. Recall that for the

computational results with orbital branching alone in Chapter 3, this rule was only middling. This is not surprising,

given how much symmetry remained in the tree with this rule (see Table 3.4). The ability to remove symmetry through

other methods, in this case isomorphism pruning, gives Rule 1 the advantage of fixing more variables (as a result of

branching on larger orbits) without an increase in number of equivalent nodes. Also, this branching rule requires less

time than methods such as Rule 3 and Rule 5. Rule 3 universally produced the smallest trees, but the time required at

each node is much greater than that of other branching rules. This would indicate that branching rules that attempt to

approximate strong branching would be effective. Most importantly, Figure 4.7 shows that different branching rules

can have a significant affect on solution times. Different problem classes may require different branching rules, and as

a result of the flexibility given to the branching decisions, these rules can be implemented.

In Table 4.8 the impact of smallest-image fixing on the size of the enumeration tree is examined. For this test, all

problems are solved using the branching rule Rule 1. In the case where smallest-image fixing is turned off, orbital

fixing is still used. The set of variables fixed by orbital fixing will always be a subset of the variables fixed by smallest-

image fixing, so the study is meant to show the marginal benefit of smallest-image fixing over orbital fixing (the power

of orbital fixing has been shown in Chapter 3). These results show that, especially in larger trees, smallest-image

fixing can have a significant impact on the size of the branch-and-bound tree. Recall that this fixing is done using

information obtained by the call to the SmallestImageSet function. smallest-image fixing requires no significant

additional computational effort when using the SmallestImageSet function.

98

Chapter 5

Constraint Orbital Branching

In Chapter 3, we presented orbital branching as a way to branch on variables. Orbital branching does not actually

branch on variables. Instead, orbital branching branches on the disjunction “either the orbit contains a non-zero

variable or all variables in the orbit are zero” (see 3.2). Branching on this particular disjunction allows us to then

fix variables; constraints enforcing the disjuncion do not need to be included. In this sense, Chapter 3 can be seen

as a special case of the work presented in this chapter, where we examine the effects of branching on more general

disjunctions.

Exploiting the symmetry in a problem by branching on more general disjunctions of this form can often be sig-

nificantly strengthened by exploiting certain types of embedded subproblem structures. Specifically, if the disjunction

on which the branching is based is such that relatively few non-isomorphic feasible solutions may satisfy one side

of the disjunction, then portions of potential feasible solutions may be enumerated. The original problem instance is

then partitioned into smaller, more tractable problem instances. As an added benefit, the smaller instances can then

be solved easily in parallel. A similar technique has been recently employed in an ad-hoc fashion in [46] in a con-

tinuing effort to solve an integer programming formulation for the football pool problem. This work poses a general

framework for solving difficult, symmetric integer programs in this fashion.

The power of constraint orbital branching is demonstrated by solving to optimality, for the first time, a well-

known integer program that computes the incidence widths of a Steiner Triple System with 135 elements and with

243 elements. Previously, the largest instance solved in this family contained 81 elements [53]. The generality of

the constraint orbital branching procedure is further illustrated by an application to the construction of minimum

cardinality covering designs. In this case, the previously best known bounds from the literature are easily reproduced.

In Section 5.1, the constraint orbital branching method is presented and proved to be a valid branching method.

Section 5.2 discusses the properties of good disjunctions for the constraint orbital branching method. Section 5.3

99

5.1. CONSTRAINT ORBITAL BRANCHING

describes our computational experience with the constraint orbital branching method, and conclusions are given in

Section 5.5.

5.1 Constraint Orbital Branching

The primary focus of this chapter is on set covering problems of the form

min
x∈F
{eT x}, with F def= {x ∈ {0, 1}n | Ax ≥ e}, (5.1)

where A ∈ {0, 1}m×n and e is a vector of ones of conformal size. The restriction of our work to set covering problems

is mainly for notational convenience, but also of practical significance, since many important set covering problems

contain a great deal of symmetry.

Constraint orbital branching is based on the following simple observations. If λT x ≤ λ0 is a valid inequality for

(5.1) and π ∈ G, then π(λ)T x ≤ λ0 is also a valid inequality for (5.1). In constraint orbital branching, given an integer

vector (λ, λ0) ∈ Zn+1, we will branch on a base disjunction of the form

(λT x ≤ λ0) ∨ (λT x ≥ λ0 + 1),

simultaneously considering all symmetrically equivalent forms of λx ≤ λ0. Specifically, the branching disjunction is ∨
µ∈orb(G,λ)

µT x ≤ λ0

 ∨
 ∧

µ∈orb(G,λ)

µT x ≥ λ0 + 1

 .

Further, by exploiting the symmetry in the problem, it is only necessary to consider one representative problem for

the left portion of this disjunction. That is, either the “equivalent” form of λx ≤ λ0 holds for one of the members of

orb(G, λ), or the inequality λx ≥ λ0+1 holds for all of them. This is obviously a feasible division of the search space.

Theorem 5.1 demonstrates that for any vectors µi, µj ∈ orb(G, λ), the subproblem formed by adding the inequality

µT
i x ≤ µ0 is equivalent to the subproblem formed by adding the inequality µT

j x ≤ µ0. Therefore, we need to keep

only one of these representative subproblems, pruning the | orb(G, λ)| − 1 equivalent subproblems.

Theorem 5.1 Let a be a generic subproblem and µi, µj ∈ orb(G, λ). Denote by b the subproblem formed by adding

the inequality µT
i x ≤ µ0 to a and by c the subproblem formed by adding the inequality µT

j x ≤ µ0 to a. Then,

z∗(b) = z∗(c).

Proof. Let x∗ be an optimal solution of b. WLOG, we can assume that z∗(b) ≤ z∗(c). Since µi and µj are in the

same orbit, there exists a permutation σ ∈ G such that σ(µi) = µj . By definition of G, σ(x∗) is a feasible solution to

the subproblem with an objective value of z∗(b). For any permutation matrix P we have that PT P = I . Since x∗ is

100

5.2. STRONG BRANCHING DISJUNCTIONS, SUBPROBLEM STRUCTURE, AND ENUMERATION

in b, µT
i x∗ ≤ µ0. We can rewrite this as µT

i PT
σ Pσx∗ ≤ µ0, or (Pσµi)T Pσx∗ ≤ µ0. This implies that µjPσx∗ ≤ µ0,

so σ(x∗) is in c. This implies that z∗(c) ≤ z∗(b). By our assumption, z∗(c) = z∗(b).

The basic constraint orbital branching algorithm is formalized in Algorithm 5.1.

Algorithm 5.1 Constraint Orbital Branching
Input: Subproblem a.
Output: Two child subproblems b and c.

Step 1. Choose a vector of integers λ of size n and an integer λ0

Step 2. Compute the orbit of λ, O = {µ1, . . . , µp}.
Step 3. Choose arbitrary µk ∈ O. Return subproblems b with F(b) = F(a) ∩ {x ∈ {0, 1}n : µT

k x ≤ λ0} and c
with F(c) = F(a) ∩ {x ∈ {0, 1}n : µT

i x ≥ λ0 + 1, i = 1, . . . , p}

As for standard branching on constraints, the critical choice in Algorithm 5.1 is in choosing the inequality (λ, λ0) [42].

When dealing with symmetric problems, the embedded subproblem structure can be exploited to find strong branching

disjunctions, as described in the next section.

5.2 Strong Branching Disjunctions, Subproblem Structure, and Enumera-

tion

Many important families of symmetric integer programs are structured such that small instances from the family are

embedded in larger instances. Such families include Steiner Triple System problems and Covering Design problems.

In this case, the problem often shows a block-diagonal structure with identical blocks and some linking constraints, as

expressed in Figure ??.

min eT x1 + eT x2 + . . . + eT xr

s.t.

A

A

. . .

A

D1 D2 . . . Dr





x1

x2

...

xr


≥ e

xi ∈ {0, 1}n, i = 1, . . . , r

101

5.2. STRONG BRANCHING DISJUNCTIONS, SUBPROBLEM STRUCTURE, AND ENUMERATION

The subproblem z = minx∈{0,1}n{eT x| Ax ≥ e}, denoted by P , is often computationally manageable and can be

solved to optimality in a reasonable amount of time. Constraint orbital branching allows us to exploit its optimal value

z. The first step consists of choosing an index i ∈ {1, . . . , r} and enforcing the constraint eT xi ≥ z, which obviously

does not cut off any optimal solution to the original problem. Then, the new constraint is used as branching disjunction

by letting λ = [0n, . . . , λi, . . . 0n], λi = en and λ0 = z. The resulting child subproblems have interesting properties,

as explainded below.

Left subproblem In the left child, the constraint λx ≤ z is added. Since λxi ≥ z also holds, this is equivalent to

λxi = z. Therefore, the projection of every feasible solution in the left subproblem onto the set {i1, i2, . . . , in}

coincides with the set of the solutions of P with an objective value equal to z. Let {x∗1, x∗2, . . . , x∗l } be the set of such

(optimal) solutions. One can solve the left subproblem by dividing the subproblem into l smaller subproblems. Each

of the l new subproblems is associated with a solution x∗j , for j = 1, . . . , l. Precisely, each child j is generated by

fixing xi = x∗j . This yields two relevant benefits. First, the resulting integer programs are easier than the original.

Second, the collection of subproblems are completely independent and can be solved in parallel. Of course, this option

is viable only if the number of optimal solutions of P is reasonably small. Otherwise, one can select an index k 6= i

and choose eT
nxk ≥ z as a branching disjunction. Section ?? shows how to address this “branching or enumerating”

decision for well-known difficult set covering problems.

However, a more insightful observation can lessen the number of subproblems to be evaluated as children of the

left subproblem. Suppose that there is a symmetry group G(P) ⊆ Πn with the property that any two solutions in P

that are isomorphic with respect to G(P) generate subproblems that are isomorphic with respect to G. If such a group

exists, then one can limit the search in the left subproblem only to the children corresponding to solutions x∗j that are

non-isomorphic with respect to G(P).

The group G(P) is created as follows. Let I = {i · n + 1, . . . , (i + 1)n} be the column indices representing the

elements of xi. First, compute the group stab(I,G). Note that this group is in Πr×n, but our primary interest is in how

each π ∈ stab(I,G) permutes the n elements in I . For this reason, we project stab(I,G) onto I . Every permutation

π ∈ stab(I,G) can be expressed as a product of two smaller permutations, φ and γ, where φ permutes the elements

in I and γ permutes the elements not in I . We can write this as π = (φ, γ). The projection of stab(I,G) onto I , G ↓I ,

contains all φ such that there exists a γ with (φ, γ) ∈ stab(I,G). Note that permutations not in stab(I,G) cannot be

projected in this way, so it is unambiguous to describe this set as G ↓I .

Theorem 5.2 The projection of G onto I , G ↓I , is a subset of G(P).

Proof. Let φ ∈ G ↓I . Let x be any optimal solution of P . By definition, x and φ(x) are isomorphic with respect

to G ↓I . Consider the subproblems formed by setting xi = x (subproblem a) and xi = φ(x) (subproblem b). By

102

5.2. STRONG BRANCHING DISJUNCTIONS, SUBPROBLEM STRUCTURE, AND ENUMERATION

Figure 5.1: Example Graph

definition, there is a γ ∈ Πn−I with π = (φ, γ) ∈ G.

Let x∗ be any integer feasible solution in a. By definition of permutation, we know that π(x∗) is feasible at the

root node. Also π sends xi to φ(xi). Since b differs from the root node only by the constraint xi = φ(xi), we have

that π(x∗) is in b. To conclude, any solutions to P that are isomorphic with respect to G ↓I will generate subproblems

that are isomorphic.

Corollary 5.3 The left subproblem can be decomposed into a set of restricted subproblems associated with the optimal

solutions to P that are non-isomorphic with respect to G ↓I .

In practice, non-isomorphic optimal solutions of symmetric problems often represent a small portion of all the optimal

solutions. In this case, enumerating the left subproblem becomes very computationally efficient, as shown in the case

studies of Section ??.

Right subproblem In the right branch, the constraints µT x ≥ λ0+1, for all µ ∈ orb(G, λ), are added. If | orb(G, λ)|

is fairly large, then the LP bound is increased considerably.

The whole branching process can be iterated at the right child. In fact, the constraint eT
nxi ≥ z+1 can be exploited

as a branching disjunction. In this case all the solutions to P with value z + 1 should be enumerated to solve the new

left branch.

Example:

Consider the graph G = (V,E) of Figure 5.1 and the associated vertex cover problem

min
x∈{0,1}|V |

{
eT x | xi + xj ≥ 1 ∀(i, j) ∈ E

}
.

Its optimal solution has value 10 and is supposed to be known. The coefficient matrix A shows a block diagonal

structure with three blocks, corresponding to the incidence matrices of the 5-holes induced by vertices {1, . . . , 5},

103

5.2. STRONG BRANCHING DISJUNCTIONS, SUBPROBLEM STRUCTURE, AND ENUMERATION

{6, . . . , 10} and {11, . . . , 15} respectively. Therefore, the i-th subproblem, i ∈ {0, 1, 2}, has the form

P : min x5i+1 + x5i+2 + x5i+3 + x5i+4 + x5i+5

s.t.

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1





x5i+1

x5i+2

x5i+3

x5i+4

x5i+5


≥ e

x ∈ {0, 1}5

The group G(A) contains 60 permutations in Π15 and is generated by the following permutations:

π1 = (2, 5)(3, 4)(7, 10)(8, 9)(12, 15)(13, 14) π2 = (6, 11)(7, 12)(8, 13)(9, 14)(10, 15)

π3 = (1, 2)(3, 5)(6, 7)(8, 10)(11, 12)(13, 15) π4 = (1, 6)(2, 7)(3, 8)(4, 9)(5, 10)

G(P) can be created by projecting G(A) on the variables of the first block (i.e., x1, . . . , x5). It consists of 10 permu-

tations in Π5 which are generated by (2, 5)(3, 4), and (1, 2)(3, 5).

The optimal solution to P has value 3 and there is only one non-isomorphic cover of size 3 (for instance, x1 = 1,

x2 = 1 and x4 = 1). At the root node we branch on the disjunction λ = (1, 1, 1, 1, 1, 0, . . . , 0), λ0 = 3. Then, in the

left subproblem, the constraint x1 + x2 + x3 + x4 + x5 ≤ 3 is added, while in the right subproblem, the constraints

x1 + x2 + x3 + x4 + x5 ≥ 4, x6 + x7 + x8 + x9 + x10 ≥ 4 and x11 + x12 + x13 + x14 + x15 ≥ 4 are enforced.

Since P has a unique, non-isomorphic optimal solution, searching the left child amounts to solving only one

subproblem with x1 = 1, x2 = 1, x3 = 0, x4 = 1 and x5 = 0. Its optimal value is 10 and the subproblem can be

fathomed. On the right branch, the lower bound increases to 12 and also that subproblem can be fathomed.

If a classic variable-branching dichotomy is applied, it results in a much larger enumeration tree (15 subproblems

versus 3).

In the general case of unstructured problems, finding effective branching disjunctions may be difficult. Potential

disjunctions can be generated as follows. First, select a subset of variable indices I and project the problem’s feasible

region onto I . For any choice of λ, find zI = min{
∑

i∈I λixi|x ∈ ProjIF}. The constraint
∑

i∈I λixi ≥ zI is a

valid cut for the original problem and could be branched on. If enumeration is used to solve the left subproblem and

the subproblem contains too many solutions, some elements of I could be removed and a new branching disjunction

created.

104

5.3. CASE STUDY:STEINER TRIPLE SYSTEMS

5.3 Case Study:Steiner Triple Systems

A Steiner Triple System of order v, denoted by STS(v), consists of a set S with v elements, and a collection B of

triples of S with the property that every pair of elements in S appears together in a unique triple of B. Kirkman [44]

showed that STS(v) exists if and only if v ≡ 1 or 3 mod 6. A covering of a STS is a subset C of the elements of S

such that C ∩ T 6= ∅ for each triple T ∈ B. The incidence width of a STS is its smallest-sized covering. Fulkerson

et al. [22] suggested the following integer program to compute the incidence width of a STS(v):

min
x∈{0,1}v

{eT x | Avx ≥ 1},

where Av ∈ {0, 1}|B|×v is the incidence matrix of the STS(v). Fulkerson et al. [22] created instances based on STS

of orders v ∈ {9, 15, 27, 45}, and posed these instances as a challenge to the integer programming community. The

instance STS(45) was not solved until five years later by H. Ratliff, as reported by Avis [5].

The instance of STS(27) was created from STS(9) and STS(45) was created from STS(15) using a “tripling”

procedure described in [32]. We present the construction here, since the symmetry induced by the construction is

exploited by our method in order to solve larger instances in this family. For ease of notation, let the elements in STS(v)

be {1, 2, . . . v}, with triples Bv . The elements of STS(3v) are the pairs {(i, j) | i ∈ {1, 2, . . . , v}, j ∈ {1, 2, 3}}, and

its collection of triples is denoted as B3v . Given STS(v), the Hall construction creates the blocks of STS(3v) in the

following manner:

• {(a, k), (b, k), (c, k)} ∈ B3v ∀{a, b, c} ∈ Bv, ∀k ∈ {1, 2, 3},

• {((i, 1), (i, 2), (i, 3)} ∈ B3v ∀i ∈ {1, . . . , v},

• {(a, π1), (b, π2), (c, π3)} ∈ B3v ∀{a, b, c} ∈ Bv, ∀π ∈ Π3.

Feo and Resende [17] created two new instances, STS(81) and STS(243), using this construction. STS(81) was first

solved by Mannino and Sassano [53] 12 years ago, and it remains the largest problem instance in this family to be

solved. STS(81) is also easily solved by the isomorphism pruning method of Margot [54] and the orbital branching

method of Chapter 3, but neither of these methods seem capable of solving larger STS(v) instances. Karmarkar et al.

[43] introduced the instance STS(135), which they build by applying the tripling procedure to the STS(45) instance

of Fulkerson et al. [22]. [67] have reported the best known solutions to both STS(135) and STS(243), having values

103 and 198 respectively. Using the constraint orbital branching method, we have been able to solve STS(135) to

optimality, establishing that 103 is indeed the incidence width.

105

5.3. CASE STUDY:STEINER TRIPLE SYSTEMS

A3v =



Av 0 0

0 Av 0

0 0 Av

I I I

D1 D2 D3


,

The incidence matrix, A3v , for an instance of STS(3v) generated by the Hall construction has the form shown in

Figure 5.3, where Av is the incidence matrix of STS(v) and the matrices Di have exactly one “1” in every row. Note

that A3v has the block-diagonal structure that was discussed in Section 5.2, so it is a natural candidate on which to

apply the constraint orbital branching method. Furthermore, the symmetry group Γ of the instance STS(3v) created

in this manner has a structure that can be exploited.

Specifically for STS(135), let λ ∈ R135 be the vector λ = (e45, 090)T in which the first 45 components of the

vector are 1, and the last 90 components are 0. It is not difficult to see that the following 12 vectors µ1, . . . µ12 all

share an orbit with the point λ. (This fact can also be verified using a computational algebra package such as GAP

[23]).

µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

µ9

µ10

µ11

µ12

=

1− 15 16− 30 31− 45 46− 60 61− 75 76− 90 91− 105 106− 120 121− 135

e e e 0 0 0 0 0 0

0 0 0 e e e 0 0 0

0 0 0 0 0 0 e e e

e 0 0 e 0 0 e 0 0

e 0 0 0 e 0 0 0 e

e 0 0 0 0 e 0 e 0

0 e 0 e 0 0 0 e 0

0 e 0 0 e 0 0 e 0

0 e 0 0 0 e e 0 0

0 0 e e 0 0 0 e 0

0 0 e 0 e 0 e 0 0

0 0 e 0 0 e 0 0 e

We will use this orbit to create an effective constraint orbital branching dichotomy. We also use the fact that branching

on the disjunction

(λx ≤ K) ∨ (µT x ≥ K + 1) ∀µ ∈ orb(G, λ)

allows us to enumerate coverings for STS(v/3) in order to solve the left-branch of the dichotomy.

106

5.3. CASE STUDY:STEINER TRIPLE SYSTEMS

Table 5.1: Computational Statistics for Solution of STS(135)
(a) Solutions of value
K for STS(45)

(K) # Sol
30 2
31 246
32 9497
33 61539

71,284

(b) Statistics for STS(135) IP Computations

Total CPU Simplex
K Time (sec) Iterations Nodes
30 538.01 2,501,377 164,720
31 90790.94 255,251,657 13,560,519
32 2918630.95 8,375,501,861 306,945,725
33 6243966.98 25,321,634,244 718,899,460

9.16× 106 3.36× 1010 1.04× 109

5.3.1 STS135

This section presents computational results that prove the optimality of the cardinality 103 covering of STS(135). The

optimal solution to STS(45) has a value of 30. Figure 5.2 shows the branching tree used by the constraint orbital

branching method for solving STS(135). The node E in Figure 5.2 is pruned by bound, as the solution of the linear

programming relaxation at this node is 103.

Figure 5.2: Branching Tree for Solution of STS(135)

A

B

C

D E

λx
≤ 30

µx ≥ 31 ∀µ ∈ orb(Γ, λ)

λx
≤ 31

µx ≥ 32 ∀µ ∈ orb(Γ, λ)

λx
≤ 32

µx ≥ 33 ∀µ ∈ orb(Γ, λ)

λx
≤ 33

µx ≥ 34 ∀µ ∈ orb(Γ, λ)

A variant of the (variable) orbital branching algorithm of Ostrowski et al. [68] can be used to obtain a superset of

all non-isomorphic solutions to an integer program whose objective value is better than a prescribed value K. The

method works in a similar fashion to the method proposed by Danna et al. [10]. Specifically, branching and pruning

operations are performed until all variables are fixed (nodes may not be pruned by integrality). All leaf nodes of the

resulting tree are feasible solutions to the integer program whose objective value is ≤ K. Using this algorithm, a

superset of all non-isomorphic solutions to STS(45) of value 33 or less was enumerated. The enumeration required 10

CPU hours on a 1.8GHz AMD Opteron Processor and resulted in 71,284 solutions. The number of solutions for each

value of K is shown in Table 5.1(a).

107

5.3. CASE STUDY:STEINER TRIPLE SYSTEMS

For each of the 71,284 enumerated solutions to STS(45), the first 45 variables of the STS(135) integer program-

ming instance for that particular node were fixed. For example, the node B contains the inequalities µx ≥ 31 ∀µ ∈

orb(Γ, λ), and the bound of the linear programming relaxation is 93. In order to establish the optimality of the cov-

ering of cardinality 103 for STS(135), each of these 71,284 90-variable integer programs must be solved to establish

that no solution of value smaller than 103 exists. The integer programs are completely independent, so it is natural

to consider solving them on a distributed computing platform. The instances were solved on a collection of over 800

computers running the Windows Operating System at Lehigh University. The computational grid was created using

the Condor High Throughput Computing software [51], so the computations were run on processors that would have

otherwise been idle. The commercial package CPLEX (v10.2) was used to solve all the instances, and an initial upper

bound of value 103.1 was provided to CPLEX as part of the input to all instances. Table 5.1(b) shows the aggregated

statistics for the computation. The total CPU time required to solve all 71,284 instances was roughly 106 CPU days,

and the wall clock time required was less than two days. The best solution found during the search had value 1031,

thus establishing that the incidence-width of STS(135) is 103.

5.3.2 STS(243)

The power of constraint orbital branching on Steiner triple systems is further demonstrated by proving, for the first

time, that the incidence width of STS(243) is 198. Similar to Section ??, the branching disjunction we use for

STS(243) is based on the optimal solution to smaller STS problems, in this case, STS(81). The 363 vectors sharing

an orbit with λ = (e81, 0162) can be easily generated by GAP [23].

Figure 5.3 show the branching tree for STS(243) generated by constraint orbital branching by using disjunctions

based on STS(81).

Figure 5.3: Branching Tree for Solution of STS(243)

A

B

C

D E

λx
≤ 61

µx ≥ 62 ∀µ ∈ orb(G, λ)

λx
≤ 62

µx ≥ 63 ∀µ ∈ orb(G, λ)

λx
≤ 63

µx ≥ 64 ∀µ ∈ orb(G, λ)

λx
≤ 64

µx ≥ 65 ∀µ ∈ orb(G, λ)

To solve STS(243) in a manner similar to STS(135) we need to enumerate all non-isomorphic solutions to STS(81)

1In fact, two solutions of value 103 were found, but they were isomorphic

108

5.4. CASE STUDY: COVERING DESIGNS

Node K # Sol Nodes CPU Time Avg Root LP
A 61 1 95605 5279 191.18
B 62 1 116985 25975 194
C 63 53 6166988 2690150 197.78
D 64 967 967 1874 > 200

1022 6,380,545 2,723,278

Table 5.2: Number of non-isomorphic solutions to STS(81)

with values 61 to 64. As shown in table 5.2, there are 1022 such solutions.

The subproblem generated by each solution was solved using MINTO with orbital branching. The total CPU time

required to solve all 1022 subproblems generated by solutions of STS81 was roughly 31 CPU days. Solving them in

parallel, however, took only one day. For each subproblem we used an upper bound of 198.01. We found 4 solutions

of STS(243) with value 198, but they were all isomorphic.

5.4 Case Study: Covering Designs

A (v, k, t)-covering design is a family of subsets of size k, called k-subsets. These subsets are chosen from a ground

set V of cardinality v, such that every subset of size t chosen from V is contained in one of the members of the family

of subsets of size k. The number of members in the family of k-subsets is the covering design’s size. The covering

number C(v, k, t) is the minimum size of such a covering. Let K be the collection of all k-sets of V , and let T be the

collection of all t-sets of V . An integer program to compute a (v, k, t)-covering design can be written as

min
x∈{0,1}|K|

{eT x | Bx ≥ e}, (5.2)

where B ∈ {0, 1}|T |×|K| has element bij = 1 if and only if t-set i is contained in k-set j, and the decision variable

xj = 1 if and only if the jth k-set is chosen in the covering design.

Numerous theorems exist that give bounds on the size of the covering number C(v, k, t). An important theo-

rem that is needed to generate a useful branching disjunction for the constraint orbital branching method is due to

Schönheim [75]. For a given subset U ⊆ V of the ground set elements, let K(U) be the collection of all the k-sets

of V that contain U . Margot [55] shows that the following inequality, which he calls a Schönheim inequality, is valid,

provided that |U | = u is such that 1 ≤ u ≤ t− 1:

∑
i∈K(U)

xi ≥ C(v − u, k − u, t− u). (5.3)

The Schönheim inequalities substantially increase the value of the linear programming relaxation of (5.2).

A second important observation is that the symmetry group G for (5.2) is such that the characteristic vectors of all

u-sets belong to the same orbit: if |U ′| = |U |, then χK(U ′) ∈ orb(G, χK(U)). These two observations taken together

109

5.4. CASE STUDY: COVERING DESIGNS

indicate that the Schönheim inequalities (5.3) are good candidates for constraint orbital branching. On the left branch,

the constraint

∑
i∈K(U)

xi ≤ C(v − u, k − u, t− u)

is enforced. To solve this node, all non-isomorphic solutions to the (v − u, k − u, t − u)-covering design problem

can be enumerated. For each of these solutions, an integer program in which the corresponding variables in the

(v, k, t)-covering design problem are fixed can be solved.

On the right branch of the constraint-orbital branching method, the constraints

∑
i∈K(U ′)

xi ≥ C(v − u, k − u, t− u) + 1 ∀U ′ ∈ orb(G, χK(U))

may be imposed. These inequalities can significantly improve the linear programming relaxation.

5.4.1 Computational Results

We will demonstrate the applicability of constraint orbital branching using the Schönheim inequalities with an appli-

cation to the (11, 6, 5)-covering design problem. Nurmela and Östergård [66] report an upper bound of C(11, 6, 5) ≤

100, and Applegate et al. [4] were able to show that C(11, 6, 5) ≥ 96. Using the constraint orbital branching tech-

nique, we are also able to easily obtain the bound C(11, 6, 5) ≥ 96, and ongoing computations are aimed at further

sharpening the bound. The covering design numbers C(10, 5, 4) = 51, C(9, 4, 3) = 25, and C(8, 3, 2) = 11 are all

known [31], and this knowledge is used in the branching scheme.

The branching tree used for the (11, 6, 5)-covering design computations is shown in Figure 5.4. In the figure, node

D is pruned by bound, as the value of its linear programming relaxation is > 100. The nodes A, B, and C will be

solved by enumerating solutions to a (v, k, t)-covering design problem of appropriate size. For node A, (10, 5, 4)-

covering designs of size 51 are enumerated; for node B, (9, 4, 3)-covering designs of size ≤ 26 are enumerated;

and for node C, (8, 3, 2)-covering designs of size ≤ 11 are enumerated. Table 5.3 shows the number of solutions at

each node, as well as the value of the linear programming relaxation z(ρ) of the parent node. The size 51 (10, 5, 4)-

covering designs are taken from Margot [56], and the other covering designs are enumerated using the variant of the

orbital branching method outlined in Section 5.3.1.

Since the value of the linear programming relaxation of the parent of node B is 95.33, if none of the 40 integer

programs created by fixing the size 51 (10, 5, 4)-covering design solutions at node A of Figure 5.4 has a solution of

value 95, then immediately, a lower bound of C(11, 6, 5) ≥ 96 is proved. The computation to improve the lower

bound for each of the 40 IPs to 95.1 required only 8789 nodes and 10757.5 CPU seconds on a single 2.60GHz Intel

110

5.5. SUMMARY

Figure 5.4: Branching Tree for C(11, 6, 5)

A

B

C

∑
i∈K(v0)

xi ≤ 51
∑

i∈K(v) xi ≥ 52 ∀v ∈ V

∑
i∈K(Û2)

xi ≤ 26
∑

i∈K(U) xi ≥ 27 ∀U ⊂ V, |U | = 2

∑
i∈K(Û3)

xi ≤ 11
∑

i∈K(U) xi ≥ 12 ∀U ⊂ V, |U | = 3

Table 5.3: Node Characteristics

Node # Sol z(ρ)
A 40 93.5
B 782,238 95.33
C 11 99

Pentium 4 CPU.

It is interesting to note that an attempt to improve the lower bound of C(11, 6, 5) by a straightforward application

of the variable orbital branching method of Chapter 3 was unable to improve the bound higher than 94, even after

running several days and eventually exhausting a 2GB memory limit. The results on specific classes of problems show

that the generality of constraint orbital branching does appear to be useful to solve larger symmetric problems.

5.5 Summary

In this chapter, we generalized the work for branching on orbits of variables (Chapter 3) to branching on orbits of

constraints (constraint orbital branching). Constraint orbital branching can be especially powerful if the problem

structure is exploited to identify a strong constraint on which to base the disjunction. Enumerating all partial solutions

that might satisfy the constraint gives rise to an effective partition of the original problem. Using this methodology,

we are, for the first time, able to establish the optimality solution for STS(135) and STS(243).

111

Chapter 6

Conclusions

Most ILPs do not contain any symmerty. However, symmetry is present in standard formulations of important classes

of ILP problems such as graph coloring, covering design, error correcting code, and vehicle routing problems. Methods

of solving these problems that are not able to exploit the symmetry have little hope of cracking problems large enough

to have some real world significance.

Prior research on exploiting symmetry has relied on either adding problem-specific constraints to the ILP formula-

tion or using computational algebra techniques to identify and remove symmetry. Adding problem-specific constraints

can be very helpful. However, aside from the constraints not being applicable to general problems, these methods are

rarely able to exploit all of the symmetry contained in a problem. As a result, much of the recent research has focused

on more advanced methods of exploiting symmetry.

There have been few algorithms developed to fully exploit symmetry for general ILPs. Instead, many methods

focus on how to fully exploit symmetry in problems with a specific structure. Some classes of problems have been

found where symmetry breaking can be done in polynomial time. Unfortunately, there are not many such classes. The

only previous general algorithms for solving symmetric integer linear programs are isomorphism pruning, SBDS, and

SBDD. All three are effective at exploiting symmetry, but have drawbacks. Generation and storage of all constraints

generated by SBDS can be very difficult for problems with large symmetry groups. SBDD requires the solution

of multiple graph isomorphism problems for each node in the branch-and-bound tree. Also, SBDD is not able to

prune some nodes that would be pruned by SBDS or isomorphism pruning. Isomorphism pruning, the only method

implemented specifically for ILP, imposes undesirable restrictions on branching.

The main objective of this thesis was to determine better ways of exploiting symmetry for general ILPs. Specifi-

cally, it was to create algorithms for general ILPs that are adept at exploiting symmetry without restricting branching

decisions. In fact, moreso than the algorithms listed above, this thesis examines how to use branching as a tool to

112

6.1. ORBITAL BRANCHING

exploit symmetry.

6.1 Orbital Branching

Orbital branching is a simple way to detect and exploit the symmetry of an integer program when branching. Branching

disjunctions are based on sets of equivalent variables, not individual variables. These disjunctions take into account

fixing that can be done as a result of symmetry and in doing so create a much stronger disjunction. Orbital branching

also allows for orbital fixing, a powerful method for fixing variables at nodes throughout the branch-and-bound-tree

as a result of information provided by symmetry. Implemented in MINTO, orbital branching outperforms CPLEX, a

state-of-the-art solver, when a high degree of symmetry is present. While it is less effective than isomorphism pruning

at removing symmetry, orbital branching places no restrictions on branching decisions. This is important, as the results

from Chapter 3 show that different branching methods have a significant affect on overall computation time.

Chapter 3 presents different branching strategies developed specifically for orbital branching. An interesting find-

ing of the computational results presented for orbital branching is that branching methods that aim to preserve sym-

metry are shown to be effective. This goes against intuition primarily because preserving symmetry often requires

branching on small orbits, branching which does not fix as many variables as other branching strategies. This result,

however, may be particular to this method of exploiting symmetry.

In addition to its simplicity and flexibility, orbital branching is also able to recognize and exploit symmetry that

enters the tree as a result of branching. While the computational tests have not been favorable, this method deserves

further study, as the phenomena may be common in specific problem classes.

6.2 Flexible Isomorphism Pruning

François Margot’s work on adapting isomorphism pruning for ILP problems was undoubtedly seminal, as it was the

first algorithm that completely exploited symmetry present in a general ILP. As important as this work was, however,

the method had some drawbacks. Mainly, isomorphism pruning requires the use of a rigid branching rule. Different

branching strategies can have an enormous impact on overall solution times in general ILPs, and this is also true in

ILPs with a large degree of symmetry.

Isomorphism pruning fully exploits the identified symmetry by providing a way to test whether a given node is

symmetric to others already explored. Such nodes can be pruned. In addition to pruning nodes, isomorphism pruning

offers powerful tools to fix variables using symmetry information.

Chapter 4 presents a version of isomorphism pruning that removes all branching restrictions. This version requires

no additional computational efforts beyond previous versions. Removing branching restrictions allows isomorphism

113

6.3. CONSTRAINT ORBITAL BRANCHING

pruning to be combined with orbital branching. In Chapter 4 we present computational results of the combined method

using the branching rules developed in Chapter 3 for orbital branching. The results show that isomorphism pruning

combined with orbital branching is a very powerful tool for exploiting symmetry.

Also in Chapter 4 a new method for fixing variables, smallest image fixing, is detailed. This method is more

effective at fixing variables than orbital fixing, described in Chapter 3.

6.3 Constraint Orbital Branching

In some cases, exploiting symmetry, using the methods already described, is not enough to solve highly symmetric

ILPs. Particularly, for combinatorial optimization problems, ILP formulations of highly symmetry problems are often

very poor and have large integrality gaps. However, combinatorial problems often contain structures that can be

exploited along with the symmetry. Constraint orbital branching accomplishes this. By generalizing orbital branching

to allow the use of general linear disjunctions for branching, constraint orbital branching uses disjunctions based on

optimal solutions to embedded subproblems. These disjunctions can be very effective at closing the integrality gap.

Also, these disjunctions allow us to branch on optimal solutions to the subproblems. The power of this method is

shown in Chapter 5 by proving, for the first time, the optimal solutions to STS(135) and STS(243).

6.4 Future Work

The branching rules discussed in Chapters 3 and 4 show the power of orbital branching and the importance of a

flexible branching rule. However, more advanced rules may be needed for increasingly difficult problems. Also,

specific classes of problems may require individually tailored branching rules.

One potential bottleneck for the work presented in Chapters 3 and 4 comes from the computational algebra tech-

niques used. These techniques were not originally designed to be used in an enumeration tree format. For instance,

calls to the SmallestImageSet function at a parent node and its child often perform a lot of identical computations.

Section 4.2.3 mentions ways to reduce this overlap, however, more work is needed to reduce the time spent on this

function.

114

Bibliography

[1] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research Letters, 33:42–54, 2004.

[2] Aloul, Sakallah, and Markov. Efficient symmetry breaking for boolean satisfiability. IEEETC: IEEE Transactions

on Computers, 55:549–558, 2006.

[3] R. Anbil, R. Tanga, and E.L. Johnson. A global approach to crew-pairing optimization. IBM Systems Journal,

31:71–78, 92.

[4] D. Applegate, E. Rains, and N. Sloane. On asymmetric coverings and covering numbers. Journal of Combinato-

rial Designs, 11:218–228, 2003.

[5] D. Avis. A note on some computationally difficult set covering problems. Mathematical Programming, 8:

138–145, 1980.

[6] Rolf Backofen and Sebastian Will. Excluding symmetries in constraint-based search. Constraints, 7:333–349,

2002.

[7] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization (Athena Scientific Series in

Optimization and Neural Computation, 6). Athena Scientific, February 1997. ISBN 1886529191.

[8] RE. Bixby, M. Fenelon, Z. Gu, and E. Rothberg. Mixed-integer programming: A progress report. In Martin

Grotschel, editor, Handbook of Constraint Programming, pages 309–326. Society for Industrial and Applied

Mathematic, 2004.

[9] James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. Symmetry-breaking predicates

for search problems. In Proc. of the Intl. Conf. on Principles of Knowledge Representation and Reasoning, pages

148–159, 1996.

[10] E. Danna, M. Fenelon, Z. Gu, and R. Wunderling. Generating multiple solutions for mixed integer program-

ming problems. In M. Fischetti and D. Williamson, editors, IPCO 2007: The Twelfth Conference on Integer

Programming and Combinatorial Optimization, pages 280–294. Springer, 2007.

115

BIBLIOGRAPHY

[11] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2002.

[12] M. Desrochers and F. Soumis. A column generation approach to the urban transit crew scheduling problem.

Transportation Science, 23:1–13, 1989.

[13] I. M//enendez D/’iaz and P. Zabala. A polyhedral approach for graph coloring. Electronic Notes in Discrete

Mathematics, 7:1–4, 2001.

[14] Elizabeth Dolan and Jorge Moré. Benchmarking optimization software with performance profiles. Mathematical

Programming, 91:201–213, 2002.

[15] Y. Dumas, M. Desrochers, and F. Soumis. The pickup and delivery problem with time windows. European

Journal of Operations Research, 54:7–22, 1991.

[16] Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. Symmetry breaking. In Toby Walsh, editor,

Principles and Practice of Constraint Programming - CP 2001, 7th International Conference,, volume 2239

of Lecture Notes in Computer Science, pages 93–107. Springer, 2001. ISBN 3-540-42863-1. URL http:

//link.springer.de/link/service/series/0558/bibs/2239/22390093.htm.

[17] T. A. Feo and G. C. Resende. A probabilistic heuristic for a computationally difficult set covering problem.

Operations Research Letters, 8:67–71, 1989.

[18] Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin Pearson, and Toby Walsh.

Breaking row and column symmetries in matrix models. Lecture Notes in Computer Science, 2470:462–??,

2002. ISSN 0302-9743. URL http://link.springer-ny.com/link/service/series/0558/

bibs/2470/24700462.htm;http://link.springer-ny.com/link/service/series/

0558/papers/2470/24700462.pdf.

[19] Filippo Focacci and Michela Milano. Global cut framework for removing symmetries. In Toby Walsh, editor,

Principles and Practice of Constraint Programming - CP 2001, 7th International Conference, CP 2001, Paphos,

Cyprus, November 26 - December 1, 2001, Proceedings, volume 2239 of Lecture Notes in Computer Science,

pages 77–92. Springer, 2001. ISBN 3-540-42863-1.

[20] P. Foggia, C. Sansone, and M. Vento. A preformance comparison of five algorithms for graph isomorphism.

Proc. 3rd IAPR-TC15 Workshop Graph-Based Representations in Pattern Recognition, pages 188–199, 2001.

[21] Eric J. Friedman. Fundamental domains for integer programs with symmetries. In Andreas W. M. Dress, Yin-

feng Xu, and Binhai Zhu, editors, Combinatorial Optimization and Applications, First International Conference,

116

BIBLIOGRAPHY

COCOA 2007, Xi’an, China, August 14-16, 2007, Proceedings, volume 4616 of Lecture Notes in Computer Sci-

ence, pages 146–153. Springer, 2007. ISBN 978-3-540-73555-7. URL http://dx.doi.org/10.1007/

978-3-540-73556-4 17.

[22] D. R. Fulkerson, G. L. Nemhauser, and L. E. Trotter. Two computationally difficult set covering problems that

arise in computing the 1-width of incidence matrices of Steiner triples. Mathematical Programming Study, 2:

72–81, 1973.

[23] GAP—Groups, Algorithms, and Programming, Version 4.4. The GAP Group, 2004. http://www.

gap-system.org.

[24] GRAPE—GRaph Algorithms using PErmutation groups version 4.3. The GAP Group, 2006. http://www.

gap-system.org.

[25] Gent, Harvey, and Kelsey. Groups and Constraints: Symmetry Breaking during Search. 2002.

[26] Ian Gent, Steve Linton, and Barbara Smith. Symmetry breaking in the alien tiles puzzle. Technical report, Univer-

sity of St. Andrews, October 19 2000. URL http://citeseer.ist.psu.edu/373393.html;http:

//www.apes.cs.strath.ac.uk/reports/apes-22-2000.pdf.

[27] Ian P. Gent, Warwick Harvey, and Tom Kelsey. Groups and constraints: Symmetry breaking during search. In

Pascal Van Hentenryck, editor, Principles and Practice of Constraint Programming, volume 2470 of Lecture

Notes in Computer Science, pages 415–430. Springer, 2002. ISBN 3-540-44120-4.

[28] Ian P. Gent, Warwick Harvey, Tom Kelsey, and Steve Linton. Generic SBDD using computational group theory.

In Francesca Rossi, editor, Principles and Practice of Constraint Programming, volume 2833 of Lecture Notes

in Computer Science, pages 333–347. Springer, 2003. ISBN 3-540-20202-1.

[29] Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry in constraint programming. In Handbook of

Constraint Programming, pages 329–376. Morgan Kaufman, 2006.

[30] P. Gilmore and R. Gomory. A linear programming approach to the cutting stock problem. Operations Research,

9:849–859, 1961.

[31] D. Gordon, G. Kuperberg, and O. Patashnik. New constructions for covering designs. Journal of Combinatorial

Designs, 3:269–284, 1995.

[32] M. Hall. Combinatorial Theory. Blaisdell Company, 1967.

[33] H. Hamalainen, I. Honkala, S. Litsyn, and P. Östergård. Football pools—A game for mathematicians. American

Mathematical Monthly, 102:579–588, 1995.

117

BIBLIOGRAPHY

[34] R. M. Haralick and G. L. Elliot. Increasing tree search efficiency for constraint satisfaction problems. Artificial

Intelligence, 14:263–313, 1980.

[35] Warwick Harvey. Symmetry breaking and the social golfer problem. In Sym-Con-01: Symmetry in Constraints,

October 31 2001.

[36] Derek F. Holt. Handbook of Computational Group Theory (Discrete Mathematics and Its Applications). Chap-

man & Hall/CRC, January 2005.

[37] Rotman J.J. An Introduction to the Theory of Groups. Springer, 4th ed. edition, 1994.

[38] David Joslin and Amitabha Roy. Exploiting symmetry in lifted CSPs. In AAAI/IAAI, pages 197–202, 1997.

[39] V. Kaibel and M.E. Pfetsch. Packing and partitioning orbitopes. Mathemathical Programming, 114:1–36, 2008.

[40] V. Kaibel, M. Peinhardt, and M.E. Pfetsch. Orbitopal fixing. In IPCO 2007: The Twelfth Conference on Integer

Programming and Combinatorial Optimization, pages 74–88. Springer, 2007.

[41] L. Kantorovich. Mathematical methods of organizing and planning production. Management Science, 6:366–

422, 1960.

[42] M. Karamanov and G. Cornuéjols. Branching on general disjunctions. submitted, 2005.

[43] N. Karmarkar, K. Ramakrishnan, and M.Resende. An interior point algorithm to solve computationally difficult

set covering problems. Mathematical Programming, Series B, 52:597–618, 1991.

[44] T. P. Kirkman. On a problem in combinations. Cambridge and Dublin Mathematics Journal, 2:191–204, 1847.

[45] Grove L.C. and Benson C.T. Finite Reflection Groups. Springer, 1985.

[46] J. Linderoth, F. Margot, and G. Thain. Improving bounds on the football pool problem via symmetry reduction

and high-throughput computing. Submitted, 2007.

[47] J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies in mixed integer program-

ming. INFORMS Journal on Computing, 11:173–187, 1999.

[48] J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies in mixed integer program-

ming. INFORMS Journal on Computing, 11:173–187, 1999.

[49] Steve Linton. Finding the smallest image of a set. In International Conference on Symbolic and Algebraic

Computation, pages 229–234. ISSAC, 2004.

118

BIBLIOGRAPHY

[50] S. Litsyn. An updated table of the best binary codes known. In V. S. Pless and W. C. Huffman, editors, Handbook

of Coding Theory, volume 1, pages 463–498. Elsevier, Amsterdam, 1998.

[51] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for high throughput computing. SPEEDUP,

11, 1997.

[52] Luks and Roy. The complexity of symmetry-breaking formulas. ANNALSMAI: Annals of Mathematics and

Artificial Intelligence, 41, 2004.

[53] Carlo Mannino and Antonio Sassano. Solving hard set covering problems. Operations Research Letters, 18(1),

July 13 1995.

[54] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94:71–90, 2002.

[55] F. Margot. Exploiting orbits in symmetric ILP. Mathematical Programming, Series B, 98:3–21, 2003.

[56] F. Margot. Small covering designs by branch-and-cut. Mathematical Programming, 94:207–220, 2003.

[57] F. Margot. Symmetry in integer linear programming. Tepper Working Paper, E37, 2008.

[58] A. Martin, T. Achterberg, and T. Koch. Miplib 2003. Technical Report 05-28, ZIB,, 2005.

[59] B. D. McKay. Nauty User’s Guide (Version 1.5). Australian National University, Canberra, 2002.

[60] A. Mehrotra and M. A. Trick. A column generation approach for graph coloring. INFORMS Journal on Com-

puting, 8:344–354, 1996.

[61] Russell D. Meller, Venkat Narayanan, and Pamela H. Vance. Optimal facility layout design. Oper. Res. Lett, 23

(3-5):117–127, 1998.

[62] I. Méndez-Dı́az and P. Zabala. A branch-and-cut algorithm for graph coloring. Discrete Applied Mathematics,

154(5):826–847, 2006.

[63] Pedro Meseguer and Carme Torras. Exploiting symmetries within constraint satisfaction search. Artificial Intel-

ligence, 129(1–2):133–163, 2001.

[64] W. H. Mills and R. C. Mullin. Coverings and packings. In Contemporary Design Theory: A Collection of

Surveys, pages 371–399. Wiley, 1992.

[65] G. L. Nemhauser, M. W. P. Savelsbergh, and G. C. Sigismondi. MINTO, a Mixed INTeger Optimizer. Operations

Research Letters, 15:47–58, 1994.

119

BIBLIOGRAPHY

[66] K. J. Nurmela and P. Östergård. Upper bounds for covering designs by simulated annealing. Congressus Numer-

antium, 96:93–111, 1993.

[67] Michiel A. Odijk and Hans van Maaren. Improved solutions to the Steiner triple covering problem. Information

Processing Letters, 65(2):67–69, 29 January 1998.

[68] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. In IPCO 2007: The Twelfth Conference

on Integer Programming and Combinatorial Optimization, volume 4517 of Lecture Notes in Computer Science,

pages 104–118. Springer, 2007.

[69] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Dover Pub.,

1998.

[70] Justin Pearson. Symmetry breaking in constraint satisfaction with graph-isomorphism: Comma-free codes. In

AMAI, 2004.

[71] Cameron P.J. Permutation Groups. London Mathematical Society, 1999.

[72] J.-F. Puget. On the satisfiability of symmetrical constrainted satisfaction problems. In J. Komorowski and

Z. W. Raś, editors, Proceedings of the 7th International Symposium on Methodologies for Intelligent Systems

(ISMIS’93), volume 689 of LNAI, pages 350–361, Trondheim, Norway, June 1993. Springer Verlag.

[73] Jean-Francois Puget. Symmetry breaking using stabilizers. In Francesca Rossi, editor, Principles and Practice

of Constraint Programming - CP 2003, 9th International Conference, CP 2003, volume 2833 of Lecture Notes

in Computer Science, pages 585–599. Springer, 2003.

[74] Jean-Francois Puget. Symmetry breaking revisited. Constraints, 10(1):23–46, 2005.

[75] J. Schönheim. On coverings. Pacific Journal of Mathematics, 14:1405–1411, 1964.

[76] E. C. Sewell. A branch-and-bound algorithm for the stability number of a sparse graph. INFORMS Journal on

Computing, 10:438–447, 1998.

[77] H. D. Sherali and J. C. Smith. Improving zero-one model representations via symmetry considerations. Man-

agement Science, 47(10):1396–1407, 2001.

[78] Barbara M. Smith and Stuart A. Grant. Trying harder to fail first. In ECAI, pages 249–253, 1998.

[79] P.H. Vance. Crew scheduling, cutting stock, and column generation: solving huge integer programs. PhD thesis,

Georgia Institute of Technology, 1993.

120

BIBLIOGRAPHY

[80] P.H. Vance, C. Barnhart, E.L. Johnson, and G.L. Nemhauser. Solving binary cutting stock problems by column

generation and branch-and-bound. Computational Optimization and Applications, 3:111–130, 1994.

[81] P.H. Vance, C. Barnhart, E.L. Johnson, and G.L. Nemhauser. Airline crew scheduling: a new formulation and

decomposition algorithm. Operations Research, 45:188–200, 1997.

[82] Douglas B. West. Introduction to Graph Theory (2nd Edition). Prentice Hall, 2000.

121

