
Enhanced first-order methods in convex and
nonconvex optimization

by

Xi Bai

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Industrial Engineering

Lehigh University

May 2015

c© Copyright by Xi Bai 2015

All Rights Reserved

ii

Approved and recommended for acceptance as a dissertation in partial fulfillment

of the requirements for the degree of Doctor of Philosophy.

Date

Dissertation Advisor

Committee Members:

Katya Scheinberg, Ph.D., Committee Chair

Frank E. Curtis, Ph.D.

Reha Tütüncü, Ph.D.

Luis F. Zuluaga, Ph.D.

iii

Acknowledgments

I am fortunate enough to have my Ph.D. life shared with so many great people.

First of all, I would like to thank my advisor, Katya Scheinberg, for her endless

support. Her advice has always been invaluable, but perhaps what is more impor-

tant is the freedom and an enjoying environment she creates for her students. Katya

has the ability to make students happy and, from that perspective, I could not have

hoped for anything more from an advisor. It is fair to say that, without Katya’s

priceless guidance and consistent encouragement, I would never have finished my

dissertation.

I am grateful to my dissertation committee members, Frank E. Curtis, Reha

Tütüncü and Luis F. Zuluaga, for their guidance in my research and insightful com-

ments to my dissertation. I thank Frank for his absolutely high-quality courses which

provide me with the knowledge in nonlinear optimization. I thank Reha for introduc-

ing me to the exciting area of financial optimization and his guidance in my career.

I am grateful to Luis for many helpful discussions and comments on financial opti-

mization, risk measures and global optimization techniques.

I am also grateful to many people around me who have played an utterly im-

portant part of my life. I would like to thank Tengjiao Xiao and all my friends at

Lehigh. Their caring and support have made my Ph.D. life at Lehigh an unforget-

table experience. I want to thank the 2015 Ph.D. class at ISE of Lehigh, for many

iv

heated discussions in both courses and research. Finally, I am indebted to my dad,

my mom, and my cousins for their unconditional love throughout my life.

v

Contents

Acknowledgments iv

Contents vi

List of Figures xi

List of Tables xiii

Abstract 1

1 Introduction 4

2 Preliminaries on first-order methods for composite convex prob-

lems 6

2.1 Introduction . 6

2.2 Simple gradient descent schemes . 8

2.3 Convergence and accelerated techniques 11

2.4 Alternating direction methods for composite convex optimization prob-

lem . 13

3 Practical accelerated first-order algorithms for composite convex

vi

problems 19

3.1 Introduction . 19

3.2 Fast first-order methods with backtracking 23

3.3 A practical backtracking FISTA algorithm for compressed sensing and

Lasso problems . 28

3.4 A practical backtracking FALM algorithm for compressed sensing and

Lasso problems . 31

3.5 Computational results . 34

3.5.1 The Spear Examples . 35

3.5.2 Bdata problems . 39

3.5.3 Sparco problems . 39

3.5.4 Smoothed `2 norm minimization 40

3.5.5 `2 regularized logistic regression 43

3.6 Conclusion . 45

4 Least-squares approach to risk parity in portfolio selection 47

4.1 Introduction . 47

4.2 Risk parity problem . 50

4.2.1 Long-only risk parity via convex optimization 54

4.2.2 Risk parity solutions over orthants 56

4.2.3 Least-squares model with general bounds 59

4.3 Local and global optima issues . 62

4.4 Extended least-squares models . 67

vii

4.4.1 Minimum variance with risk parity 67

4.4.2 Group risk parity . 70

4.5 Algorithms solving second order least-square problems 72

4.6 Numerical results . 74

4.6.1 A comparison between strategies 74

4.6.2 Strategic asset allocation . 77

4.6.3 US equity sector allocation . 82

4.6.4 Group risk parity portfolios based on the US large cap universe 83

4.6.5 Long-only vs. long-short portfolios 88

4.6.6 Efficiency of algorithms . 92

4.7 Conclusion . 96

5 Alternating direction schemes for minimizing a nonconvex objective

that is not necessarily composite and its application in second-order

least-squares 97

5.1 Introduction . 97

5.2 Alternating direction schemes for minimizing a nonconvex objective

that is not necessarily composite . 103

5.2.1 Notations and preliminaries 103

5.2.2 Variable splitting and augmented Lagrangian based methods . 107

5.2.3 Alternating direction methods of multipliers 109

5.2.4 Alternating linearization method 118

5.2.5 Practical ALM with backtracking and skipping 125

viii

5.2.6 Connection between ALM and ADMM. 127

5.3 The connection between A/PLM and Levenberg-Marquardt method. 128

5.4 Relaxations and lower bounds . 132

5.4.1 SOS relaxations . 133

5.4.2 DSOS and SDSOS optimization: alternatives to SOS opti-

mization . 138

5.5 Numerical results on risk parity portfolio selection problem 140

5.5.1 A comparison of local alternating direction algorithms. 140

5.5.2 Implementation of SOS optimization on risk parity optimiza-

tion problem . 144

5.6 Conclusion . 149

6 Alternating direction methods for the optimal power flow problem151

6.1 Introduction . 151

6.2 The optimal power flow problem . 153

6.2.1 Notations and preliminaries 153

6.2.2 Reformulation . 154

6.3 An alternating direction approach based on rank-one relaxation . . . 155

6.3.1 Outer loop: augmented Lagrangian method 156

6.3.2 Alternating direction method of multipliers (ADMM) 157

6.3.3 Practical issues . 161

6.3.4 An alternating linearization method to solve the subproblem . 164

6.4 Numerical results . 166

ix

6.5 Conclusion . 168

7 Conclusion 169

Bibliography 171

A Sample statistics in Chapter 6 180

B Testing data set for Chapter 3: SparOptLib 183

B.1 Instance source and categories . 187

B.2 Problem format . 190

B.3 Reference for solution accuracy . 191

Biography 193

x

List of Figures

3.1 Comparison on the µ values while solving (3.20) with ρ = 1 on Spear10 37

3.2 Comparison on the µ values while solving (3.22) with ρ = 0.1 on Spear10 42

3.3 Comparison on the µ values while solving (3.22) with ρ = 0.001 on

Bdata . 44

3.4 Comparison on the µ values while solving logistic regression problem

on ”Optdigits” dataset. 45

4.1 The function value in Example 4.3.3 with respect to x1. Note that, in

this 2×2 case, x2 = 1−x1, and θ =
σ2

1x
2
1 + σ2

2x
2
2

2
=
σ2

1x
2
1 + σ2

2(1− x1)2

2
.

Hence, the figure here shows F (x1, x2, θ) = (x2
1 −

x2
1 + 4(1− x1)2

2
)2 +

(4(1−x1)2− x
2
1 + 4(1− x1)2

2
)2 when x1 ≥ 1.2. It shows that x1 = 1.2

is a local optimum on the boundary. 66

4.2 Weights of different asset classes in the asset allocation example . . . 81

4.3 Risk contribution of different asset classes in the asset allocation example 81

xi

4.4 Annual and cumulative returns for US sector allocation strategies (3

yr rolling windows) . 84

4.5 Annual and cumulative returns for US sector allocation strategies (5

yr rolling windows) . 85

4.6 Annual and cumulative returns for US sector allocation strategies (10

yr rolling windows) . 86

4.7 Risk contribution of different groups based on testing data 89

4.8 Long-only vs. long-short portfolios: weights of asset classes in asset

allocation example . 91

4.9 Long-only vs. long-short portfolios: risk contributions of asset classes

in asset allocation example . 91

xii

List of Tables

3.1 Comparison of the algorithms for solving (3.20) with ρ = 1 on Spear10.

FISTA(100) = 5.3839e+5, FISTA(500) = 1.2799e+5, FISTA(1000) =

1.0035e+5. The starting µ for FISTA/FISTA-BKTR, µf for FALM/FALM-

BKTR and µg for FALM-BKTR are all set to be 1. For FALM (with

skipping), we tried different values for µg. The starting µg’s for FALM-

S1, FALM-S2, FALM-S3 are 1, 10 and 100, respectively. Moreover,

for FALM/FALM-BKTR the number in parentheses is the number of

matrix factorization required overall. 36

3.2 Comparison of the algorithms for solving (3.20) with ρ = 0.01 on

Spear10. The starting µ is set to be 0.01. FISTA(100) = 6.0980e+3,

FISTA(500) = 5.8943e+ 3, FISTA(1000) = 5.4176e+ 3. 38

3.3 Comparison of the algorithms for solving (3.20) with ρ = 0.1 on

Spear3. The starting µ is set to be 1. FISTA(100) = 1.1825e + 4,

FISTA(500) = 1.1793e+ 4, FISTA(1000) = 1.1784e+ 4. 38

xiii

3.4 Comparison of the algorithms for solving (3.20) with ρ = 0.0001

on Bdata1. The starting µ is set to be 1. FISTA(10) = 0.0015,

FISTA(50) = 4.6868e−4, FISTA(100) = 1.8933e−4, FISTA(200) =

1.6275e− 4. The toleranceεb is set to be 0.001. 39

3.5 Comparison of the algorithms for solving (3.20) with ρ = 0.01 on

Sparco3. The starting µ is set to be 1. FISTA(10) = 13.07180,

FISTA(50) = 8.187212, FISTA(100) = 2.710062. The toleranceεb is

set to be 0.001. 40

3.6 Comparison of the algorithms for solving (3.22) with ρ = 0.1 on

Spear10. The starting µ is set to be 1. FISTA(100) = 4.4552e + 4,

FISTA(500) = 2.4248e+ 4, FISTA(1000) = 1.1554e+ 4 41

3.7 Comparison of the algorithms for solving (3.22) with ρ = 0.1 on

Spear10. The starting µ is set to be 1000. FISTA(10) = 3.4189e+ 4,

FISTA(20) = 1.0866e+ 4, FISTA(40) = 9.9944e+ 3 43

3.8 Comparison of the algorithms for solving (3.22) with ρ = 0.01 on

Bdata1. The starting µ is set to be 1. FISTA(100) = 0.0196,

FISTA(500) = 0.0164, FISTA(1000) = 0.0164 43

4.1 A comparison of strategies, with the lower and upper bounds to be

a = −1, b = 2. 70

4.2 A comparison of strategies, with the lower and upper bounds set to

a = 0, b = 1. 75

4.3 A comparison of strategies, with the lower and upper bounds set to

a = 0.05, b = 0.35. 76

xiv

4.4 A comparison of long-short risk parity solutions by enumeration. . . . 78

4.5 A comparison of strategies, without any bounds on asset weights . . . 79

4.6 A comparison of strategies on asset allocation example, with the lower

and upper bounds set to a = 0, b = 1. 80

4.7 A comparison of strategies for US sector allocation (3 yr rolling windows) 83

4.8 A comparison of strategies for US sector allocation (5 yr rolling windows) 83

4.9 A comparison of strategies for US sector allocation (10 yr rolling win-

dows) . 83

4.10 A comparison of strategies on the US large cap universe, with the

lower and upper bounds to be a = 0, b = 1. 88

4.11 A comparison of long-only and long-short strategies on asset allocation

example . 90

4.12 A comparison of ALM with backtracking on different instances. The

starting point is chosen to be the equally weighted portfolio, i.e., x0
i =

1/n. Due to the scaling of the data, we chose a large initial µ. The

number of iterations (k), the number of QPs solved, and the objective

function value (F-value) are compared. ε is the threshold for the

largest KKT violation. 93

4.13 A comparison of algorithms on the 14-asset strategic asset allocation

instance in Section 4.6.2. The starting point is chosen to be the equally

weighted portfolio, i.e., x0
i = 1/n. 94

xv

4.14 A CPU time comparison (in seconds) of ALM and Spinu’s Newton

method for solving instances of various sizes. The starting point is

chosen to be the equally weighted portfolio, i.e., x0
i = 1/n. 95

5.1 A comparison of algorithms on a randomly generated instance (20 ×

20). The starting point is chosen to be equally weighted portfolio, i.e.,

x0
i = 1/n. The lower and upper bounds are chosen to be a = 0, b = 1.

The starting µ is chosen to be 0.01. 142

5.2 A comparison of algorithms with fixed steplengths on a randomly

generated instance (200 × 200). The starting point is chosen to be

equally weighted portfolio, i.e., x0
i = 1/n. The lower and upper bounds

are chosen to be a = −1, b = 2. The starting µ is chosen to be 0.01. . 143

5.3 A comparison of algorithms on 5 × 5 instance. The starting point is

chosen to be equally weighted portfolio, i.e., x0
i = 1/n. The lower and

upper bounds are chosen to be a = 0, b = 1. The starting µ is chosen

to be 0.1. 144

5.4 A comparison of algorithms on 5 × 5 instance. The starting point is

chosen to be equally weighted portfolio, i.e., x0
i = 1/n. The lower and

upper bounds are chosen to be a = 0.05, b = 0.35. The starting µ is

chosen to be 0.1. 144

5.5 A comparison of algorithms on asset allocation instance (14 × 14).

The starting point is chosen to be equally weighted portfolio, i.e.,

x0
i = 1/n. The lower and upper bounds are chosen to be a = 0, b = 1.

The starting µ is chosen to be 1. 145

xvi

5.6 A comparison of algorithms on asset allocation instance with tight

bounds (14× 14). The starting point is chosen to be equally weighted

portfolio, i.e., x0
i = 1/n. The lower and upper bounds are chosen to

be a = 0.06, b = 0.08. The starting µ is chosen to be 1. 145

5.7 A comparison of algorithms on equity market instance (482 × 482)

with group risk parity enforced. The starting point is chosen to be

equally weighted portfolio, i.e., x0
i = 1/n. The lower and upper bounds

are chosen to be a = 0, b = 1. The starting µ is chosen to be 0.1. . . 146

5.8 A comparison of algorithms on instances with different bounds. Orig-

inal SOSTOOLS application (denoted as Org. in the table) is com-

pared with relaxed sequential algorithm (Rel.). The default tolerance

on duality gap is set to 10−8). 148

5.9 A comparison of DSOS and SDSOS approach, on solving a 5 × 5

example. We compare the final lower bound found with a increase of

the degree. 149

6.1 A comparison of algorithms solving case9. The starting prox param-

eter is set to be 1. 167

6.2 A comparison of algorithms solving case14. The starting prox param-

eter is set to be 0.1. 167

6.3 A comparison of algorithms solving case2w. The starting prox param-

eter is set to be 1. 167

A.1 Asset classes and sample statistics. 181

xvii

A.2 The correlation matrix (14× 14) of asset classes. 182

xviii

Abstract

First-order methods for convex and nonconvex optimization have been an important

research topic in the past few years. In many applications in compressed sensing and

machine learning, higher-order methods could be computationally prohibitive due to

the large-scale input data which is often dense. As a contrast, the low per-iteration

complexity of first-order methods has made them a wise alternative.

This dissertation studies and develops efficient algorithms of first-order type, to

solve a variety of problems. Chapter 2 and 3 focus on the widely used gradient-based

methods in composite convex optimization problems. Problems of the composite

form arise extensively in compressed sensing, machine learning, etc. In particu-

lar, Chapter 2 presents some preliminaries on first-order methods. As is shown,

techniques and concepts such as alternating minimization and proximal update are

grounded in other more complex first-order algorithms, and also serve as foundations

to many of our optimization methods in later chapters.

Chapter 3, from a practical perspective, studies an accelerated first-order scheme

for composite convex problems. It is shown in Chapter 2 that, while enjoying the

“optimal” convergence rate for the gradient methods, the complexity of the acceler-

ated first-order methods introduced in Chapter 2 relies on the worst case value of the

prox parameter. Our focus in Chapter 3 thus is: how the accelerated first-order and

alternating linearization methods can be improved by allowing for the complexity

1

estimates that depend on the “average” prox parameter value. The computational

results show the benefit of the new algorithm.

Chapter 4 discusses the risk parity portfolio selection problem, which aims to

find such portfolios for which the contributions of risk from all assets are equally

weighted. In this chapter, we discuss the problem of finding portfolios that satisfy

risk parity over either individual assets or groups of assets. We describe the set of

all risk parity solutions by using convex optimization techniques over orthants and

we show that this set may contain an exponential number of solutions. We then

apply the nonconvex least-squares technique as an alternative approach, which can

be solved efficiently by the alternating direction techniques described in Chapter 5.

We also propose a modified formulation which aims at selecting the most desirable

risk parity solution according to a given criterion.

In Chapter 5, we present alternating direction type of methods solving structured

nonlinear nonconvex problems. The problem we are interested in has special struc-

ture which allows convenient 2-block variable splitting (one example is the nonconvex

risk parity model introduced in Chapter 4). Our methods rely on solving convex sub-

problem and the limit point obtained can be guaranteed to satisfy KKT optimality

conditions. Our approach includes the alternating directions method of multipliers

and the alternating linearization method and we provide convergence rate results for

both classes of methods. Moreover, global optimization techniques from polynomial

optimization literature are applied to complement our local methods and to provide

lower bounds.

Chapter 6 deals with another application, for which methods described in Chap-

ter 5 are applicable. The application is called the optimal power flow problem (OPF).

OPF arises as one of the most important optimization problems in the power sys-

tem. Since the difficulty of OPF lies in the quadratic equality where the rank-one

constraint is maintained, we relax the constraint through augmented Lagrangian and

2

propose alternating direction methods to minimize the resulted second-order least-

squares. Computational results from preliminary numerical experiment show the

expected efficiency of our approach.

3

Chapter 1

Introduction

In mid-1980s, Karmarkar published a seminal paper which brought on a new era

for convex optimization. Since then, polynomial time interior-point methods (IPMs)

have been a main research focus for convex optimization since it could easily reach

a high accuracy solution within tens of iterations. However, for polynomial time

methods it is usually hard to cope with the size of the data: the computational

cost per iteration for interior-point methods grows superlinearly with the number of

decision variables. This makes it impractical to perform one iteration, particularly

in many machine learning and compressed sensing problems that arose recently,

when the constraint matrices are often dense. For instance, in a typical machine

learning problem with more than 10,000 variables, even storing the Hessian could be

impractical.

In contrast, gradient-based methods which only incorporate first-order informa-

tion have recently attracted intensive research interests, due to its cheap computa-

tional cost per iteration. Moreover, an increasing demand for large-scale optimization

problems, which do not have to be solved accurately, makes it even more promising to

4

apply first-order methods which have long been criticized for their poor convergence

rate.

Instead of general linear and nonlinear optimization algorithms, this disserta-

tion focuses on developing efficient optimization methods for structured convex and

nonconvex problems. These problems arise in a number of areas, including image

processing and compressed sensing, machine learning, portfolio selection, and energy

systems. In this dissertation, the strategies such as variable splitting, alternating

minimization, proximal update, etc. are heavily used together with the traditional

gradient schemes, to take the most advantage of the problem structure. As is shown

in this dissertation, gradient based methods sometimes can be quite powerful when

solving these nontrivial problems when the problem structure is fully concerned.

The remainder of the dissertation is organized as follows. In Chapter 2, we

introduce the basic first-order optimization techniques, which serve as preliminary

knowledge of the methods used in later chapters. In Chapter 3, we develop practi-

cal accelerated first-order methods for composite convex optimization problems. In

Chapter 4, we discuss risk parity optimization as an application which drives us to

developing efficient algorithms for structured nonconvex optimization. In Chapter

5, alternating direction type of methods solving structured nonconvex problems are

presented. In particular, we discuss finding a stationary point for second-order least-

squares problems, with applications in portfolio selection (Chapter 4) and in optimal

power flow (Chapter 6). We conclude the thesis in Chapter 7.

5

Chapter 2

Preliminaries on first-order

methods for composite convex

problems

2.1 Introduction

In this section, we are interested in composite convex programming problem of the

following form:

minF (x) = f(x) + g(x), (2.1)

where f : Rn → R and g : Rn → R are both convex functions and only g is possibly

nonsmooth. In this section, we first survey a variety of important problems involving

this form, and then review some theoretical results related to applying fast first-order

method to them.

Problem of form (2.1) also arises extensively in machine learning. Many statis-

6

tical learning problems involve minimizing a sum of a loss function together with a

regularization term. Some interesting examples are as follows.

Example 2.1.1. The idea of compressed sensing is to recover a sparse signal from

a linear system. Consider the following problem

min
1

2
‖Ax− b‖2

2 + ρ‖x‖1 , (2.2)

where A is an m× n matrix, b is the observed measurement vector of size m. Then

(2.2) can be regarded as the noisy sparse recovery problem with the l0-norm objective

replaced by the l1-norm relaxation.

Example 2.1.2. As an alternative to problem (2.2), one may wish to solve the

following problem in Huber setting, and obtain the following minimization problem:

min
x
F (x) = Hν(‖Ax− b‖2) + ρ‖x‖1, (2.3)

where ρ > 0 and

Hν(y) =



y2

2ν
, 0 ≤ |y| ≤ ν

|y| − ν

2
, |y| ≥ ν

for ν > 0. We can define f(x) := Hν(‖Ax− b‖2) and g(x) := ρ‖x‖1.

Example 2.1.3. Sparse logistic regression maximizes the log-likelihood of a sparse

vector to map real vectors xi ∈ Rm into binary yi, and is formulated in the following

form

min
w

1

n

n∑
i=1

log(1 + exp(−yi · w>xi)) + ρ‖w‖1,

where {(xi, yi)}ni=1 ∈ (Rm×{−1, 1}) is the training set and ρ > 0. Note that now we

have f(w) :=
1

n

n∑
i=1

log(1 + exp(−yi · w>xi)) and g(w) := ρ‖w‖1.

7

Example 2.1.4. Matrix rank minimization problem can be regarded as a matrix

extension of Basis-Pursuit DeNoising (BPDN). To avoid the combinatorial nature

of the matrix rank, such problem can be approximated by a convex one using nuclear

norm minimization.

min ‖X‖∗

s.t. ‖A(X)− b‖2 ≤ θ,

where X ∈ Rm×n, A : Rm×n → Rp is a linear operator, and b ∈ Rp. Note that, similar

as the l1 minimization in compressed sensing, the above problem can be reformulated

as an unconstrained problem with the form (2.1).

Algorithms for solving an objective of form (2.1) have been studied extensively.

In this chapter, we describe some of the existing optimization methods solving (2.1).

Note that, despite aiming to solve a composite convex objective, many methods

discussed in this chapter inspire our approaches in later chapters when structured

nonconvex problems are under consideration.

2.2 Simple gradient descent schemes

First-order methods have been applied extensively in a number of areas such as

signal processing and machine learning. The advantage of first-order methods is

their low computational cost per iteration, as compared with higher order methods

such as interior-point methods. In particular, there have been a number of recent

applications where data is large-scale, when applying second-order methods or even

storing the Hessian could be computationally prohibitive.

8

Consider problem of the form (2.1) but g ≡ 0. Then problem (2.1) becomes

min
x
f(x). (2.4)

Hence, we can choose a starting point x0 and apply gradient step to each iteration

xk+1 := xk − µ∇f(xk), k ≥ 0, (2.5)

for some µ > 0. The direction is well known as “steepest descent”, and there are

several ways to choose the stepsize µ. For instance, one can apply exact line search

to choose µ such that f(xk−µ∇f(xk)) is minimized, but it is rarely used in practice

due to extra computational cost involved in most cases. A cheaper alternative is

to apply backtracking line search (i.e. to try µ0,
µ0

2
,
µ0

4
, ...) until some conditions

are satisfied (for instance, a sufficient function value decrease). Given some prior

knowledge regarding the function (for instance, Lipschitz constant of the gradient),

one can also use fixed steplength of a sufficiently small size. In later sections, we will

see that, for a class of gradient based algorithms, step sizes (or prox parameter value

which could be regarded as variants of step sizes) could play an important role in

both theoretical complexity analysis and practical implementations.

Another interpretation of (2.5) is to consider a quadratic approximation of f at

a proximal point y:

Qµ(x, y) := f(y) + 〈∇f(y), x− y〉+
1

2µ
‖x− y‖2

2. (2.6)

Then step (2.5) simply becomes solving

xk+1 := arg min
x
Q(x, xk), k ≥ 0. (2.7)

9

Now let us consider the case when g 6= 0. Then similarly we have the following

quadratic approximation

Qµ(x, y) := f(y) + 〈∇f(y), x− y〉+
1

2µ
‖x− y‖2

2 + g(x). (2.8)

Note that only f is linearized and combined with a proximal penalty term, simply

because only f is guaranteed to be smooth. In this case, µ is often called the “prox

parameter”. Consider the following update

xk+1 := arg min
x
Qµ(x, xk), k ≥ 0. (2.9)

This mapping from xk to xk+1 is denoted as

xk+1 := pµ(xk), k ≥ 0, (2.10)

and is sometimes referred to as “proximal operator mapping”. In many applica-

tions, function g is “simple” and efficient for the proximal operator computation.

Particularly, for l1 regularized problem, F (x) ≡ f(x) + ρ‖x‖1. Then the update

becomes

xk+1 := Tρµ(xk − µ∇f(xk)), (2.11)

where the thresholding operator is defined as

Tα(x)i = (|xi| − α)+sign(xi). (2.12)

The thresholding update described above can be viewed as a variation of a gradi-

ent step, and results in the Iterative Shrinkage/Thresholding Algorithm (ISTA) [7].

If we have prior knowledge of a Lipschitz constant of ∇f (denoted as L(f)), then µ

10

can be computed effectively and we can formalize ISTA as follows.

Algorithm 1 ISTA

1. Choose µ := 1/L(f).
2. for k = 0, 1, ...,

solve xk+1 := arg min
x
Qµ(x, xk).

In many applications, to compute the Lipschitz constant L(f) exactly is often

not easy. To overcome this potential difficulty, we can make an estimation at the

first iteration and then employ a simple backtracking strategy [7].

Algorithm 2 ISTA-BKTR

1. Set 0 < β < 1 and µ0 > 0.
2. for k = 0, 1, ...,

(1) Choose 0 < µ̄k < µ0.
(2) Find the smallest ik ≥ 0 such that µk = βik µ̄k and

F (pµk(x
k)) ≤ Qµk(pµk(x

k), xk),

where pµk(x
k) ≡ arg min

x
Qµk(x, x

k).

(3) xk+1 := pµk(x
k).

2.3 Convergence and accelerated techniques

Throughout the section, we call xε ∈ Rn an ε-optimal solution to (2.1) if F (xε) −

F (x∗) ≤ ε, where x∗ is an optimal solution to (2.1) and ε > 0. Our interest in this

subsection lies on iteration complexity bounds of first-order methods (i.e. worst-case

iteration number for first-order methods to compute an ε-optimal solution). Com-

plexity bounds for first-order methods solving general convex optimization problems

have been studied in [51, 52]. It has been shown that the best iteration complexity,

when only first-order information is used, is O(

√
L

ε
), where L is a Lipschitz constant

of the gradient of the objective function.

11

The convergence of ISTA has been well studied (see, for instance, [7, 27]), and it

can be shown that ISTA converges at a sublinear rate. The following theorem and

its proof can be found in [7].

Theorem 2.3.1. Let {xk} be the sequence generated by Algorithm 1. Then for every

k ≥ 1, we have

F (xk)− F (x∗) ≤ L(f)‖x0 − x∗‖2

2βk
,

where x∗ is an optimal solution, L(f) is a Lipschitz constant of ∇f , and β is the

backtracking scaler.

As shown in the above theorem, the worst-case iteration complexity bound of

ISTA is known to be O(
L(f)

ε
), where L(f) is a Lipschitz constant for ∇f(x). Beck

and Teboulle improve the complexity bound from O(
L(f)

ε
) to O(

√
L(f)

ε
), by propos-

ing a version of Nesterov’s method for composite convex functions which they call

FISTA (Fast Iterative Shrinkage/Thresholding Algorithm) [7], as shown below.

Algorithm 3 FISTA

1. Set t1 = 1, 0 < β < 1 and y1 = x0, µ0 > 0;
2. for k = 0, 1, ...,

(1) Choose 0 < µ̄k < µk−1;
(2) Find the smallest ik ≥ 0 such that µk = βik µ̄k and

F (pµk(y
k)) ≤ Qµk(pµk(y

k), yk).

where pµk(x
k) ≡ arg min

x
Qµk(x, x

k).

(3) xk := pµk(y
k) ≡ arg min

x
Qµk(x, y

k).

tk+1 :=

(
1 +

√
1 + 4t2k

)
/2.

yk+1 := xk +
tk − 1

tk+1

[
xk − xk−1

]
.

The main difference between ISTA and FISTA is that the latter employs the

information of the previous two points by taking a linear combination. Compared

12

with ISTA, FISTA also requires only one gradient computation per iteration and

thus does not have significantly more computational effort at each iteration. Fur-

ther, the following convergence results have been proved in [7]. Hence, FISTA is an

“optimal” first-order method since O(

√
L(f)

ε
) is the best complexity bound that one

can achieve by using only gradient information [51,52].

Theorem 2.3.2. Let {xk} be the sequence generated by Algorithm 3. Then for every

k ≥ 1, we have

F (xk)− F (x∗) ≤ 2L(f)‖x0 − x∗‖2
2

β(k + 1)2
,

where x∗ is an optimal solution, L(f) is a Lipschitz constant of ∇f , and β is the

backtracking scaler.

2.4 Alternating direction methods for composite

convex optimization problem

Another popular class of first-order methods solving (2.1) is the class of alternating

direction methods and alternating linearization methods, which often combines the

idea of variable splitting with the augmented Lagrangian method.

Augmented Lagrangian approach belongs to the class of the methods of multipli-

ers. Unlike the classic method of multipliers, augmented Lagrangian method reduces

the possibility of ill conditioning by adding a quadratic penalty term. Thus, while

making relatively few assumptions, this method is often robust in practice. More-

over, this method is efficient when the subproblem is not computationally expensive,

which makes it very easy to implement on problems with simple constraints.

13

Suppose we have a general optimization problem:

min
x∈X

F (x)

s.t. h(x) = 0,
(2.13)

where x ∈ X means that x satisfies some simple constraints other than the equality

ones.

The Lagrangian function with multipliers can be written as

L(x;λ) = F (x)−
∑
i

λihi(x), (2.14)

where λ is the multiplier vector.

With µ as a positive scalar, we can define the augmented Lagrangian function as

LA(x;λ) = F (x)−
∑
i

λihi(x) +
1

2µ

∑
i

h2
i (x), (2.15)

It can be seen that the augmented Lagrangian function differs from the standard

Lagrangian function by the squared terms.

The augmented Lagrangian method can be useful if minimizing (2.15) is easier

than solving (2.13). At the k-th iteration, we can choose a proper penalty parameter

µ and solve the subproblem

xk+1 := arg min
x
LA(x;λk)

and then update the multiplier by

λk+1 := λk − 1

µ
h(xk+1).

14

We summarize our discussion as the following algorithmic framework. In later

chapters, we will heavily rely on the classic augmented Lagrangian method to develop

more complicated approaches for problems with some decomposable structure.

Algorithm 4 Augmented Lagrangian method (AL)

1. Choose µ0 > 0, λ0, and x0 = y0.
2. For k = 0, 1, ...

Solve the subproblem (approximately) xk+1 := arg min
x
LA(x;λk).

Update the multiplier λk+1 := λk − 1

µk
h(xk+1).

Choose new penalty parameter µk+1 ∈ (0, µk).

Now we are ready to discuss the convex composite optimization problem. Based

on the augmented Lagrangian framework, a natural way to deal with composite

functions is to split the variables. Consider the following problem which is equivalent

to (2.1):

min f(x) + g(y)

s.t. x− y = 0,
(2.16)

where y ∈ Rn is a new variable introduced. Hence, the subproblem in Algorithm 3.3

becomes

(xk, yk) := arg min
x,y

f(x) + g(y)− λ>(x− y) +
1

2µ
‖x− y‖2. (2.17)

Minimizing (2.17) over x and y jointly is often equivalent to solving the original

problem. However, the composite structure of the original problem provides an

opportunity for alternating minimization which is often much easier than (2.17),

15

which leads to so-called alternating direction methods of multipliers (ADMM). The

difference of ADMM, compared with classic AL, is that the multiplier is updated at

each loop after minimizing over each direction, instead of after minimizing overall

variables jointly. A simple framework of ADMM solving (2.16) can be implemented

as follows.

Algorithm 5 Alternating direction methods of multipliers (ADMM)

1. Choose µ0, λ0, and x0 = y0.
2. For k = 0, 1, ...

xk+1 := arg min
x
LA(x, yk;λk).

yk+1 := arg min
y
LA(xk+1, y;λk).

Update the multiplierλk+1 := λk − 1

µk
(xk+1 − yk+1).

Choose new penalty parameter µk+1 ∈ (0, µk).

ADMM can be viewed as one of the alternating direction methods (ADMs). The

idea of ADM can be tracked back to the Douglas-Rachford method in the 1950s [26]

and alternating methods solving variational problems associated with PDEs in the

1970s [30,33]. In [39,67,68], ADMs are applied to solve variational inequality prob-

lems. Recently, with the popularity of compressed sensing and l1 regularized sta-

tistical learning, ADM and its variants have been extensively applied to problems

arising in these areas. In [36, 75], ADMM is considered in the context of l1 regular-

ized problems, in which case it is also known as the Split Bregman method. More

recently, ADMs have also been applied to some classes of well-structured semidefinite

programming problems (SDPs) [71].

Notice that in Algorithm 5, the Lagrangian multiplier λ is updated only after the

minimization with respect to y is finished at each iteration. It has been proposed

in different applications that a natural extension of ADMM is to deal with x and y

symmetrically [34, 56]. Given below is the so-called S-ADMM method. S-ADMM is

also called Peaceman-Rachford method in some literature.

16

Algorithm 6 Symmetric Alternating Direction Augmented Lagrangian method (S-
ADMM)

1. Choose µ0, λ0, and x0 = y0;
2. For k = 0, 1, ...

xk+1 := arg min
x
LA(x, yk;λk).

λk+ 1
2 := λk − 1

µk
(xk+1 − yk).

yk+1 := arg min
y
LA(xk+1, y;λk).

λk+1 := λk − 1

µk
(xk+1 − yk+1).

Choose new penalty parameter µk+1 ∈ (0, µk).

It is natural to ask what is the relationship between S-ADMM and ADMM. In fact

both methods can be viewed as variants of the famous forward-backward splitting

scheme. We refer interested readers to a detailed explanation in [22,33].

In problems with the form (2.1), if both f and g are smooth, a natural extension

of ISTA is to treat f and g “equally” and to alternatingly linearize the two functions.

Such alternating linearization can be viewed as a variant of S-ADMM. When both f

and g are differentiable and λ0 is chosen to be −∇g(y0), it can be derived from the

first-order optimality conditions of the subproblems that the following relationship

holds at the kth iteration

λk+ 1
2 = ∇f(xk+1) and λk+1 = −∇g(yk+1).

Further, define the following linearization functions:

Q1
µg(x, y) := f(x) + g(y) + 〈∇g(y), x− y〉+

1

2µg
‖x− y‖2

Q2
µf

(x, y) := f(x) + g(y) + 〈∇f(x), y − x〉+
1

2µf
‖x− y‖2.

17

where µf , µg > 0. When g is nonsmooth, we can use a subgradient in the subd-

ifferential ∂g(y) to replace “∇g(y)” in Q1
µg(x, y). Hence, we obtain the algorithm

below.

Algorithm 7 Alternating Linearization method (ALM)

1. Choose µf , µg > 0, and x0 = y0.
2. for k = 0, 1, ...

xk+1 := arg min
x
Q1
µg(x, y

k).

yk+1 := arg min
y
Q2
µf

(xk+1, y).

Similar as ISTA type of algorithms, the complexity of alternating directions meth-

ods can also be improved by applying variants of Nesterov’s acceleration techniques.

In particular, the Fast Alternating Linearization Method (FALM) is an accelerated

version of ALM for solving (2.1), when f(x) and g(x) are both differentiable, and is

given below as Algorithm 8.

The iteration complexity of FALM is similar to FISTA: it requires O(

√
L

ε
) itera-

tions to obtain an ε-optimal solution, where L =
L(f)L(g)

L(f) + L(g)
in the case when f(x)

and g(x) are both differentiable [34].

Algorithm 8 Fast Alternating Linearization Method (FALM)

1. Choose µf > 0 and µg > 0 and x0 = y0 = z0, set t0 = 1.
2. fork = 0, 1, ...

xk+1 := arg min
x
Q1
µg(x, z

k)

yk+1 := arg min
y
Q2
µf

(y, xk)

tk+1 := (1 +
√

1 + 4t2k)/2

zk+1 := yk+1 +
tk − 1

tk+1

(yk+1 − yk)

Similarly, other alternating direction schemes including ADMM can also be ac-

celerated, as recently shown in [35]. Since this chapter is for preliminaries, we do not

discuss these variants here. We refer interested readers to [35] for details.

18

Chapter 3

Practical accelerated first-order

algorithms for composite convex

problems

3.1 Introduction

The primary goal of this chapter is to introduce some variants of the algorithms

introduced in Chapter 2 and also to provide some empirical evidence. As discussed

in Chapter 2, FISTA computes an ε-optimal solution in O(
√
L(f)/ε) steps, where

L(f) is a bound on the Lipschitz constant for ∇f(x). Hence, it is an “optimal

gradient” method since this is the best complexity bound that one can obtain using

only first-order information [51] [52]. However, as discussed later, maintaining a

nonincreasing sequence of proximal parameters (i.e. the inverse of the estimate of

the Lipschitz constant) can substantially limit the performance of FISTA when a

large Lipschitz constant estimate is encountered early in the algorithm since this

19

causes the sizes of the steps taken at that point, and in all subsequent, to be very

small. Similar situations hold in FALM described in Algorithm 8.

The convergence of FISTA relies on the following lemma from [7]. In fact, this

result provides a sufficient function decrease guarantee for a family of proximal-

gradient type algorithms. Moreover, in later chapters, we will extend this result to

the more general nonconvex case.

Lemma 3.1.1. For any y, x ∈ Rn and µ > 0, if

F (pµ(y)) ≤ Qµ(pµ(y), y), (3.1)

where

Qµ(u, v) := f(v) + 〈u− v,∇f(v)〉+
1

2µ
‖u− v‖2 + g(u). (3.2)

pµ(v) := arg min
u
Qµ(u, v). (3.3)

Then

2µ(F (x)−F (pµ(y))) ≥ ‖pµ(y)− y‖2 + 2〈y− x, pµ(y)− y〉 = ‖pµ(y)− x‖2−‖y− x‖2.

(3.4)

Proof. Proof can be found in [7].

In this chapter, we introduce an extension of FISTA and FALM (named, FISTA-

BKTR and FALM-BKTR, respectively) which allows an increase of the proximal

parameter (i.e. µ in Algorithm 3). The actual value of µ at each iteration can be

determined via a back-tracking line search so that condition (3.1) is satisfied. A

lower bound on µ can be derived from the facts that µ is reduced by a constant

factor at each line search step and as soon as µ ≤ 1/L(f), condition (3.1) is satisfied

20

and the line search terminates. Further, we discuss the concept of local composite

Lipschitz constant. It can be shown that, instead of relying on the “worst case”

L(f), the complexity of the new algorithm only depends on the average of the “local

composite” Lipschitz constants. In many applications, such average is significantly

less than the global Lipschitz bound.

To understand the intuition of the extended algorithm, we first introduce the idea

of local composite Lipschitz constant.

We first consider any two vectors u, v ∈ Rn and let [u, v] denote the set of points

on a segment between u and v, in other words, [u, v] = {x : x = λu + (1− λ)v, 0 ≤

λ ≤ 1}. Let L[u,v](f) be the Lipschitz constant of ∇f(x) restricted to [u, v]; i.e.,

‖∇f(x)−∇f(y)‖ ≤ L[u,v](f)‖x− y‖,∀x, y ∈ [u, v].

From simple calculus it follows that

f(u) ≤ f(v) +∇f(v)>(u− v) +
L[u,v](f)

2
‖u− v‖2. (3.5)

Note that the roles of u and v are interchangeable.

Definition 3.1.2. L(f, g, w) is a local composite Lipschitz constant for ∇f(v) at w

if

‖∇f(v1)−∇f(v2)‖ ≤ L(f, g, w)‖v1 − v2‖, ∀v1, v2 ∈ [pµ(w), w],∀µ ≤ 1/L(f, g, w),

where [pµ(w), w] = {v : v = λpµ(w) + (1− λ)w, 0 < λ < 1}.

The dependence of L(f, g, y) on g arises from the dependence of pµ(y) on g,

hence we use the term “composite” to emphasize this dependence. If g(x) ≡ 0 then

21

pµ(y) = y−µ∇f(y) for any µ and, hence, L(f, g, y) is a Lipschitz constant of ∇f(x)

restricted to an interval [y, y − 1

L(f, g, y)
∇f(x)].

It has been shown in [60] with two key observations:

• L(f, g, y) ≤ L(f) for all y and

• from Definition 3.1.2 it follows that for any µ and y, such that µ ≤ 1/L(f, g, y)

(3.1) holds (by (3.5)), and hence (3.4) holds for the given y and any x.

Let us now illustrate why 1/L(f, g, y) may be a better estimate for the prox

parameter µ than 1/L(f).

Example 3.1.3. Consider a compressed sensing or Lasso setting:

(P) min{F (x) ≡ ‖Ax− b‖2 + ρ‖x‖1 : x ∈ Rn}. (3.6)

In this case f(x) = ‖Ax − b‖2 and L(f) = ‖AA>‖2. Now consider a sparse vector

ȳ, without loss of generality assume that ȳ = (ȳ1, ȳ2) with ȳ2 = 0. Also consider the

gradient vector z = A>(Aȳ− b) and assume that ‖z2‖∞ ≤ ρ (z2 is the subvector of z

that corresponds to the subvector ȳ2). In this case it is easy to see from the properties

of the shrinkage operator that pµ(ȳ)2 = 0 for all µ > 0. This implies that for any

x ∈ [pµ(ȳ), ȳ] x2 = 0 and hence L(f, g, ȳ) = ‖A1A
>
1 ‖2, which is clearly smaller than

L(f) = ‖AA>‖2, where A1 is the subset of columns of A that correspond to the

subvector y1.

Since it may be difficult, in general, to compute the local composite Lipschitz

constant accurately we may consider estimating it via an upper bound which is still

22

lower than L(f). For instance, assume that for a given f , g and y,

‖∇f(x)−∇f(y)‖ ≤ L(f, g, y)‖x− y‖,∀x : ‖x− y‖ ≤ ‖p1/L(f,g,y)(y)− y‖, (3.7)

in other words, L(f, g, y) is a Lipschitz constant of ∇f(x) restricted on the ball

around y of radius ‖p1/L(f,g,y)(y)− y‖. Then L(f, g, y) is a local composite Lipschitz

constant for these f , g and y, and hence for any µ < 1/L(f, g, y) it can be shown

that (3.1) holds [60].

In the next section, we use the concept of local Lipschitz constant to motivate

the extension of existing fast first-order methods.

3.2 Fast first-order methods with backtracking

FISTA with backtracking (i.e. FISTA-BKTR) can be regarded as an extension of

FISTA but allows for variable stepsize µk. Let us recall the update of proximal point

and denote the following computation by (tk+1, y
k+1) = FistaStep(xk, xk−1, tk, θk):

tk+1 :=

(
1 +

√
1 + 4θkt2k

)
/2,

yk+1 := xk +
tk − 1

tk+1

[
xk − xk−1

]
.

(3.8)

In FISTA, we have θk ≡ 1, and µk+1 ≤ µk is satisfied for all k. Suppose we want

to allow to increase µk by a scaler β ∈ (0, 1), i.e. µk+1 ≥ µk/β. Then it has been

shown in [60] that we need to choose θ smartly in order to maintain the optimal

rate of convergence as in FISTA. To achieve it, we choose θk = µk/µ
0
k+1, where µ0

k+1

is an estimate of µk+1. Hence, we have the following two cases. If µ is increased

at the end of the kth iteration, then we set µ0
k+1 := µk/β. Otherwise, we simply

23

choose µ0
k+1 := µk. After an initial guess µ0

k+1 is made, we linearize the function

f to see whether it is a good guess or not. If not, we reduce µk+1 by backtracking

µk+1 := βµk+1 and recompute θk := θk/β, until a good estimate of µk+1 is found.

We now introduce FISTA-BKTR as Algorithm 9, and later in this section we will

explain why such update achieves our goal.

Algorithm 9 FISTA-BKTR

0. Set t1 = 1, 0 < β < 1, θ0 = 1 and y1 = x0 = x−1, µ0
1 > 0.

1. for k = 1, 2, ...
(1) Set µk := µ0

k.
(2) Compute ∇f(yk), pµk(x

k).
If F (pµk(y

k)) > Qµk(pµk(y
k), yk),

µk := βµk, θk−1 := θk−1/β.
(tk, y

k) := FistaStep(xk−1, xk−2, tk−1, θk−1).
Return to (2).

(3) xk := pµk(y
k).

Choose µ0
k+1 > 0, and set θk := µk/µ

0
k+1.

(tk+1, y
k+1) := FistaStep(xk, xk−1, tk, θk).

Theorem 3.2.1. Let Lk be the estimate of the “average” of local composite Lipschitz

constants encountered during the first k iterations of Algorithm 9, such that
1√
Lk

=

1

k

k∑
i=1

1√
L(f, g, yi)

. Assume that µ0
i ≥ 1/L(f, g, yi) for all 1 ≤ i ≤ k. Then

F (xk)− F (x∗) = vk ≤
2Lk‖x0 − x∗‖2

βk2
, (3.9)

where x∗ is an optimal solution and β is the backtracking scaler.

Proof. Proof can be found in [60].

Although in this chapter we do not show a detailed proof of Theorem 3.2.1, we

here aim to provide some discussion on how the complexity is achieved and pinpoint

how Algorithm 9 generalizes the original FISTA.

24

In Algorithm 3, if µ0 and µ̄k are chosen so that µ0 > 1/L(f) and µk ≥ µk−1, then

µk ≥ β/L(f), ∀k, since as already noted, F (pµk(y
k)) ≤ Qµk(pµk(yk), y

k) holds for

any yk if µk < 1/L(f). The following lemma is an immediate consequence of this.

Lemma 3.2.2. Let µ0 > 1/L(f), then at each iteration of Algorithm 3 there are

at most log 1
β
(µ0L(f)) + 1 line search backtracking steps, and hence computations of

pµk(yk).

If for a given yk we define a local composite local Lipschitz constant Lk (=

L(f, g, yk)), as discussed in Section 3.1, then µk ≥ β/Lk, and the number of line

search steps at iteration k is at most log 1
β
(µ0Lk) + 1.

The complexity of Algorithm 3 for θk ≡ 1 is analysed in [7]. The proof in [7]

relies on the fact that µk+1 is chosen so that µk+1 ≤ µk for all k ≥ 1, i.e., the step

size µk is monotonically nonincreasing. However, it can be shown that (see [60]) this

is not a necessary condition as long as we choose θ carefully. Instead, in order to

recover the O(1/k2) complexity, it is sufficient to show that our algorithm satisfies

2µkt
2
k ≥ ηk2, (3.10)

for some fixed η > 0, while maintaining

µkt
2
k ≥ µk+1tk+1(tk+1 − 1). (3.11)

Condition 3.11 provides an opportunity to increase µk+1 from µk. This is achieved

by selecting a proper θk.

25

From the update of tk in Algorithm 3

tk+1 = (1 +
√

1 + 4θkt2k)/2 (3.12)

it follows that

θkt
2
k = tk+1(tk+1 − 1). (3.13)

Hence as long as θk ≤ µk/µk+1, property (3.11) holds. We know that if we implement

the constraint µk+1 ≤ µk and use θk = 1 as is done in the FISTA algorithm in [7]

both conditions (3.10) and (3.11) are satisfied with η = β/L(f). However, if we want

to allow µk+1 > µk, say µk+1 ≥ µk/β, then we need to have θk < 1, e.g, θk ≤ β. On

the other hand, condition (3.10) requires tk ≥ k

√
η

2µk
≥ k

√
η

2µ0

, hence tk needs to

grow at the same rate as k. From (3.13) and the fact that tk > 1 for all k > 1,

(tk+1 − 1)2 < tk+1(tk+1 − 1) = θkt
2
k,

and hence, tk+1 < θ
1/2
k tk + 1. Assume that for all k, we allow θk ≤ β < 1 then if

tk > 1/(1− β1/2), we have tk+1 < tk. This means that the sequence tk will not grow

at the required rate if we simply allow θk < 1 for all iterations.

To maintain FISTA’s rate of convergence while allowing θk < 1 on some itera-

tions we need to ensure that θk > 1 on some of the other iterations. This can be

accomplished on iterations on which µk/µk+1 > 1. The immediate difficulty is that

we do not know the value of µk+1 on iteration k, when θk and tk+1 are computed.

Simply setting θk ≤ µk/µ0, where µ0 is an upper bound on the step size will imply

that θk < 1 for all k. Hence it is necessary to update θk and tk+1 along with µk+1,

thus expanding the backtracking part of the algorithm,

Hence, Algorithm 9 is an extension of Algorithm 3 which allows for a full back-

26

tracking and any size µk. It satisfies conditions (3.10)-(3.11), while setting the step

size µk initially to some value µ0
k at the beginning of each iteration. Moreover, it can

be shown that Algorithm 9 is designed to maintain θk = µk/µk+1 for all k ≥ 1.

Recall that the parameter θk is used to compute tk+1 and yk+1 in Algorithm 3

using the updates

tk+1 := (1 +
√

1 + 4θkt2k)/2

yk+1 := xk +
tk − 1

tk+1

[xk − xk−1].

Let us denote this computation by

(tk+1, y
k+1) = FistaStep(xk, xk−1, tk, θk).

At the end of iteration k − 1 of Algorithm 9, θk−1 = µk−1/µ
0
k, where µ0

k is an initial

“guess” for the value of µk. Hence, tk and yk are computed using this “guess”. Once

the backtracking is called at iteration k this “guess” may turn out to be correct or it

may turn out to be an overestimate of µk. If the “guess” is correct, then no correction

to θk−1 is needed. If µk is reduced during the backtracking, then θk−1 is recomputed

to account for the new value of µk so that θk−1 = µk−1/µk is satisfied. Another call

to FistaStep(xk−1, xk−2, tk−1, θk−1) is then necessary. After such a call is made, since

the iterate yk has changed, pµk(y
k) has to be recomputed and a new backtracking

step has to be performed. The backtracking starts with the value of µk with which

the previous backtracking stopped, and hence, which was used to compute the most

recent value of θk−1. If the value of µk is not reduced any further then θk−1, yk and

tk have the correct value and the backtracking part of the iteration is complete. If

the value of µk is reduced further then θk−1 is recomputed again and backtracking

continues.

27

Hence, we apply backtracking to design Algorithm 9 such that θk = µk/µk+1 is

maintained for all k ≥ 1. It follows immediately from the update rule that (3.11) is

satisfied for each k.

Now if the other part, i.e. (3.10), holds then the complexity result follows. It

turns out that this can be achieved by induction from the update rule (see, Lemma

3.4 in [60]). We can simply set η in (3.10) to be β/(2Lk), where Lk satisfies
1√
Lk

=

(
k∑
i=1

1√
L(f, g, yi)

)/k. Then Theorem 3.2.1 trivially follows.

Remark 3.2.3. If we use the worst case Lipschitz constant L(f) as the local one

L(f, g, yi), the analysis above still holds and we recover the complexity result:

F (xk)− F (x∗) = vk ≤
2L(f)‖x0 − x∗‖2

βk2
, (3.14)

at the k-th iteration of Algorithm 9.

Hence, our algorithm and analysis are similar to those in [7], but allow for in-

creases in the step size in Algorithm 3 while preserving the algorithm’s O(
√
L(f)/ε)

complexity. As we have shown, this can be accomplished by choosing appropriate

values of θk.

3.3 A practical backtracking FISTA algorithm for

compressed sensing and Lasso problems

The additional cost of each backtracking step of Algorithm 9 compared to that of

Algorithm 3 lies in a call to FistaStep updates and re-computation of ∇f(yk) which

is needed to construct Qµ(yk, x). All remaining computational cost is the same for

28

both algorithms. The number of backtracking steps is solely defined by the choice of

µk0 at each iteration, as discussed in the previous section. The choice of a practical

approach is likely to depend on the comparisons of the cost of computation of∇f(yk),

pµk(y
k) and F (pµk(y

k)). Here we consider specific application of our backtracking

algorithm to the problem of the form,

(P) min{F (x) ≡ ‖Ax− b‖2 + g(x) : x ∈ Rn}. (3.15)

We assume here that g(x) is a simple function, such as ‖x‖1, as in the case of

CS or Lasso [15] [66] or
∑
i

‖xi‖2 as in the case of group Lasso [77]. In this case

∇f(x) = A>(Ax− b). Recall expression for yk:

yk = xk−1 +
tk−1 − 1

tk
[xk−1 − xk−2]

which implies that

∇f(yk) = ∇f(xk−1) +
tk−1 − 1

tk
[∇f(xk−1)−∇f(xk−2)].

Hence, if ∇f(xk−1) and ∇f(xk−2) are available, then ∇f(yk) can be computed in

O(n) operations for any value of tk. Since the backtracking step changes only the

value of tk but not xk−1 or xk−2, this means that the extra cost of each backtrack-

ing step of Algorithm 9 compared to that of Algorithms 3 is only O(n), which is

negligible.

However, as discussed earlier, using larger values of µk0 may result in a higher

number of backtracking steps, hence we should analyze the cost of a backtracking

step itself. For simple forms of g(x) computing pµk(y
k) given ∇f(yk) takes O(n)

operations. Finally computing F (pµk(y
k)) requires one matrix-vector product for

29

computing Ax − b. Once xk is determined via backtracking an additional matrix-

vector product is employed to compute ∇f(xk), however, this last computation is

not a part of the backtracking procedure. Assuming that matrix-vector product

comprise the dominant cost of each iteration, then the total cost of an iteration

without backtracking equals two matrix vector products, while the cost of an iteration

with backtracking contains additional matrix-vector product per each backtracking

step. For instance, if µ0
k = µk−1/β, then it can be shown that the average cost of an

iteration of Algorithm 9 is 3/2 that of Algorithms 3. Such cost increase is beneficial

if the number of iterations Algorithm 9 is proportionately smaller.

In the examples we consider in our computational experiments in Section 3.5

increasing µk at each iterations appears to be wasteful. Hence we choose to allow

for the increase of the value of the prox parameter every l iteration, where l is

chosen heuristically. In particular we try several different values of l during the

first 100 iterations and then settle with the value of l which gives least number of

failed backtracking steps. The key assumption for using such a heuristics is that the

behavior of the algorithm at later iterations is similar to that during earlier iterations.

While the behavior of the algorithm is problem-dependent, in our experiments this

heuristic produced good results. We believe that this is due to the fact that the local

Lipschitz constants do not vary dramatically for the problems in our experiments.

In case of significant changes in the Lipschitz constants we believe any backtracking

heuristic will produce significant improvement over pure FISTA algorithm as it will

allow the prox parameter to increase sooner or later.

30

3.4 A practical backtracking FALM algorithm for

compressed sensing and Lasso problems

The idea of FALM with backtracking is similar to the one in FISTA. The main dif-

ference between FISTA and FALM is that FISTA approximates only the first part

of the composite objective function F (x), while FALM applies alternating approx-

imations to each of the two parts of F (x). Hence, we consider the following two

approximations of F (x) and their minimizers:

Definition 3.4.1.

Qf
µ(u, v) := f(v) + 〈u− v,∇f(v)〉+

1

2µ
‖u− v‖2 + g(u). (3.16)

pfµ(v) := arg min
u
Qf
µ(u, v). (3.17)

Qg
µ(u, v) := f(v) + 〈v − u, λ〉+

1

2µ
‖u− v‖2 + g(u), (3.18)

where λ is some element of the subdifferential ∂g(u).

pgµ(u) := arg min
v
Qg
µ(u, v). (3.19)

In this section, we discuss a practical FALM with backtracking for compressed

sensing and Lasso problems, which is shown in Algorithm 10. Throughout the discus-

sion, we also frequently apply a concept named skipping step. Regarding alternating

linearization methods (and their accelerated variants) with skipping steps, interested

readers can refer to [34,60].

31

We now discuss the additional cost of each backtracking step of Algorithm 10

compared to that of Algorithms 8 and a general efficient implementation of the

algorithm targeted at the problems of the form (3.15).

We again assume here that g(x) is a simple function, hence computing pgµx(y) is a

relatively cheap operation. Computing pfµy(x), however, involves solving a system of

linear equations with the matrix A>A+
1

2µy
I. In some compressed sensing problems

A has a special structure, such that this system can be solved in O(n log n) operations

- the same work as is required to multiply A or A> by a vector, and hence to compute

the gradient ∇f(x) = A>(Ax − b) [34]. In cases when such special structure is not

present, the work which involves factorization of A>A+
1

2µy
I may be the dominant

cost of the iteration, as it generally requires O(m3) operations.

If µy is fixed beforehand, then the matrix A>A +
1

2µy
I can be factorized once,

at the initialization stage of the algorithm, and hence the per iteration cost only

involves additional matrix vector products. If µy is updated in an arbitrary way

on each iteration, then the factorization has to be repeated each time. Recall, that

ideally we want µy to have the largest possible value which satisfies the line search

conditions in Step 2 of Algorithm 10 and that keeping µy constant may result in very

slow progress. Hence, again, there exists a tradeoff between choosing a suitable value

of prox parameter and the per iteration cost. For practical efficiency we strive to

achieve a reasonable balance. Assume that we choose some value µ̄y1 at the beginning

of the algorithm and we choose µ̄yk+1 = βiµyk for some i ∈ Z at each iteration k. Note

that in this case, for all k, µyk can only take values βjµy1 for j ∈ Z. Let us consider

β = 0.5. We also impose the following restriction of µyk: if µyk < µy1/1000, then the

expected improvement achieved by Step 2 is too small and the step is automatically

skipped; if µyk > 1000µy1, the prox parameter the step size is large enough and no

additional increase of µyk is necessary. Hence the only values allowed for µyk throughout

32

the algorithm are {2−10µy1, 2
−9µy1, ..., 0, 2µ

y
1, 4µ

y
1, ..., 2

10µy1}, overall 21 possible values.

As soon as one of these values occurs in the algorithm the corresponding matrix

factorization can be computed and stored for future use.

If the skipping of Step 2 occurs for a few consecutive iterations we may choose to

automatically skip this step in the further iterations and thus avoid the additional

cost of computing pfµy(x). In this case the FALM-BKTR algorithm reduces FISTA-

BKTR. We found it beneficial to attempt Step 2 from time to time even after it has

been skipped consistently on prior iterations.

The management of µxk parameter and the additional per iteration cost of step 3

can be executed similarly to what is described in Section 3.3 for the FISTA-BKTR

implementation.

Algorithm 10 Fast Alternating Linearization Method (FALM-BKTR)

1. Choose x0 = y0 = y−1 = z1, µ0 = µ̄x1 = µ̄y1 > 0, 0 < β < 1, set t1 = 1 and t0 = 0;
2. for k = 1, 2, ... do

(1) Set µxk := µ̄xk, µ
y
x := µ̄yk, skip := true

(2) Compute pgµxk(z
k)

If F (pgµxk(z
k)) ≤ Qg

µxk
(zk, pgµxk(z

k)) then xk := pgµxk(z
k), skip := false

else µxk = 0,θk−1 := 2µk−1/µ
y
k, (tk, z

k) := FistaStep(yk−1, yk−2, tk−1, θk−1),
xk := zk

(3) Compute pf
µyk

(xk)

If F (pf
µyk

(xk)) ≤ Qf
µyk

(pf
µfk

(xk), xk) then yk := py
µyk

(xk)

else µyk := βµyk, µk :=
µxk + µyk

2
, θk := µk−1/µk, (tk, z

k) :=

FistaStep(yk−1, yk−2, tk−1, θk−1)
If skip = false, return to (2)
else xk := zk, return to (3)

(4) Choose µ̄yk+1, µ̄
x
k+1

θk :=
2µk

µ̄yk+1 + µ̄xk+1

,

(tk+1, z
k+1) := FistaStep(yk, yk−1, tk, θk)

33

3.5 Computational results

We now present numerical results for several sparse optimization problems of the

standard compressed sensing or Lasso form:

x̄ := arg min
x

1

2
‖Ax− b‖2

2 + ρ‖x‖1, (3.20)

with f(x) :=
1

2
‖Ax− b‖2

2 and g(x) := ρ‖x‖1.

We compare the following algorithms.

• FISTA: the original FISTA [7], as described in Algorithm 3 with θk = 1.

• FISTA-BKTR: an efficient implementation of Algorithm 9 as discussed in Sec-

tion 2.3 and 3.3.

• FALM: an implementation of Algorithm 8 as discussed in Section 2.4.

• FALM-BKTR: an efficient implementation of Algorithm 10 as discussed in

Section 2.4 and 3.3.

• SpaRSA: a gradient based algorithm, with the use of shrinking, described in

[28].

• Yall1: a solver based on alternating directions methods described in [78].

We compared the performance of the algorithms benchmarking them against

FISTA. In particular, we ran FISTA for j iterations and recorded the best objective

function value FISTA(j) achieved by FISTA thus far. Then for all other algorithms,

we recorded the number of the iterations it took to reach a function value which is

smaller than FISTA(j). We report the number of iterations as well as the number

34

of matrix-vector multiplications. Throughout our tests, the maximum number of

iterations is set to be 100000, and the tolerance is set to be 10−3 which means that

the algorithm terminates when the objective function value is within 10−3 from the

optimal (precomputed). We report the final objective function value when each

algorithm terminates.

The main goal of our experiments is to demonstrate that our full backtrack-

ing strategy provides not only theoretical but practical advantage when applied to

FISTA and FALM methods. The comparison to Yall1 and SpaRSA methods is only

presented here to gauge the difficulty of the problems in our experiments and to

demonstrate that behavior of our methods is reasonable. Our implementations were

written in MATLAB and run in MATLAB R2010b on a laptop with Intel Core

Duo 1.8 GHz CPU and 2GB RAM. We used the default setting for both Yall1 and

SpaRSA, which likely accounts for the bad performance of these algorithms on some

of the problems.

3.5.1 The Spear Examples

This set of instances are obtained from the Sparse Exact and Approximate Recovery

Project and can be downloaded from either of the following links:

• http://imo.rz.tu-bs.de/mo/spear/

• https://coral.ie.lehigh.edu/projects/SPAROPTLIB/wiki/SparseOptimizationLibrary.

Spear10 (1024 × 512) Dynamic range is 3.02e+4. Sparsity is 18 (i.e. 18 nonzero

elements in the true solution). This problem provides a relatively easy instance when

ρ = 1 but the difficulty increases substantially as ρ decreases.

35

Table 3.1: Comparison of the algorithms for solving (3.20) with ρ = 1 on Spear10.
FISTA(100) = 5.3839e+5, FISTA(500) = 1.2799e+5, FISTA(1000) = 1.0035e+
5. The starting µ for FISTA/FISTA-BKTR, µf for FALM/FALM-BKTR and µg
for FALM-BKTR are all set to be 1. For FALM (with skipping), we tried different
values for µg. The starting µg’s for FALM-S1, FALM-S2, FALM-S3 are 1, 10 and
100, respectively. Moreover, for FALM/FALM-BKTR the number in parentheses is
the number of matrix factorization required overall.

solver iter mult iter mult iter mult final iter mult final Obj.

FISTA 100 206 500 1006 1000 2006 1065 2133 9.997e+4

FISTA BKTR 69 170 283 619 627 1343 647 1404 9.997e+4

FALM-S1 30 94 (2) 117 355 (2) 376 1037 (11) 586 1457 (11) 9.997e+4

FALM-S2 10 34 (2) 39 121 (2) 206 565 (11) 273 699 (11) 9.997e+4

FALM-S3 4 16 (2) 17 57 (4) 355 812 (11) 464 1030 (11) 9.997e+4

FALM BKTR 8 28 (8) 26 112 (10) 85 396 (21) 136 546 (21) 9.997e+4

SpaRSA 98 196 1487 2974 1689 3378 1729 3458 9.997e+4

YALL1 18 55 30 91 89 268 93 280 9.997e+4

From Table 3.1, we see that the algorithms with backtracking (FISTA-BKTR and

FALM-BKTR) were generally faster than their basic counterparts (FISTA, FALM)

in terms of the number of matrix-vector multiplications. For example, it only takes

627 iterations and 1343 matrix-vector multiplications for FISTA-BKTR to reduce

the objective function value below FISTA(1000) = 1.0035e+ 5. Comparing FALM-

S1 and FALM-BKTR, we observe that the latter is faster for the same initial choice

of µg (µg = 1). Initial performance of FALM-S2 and, especially, FALM-S3 is good

due to larger starting values for µg, however this performance slows down compared

to FALM-BKTR as iterations progress. This indicates that the full backtracking

strategy can help accelerate the original algorithms at any stage.

In Figure 3.1 we plot how µ changes during iterations taken by FISTA and FISTA-

BKTR when solving (3.20) with ρ = 1 on Spear10. We see that, FISTA-BKTR can

achieve larger values of µ by allowing backtracking, and thus performs large steps

on some of the iterations, which corresponds with the smaller number of iterations

required by FISTA-BKTR.

Table 3.2 shows the results on Spear10 problem with ρ = 0.01. This problem

36

Figure 3.1: Comparison on the µ values while solving (3.20) with ρ = 1 on Spear10

37

Table 3.2: Comparison of the algorithms for solving (3.20) with ρ = 0.01 on Spear10.
The starting µ is set to be 0.01. FISTA(100) = 6.0980e + 3, FISTA(500) =
5.8943e+ 3, FISTA(1000) = 5.4176e+ 3.

solver iter mult iter mult iter mult final iter mult final Obj.

FISTA 100 206 500 1006 1000 2006 17846 35695 999.4

FISTA BKTR 79 190 372 804 746 1607 12547 26527 999.4

FALM-S1 24 76 (2) 156 472 (2) 313 943 (2) 5298 15903 (11) 999.4

FALM-S2 7 25 (2) 53 163 (2) 108 328 (2) 1221 3674 (11) 999.4

FALM-S3 4 16 (2) 16 52 (2) 33 103 (2) 287 869 (11) 999.4

FALM BKTR 7 25 (7) 12 40 (11) 18 64 (11) 252 1078 (21) 999.4

SpaRSA 30 60 687 1374 5024 10048 100000 200000 2151.1 (Failed)

YALL1 65 196 65 196 66 199 95 286 1015.3

provides a difficult instance where our backtracking methods appears to provide

clear advantage. SpaRSA did not converge to the proximity of the solution, while

Yall1 only achieved accuracy of 10−1, but not 10−3. Here we observe that FISTA-

BKTR retains its advantage, while FALM-BKTR seems to slow down compared to

FALM method when it gets closer to the solutions. The reasons for this behavior

will be investigated in the future.

Spear3 (1024×512) with ρ = 0.1. Dynamic range is 2.7535e+4. Sparsity is 6. We

observe that behavior of FALM-BKTR converges to that of FISTA-BKTR in later

iterations due to persistent skipping of Step 2.

Table 3.3: Comparison of the algorithms for solving (3.20) with ρ = 0.1 on Spear3.
The starting µ is set to be 1. FISTA(100) = 1.1825e+4, FISTA(500) = 1.1793e+4,
FISTA(1000) = 1.1784e+ 4.

solver iter mult iter mult iter mult final iter mult final Obj.

FISTA 100 211 500 1011 1000 2011 28517 57045 7.33e+3

FISTA BKTR 236 535 241 547 324 722 3149 6767 7.33e+3

FALM-S1 8 28 (2) 166 378 (11) 559 1164 (11) 27287 54620 (11) 7.33e+3

FALM-S2 6 34 (2) 112 266 (11) 547 1136 (11) 28063 56168 (11) 7.33e+3

FALM-S3 105 245 (11) 506 1047 (11) 826 1687 (11) 22430 44895 (11) 7.33e+3

FALM BKTR 6 34 (6) 145 485 (17) 276 827 (17) 3819 10271 (17) 7.33e+3

SpaRSA 5 10 264 528 1215 2430 100000 200000 1.02e+4 (Failed)

YALL1 418 1255 418 1255 418 1255 809 2428 7.33e+3

38

3.5.2 Bdata problems

Bdata test set was originally created by A. Nemirovski with the aim to imitate

examples with worst-case complexity for the first-order methods. This problem,

however, provides a relatively easy instance probably due to presence of the `1 term

in the objective. Here we present results for Bdata1 (1036× 1036), with ρ = 0.0001;

dynamic range is 5.9915 and sparsity is 16.

Table 3.4: Comparison of the algorithms for solving (3.20) with ρ = 0.0001 on
Bdata1. The starting µ is set to be 1. FISTA(10) = 0.0015, FISTA(50) =
4.6868e−4, FISTA(100) = 1.8933e−4, FISTA(200) = 1.6275e−4. The toleranceεb
is set to be 0.001.

solver iter mult iter mult iter mult final iter mult final Obj.

FISTA 10 22 50 102 100 202 200 402 1.63e-4

FISTA BKTR 8 18 40 99 81 193 160 368 1.63e-4

FALM-S1 8 22 (2) 37 112 (5) 114 282 (11) 190 434 (11) 1.63e-4

FALM-S2 4 10 (2) 17 51 (5) 95 224 (11) 172 378 (11) 1.63e-4

FALM-S3 2 4 (1) 12 38 (8) 93 212 (11) 169 364 (11) 1.63e-4

FALM BKTR 5 13 (5) 14 60 (9) 80 331 (19) 142 479 (19) 1.63e-4

SpaRSA 8 16 55 110 166 332 230 460 1.63e-4

YALL1 16 49 27 82 36 109 81 244 1.63e-4

3.5.3 Sparco problems

This category of instances are obtained from [70]. Due to the fact that the Sparco

instances use function handles for matrix computation, which our FALM implemen-

tation is not equipped to utilize, we do not include FALM in this comparison. We

present results for Sparco3 (2048 × 1024), with ρ = 0.01, dynamic range of 2 and

sparsity of 2. We observe that, for this relatively easy instance, FISTA-BKTR has

minor advantage over FISTA in terms of the number of matrix-vector multiplica-

tions. For this example FISTA outperforms the alternating direction based method

Yall1, while SpaRSA seems to be the winning method for this instance.

39

Table 3.5: Comparison of the algorithms for solving (3.20) with ρ = 0.01 on Sparco3.
The starting µ is set to be 1. FISTA(10) = 13.07180, FISTA(50) = 8.187212,
FISTA(100) = 2.710062. The toleranceεb is set to be 0.001.

solver iter mult iter mult iter mult final iter mult final Obj.

FISTA 10 24 50 104 100 204 207 418 2.22278

FISTA BKTR 6 18 38 97 78 187 173 387 2.22278

SpaRSA 7 14 11 22 72 144 99 198 2.22278

YALL1 10 20 10 20 19 38 262 534 2.22278

3.5.4 Smoothed `2 norm minimization

As an alternative to problem (3.20) one may wish to solve the following problem

with exact `2 penalty term:

x̄ := arg min
x

‖Ax− b‖2 + ρ‖x‖1, (3.21)

In order to apply FISTA and FALM family of methods, we can smooth the `2 term

with the well-known Huber penalty function, and obtain the following minimization

problem:

x̄ := arg min
x

Hν(‖Ax− b‖2) + ρ‖x‖1, (3.22)

where

Hν(y) =


y2

2ν
, 0 ≤ |y| ≤ ν

|y| − ν

2
, |y| ≥ ν,

for ν > 0. If ν < ε, then the solution of (3.22) is an ε-solution to (3.21). converges to

that of (3.21). We define f(x) := Hν(‖Ax− b‖2) and g(x) := ρ‖x‖1. It is well known

that global Lipschitz constant of ∇f(x) is O(1/ν). In [60], the analysis of the local

composite Lipschitz constant for the case when g(x) ≡ 0 is derived and it shows that

40

away from the optimal solution the local composite Lipschitz constant is of ∇f(x) is

much smaller than O(1/ν). The analysis of the case when g(x) := ρ‖x‖1 is a lot more

complex, but the essential expectation remains for our first-order schemes: the prox

parameter µ will be relatively large away from the solutions, while it will decrease as

the algorithms converges. In fact FISTA and FALM in their original form will observe

the same behavior of the prox parameter, as they allow for the prox parameter to

decrease, but not to increase. Hence we do not expect a significant saving using

backtracking in this setting, however, we present experiments for illustration and to

confirm our expectation of the prox parameter behavior.

In Tables 3.6 and 3.7 we present a comparison of the first-order methods on

Spear10 data and formulation (3.22). We observe that FISTA-BKTR is much faster

than FISTA and SpaRSA, in the case when the initial prox parameter value is not

very large. As compared with FISTA, FISTA-BKTR allows for a huge increase in µ.

If initial µ is set to 1, then FISTA performance is very slow, as is shown in Table 3.6.

But if µ = 1000, then FISTA performance improves, to the level of FISTA-BKTR,

as is seen in 3.7. This is well explained by showing graphically the change of µ in

Fig 3.2.

Table 3.6: Comparison of the algorithms for solving (3.22) with ρ = 0.1 on Spear10.
The starting µ is set to be 1. FISTA(100) = 4.4552e+4, FISTA(500) = 2.4248e+4,
FISTA(1000) = 1.1554e+ 4

solver iter mult iter mult iter mult final iter mult final Obj.

FISTA 100 200 500 1000 1000 2000 2242 4486 9.99e+3

FISTA BKTR 18 36 27 54 29 62 48 144 9.99e+3

SpaRSA 1558 3116 36014 72028 57198 114396 60313 120626 9.99e+3

In Table 3.8 and Figure 3.3 we show the outcome of the experiments on the Bdata1

test set. In this case, FISTA and FISTA-BKTR perform as expected, with FISTA-

BKTR retaining a small advantage. In fact, after 500 iterations, the µ value for both

algorithms becomes small which indicates large Lipschitz constant for solving (3.22)

41

Figure 3.2: Comparison on the µ values while solving (3.22) with ρ = 0.1 on Spear10

42

Table 3.7: Comparison of the algorithms for solving (3.22) with ρ = 0.1 on Spear10.
The starting µ is set to be 1000. FISTA(10) = 3.4189e+4, FISTA(20) = 1.0866e+
4, FISTA(40) = 9.9944e+ 3

solver iter mult iter mult iter mult final iter mult final Obj.

FISTA 10 20 20 40 40 91 42 97 9.99e+3

FISTA BKTR 7 14 11 28 25 92 28 102 9.99e+3

SpaRSA 18129 36258 57282 114564 59130 118260 59131 118262 9.99e+3

on Bdata1.

Table 3.8: Comparison of the algorithms for solving (3.22) with ρ = 0.01 on Bdata1.
The starting µ is set to be 1. FISTA(100) = 0.0196, FISTA(500) = 0.0164,
FISTA(1000) = 0.0164

solver iter mult iter mult iter mult final iter mult final Obj.

FISTA 100 210 500 1010 1000 2010 2105 5249 0.0164

FISTA BKTR 120 342 539 1290 539 1290 1624 3822 0.0164

3.5.5 `2 regularized logistic regression

Finally, we illustrate the behavior of FISTA vs. FISTA-BKTR on an example of

`2 regularized logistic regression applied to an optical character recognition data

set ”Optdigits” from UCI repository [31]. We present this example here purely for

illustration purpose to show that on settings other than compressed sensing the

backtracking strategy can produce significant improvement. As we discussed, to

obtain optimal performance from backtracking a careful implementation is needed

that tries to take into account the problem structure. Such implementation for

logistic regression and other problems is a subject of future research. Here we present

results of basic approach where µ is increased by a factor of 2 on each iteration.

FISTA required 5705 iterations and 11417 matrix-vector multiplications to obtain

a solution with gradient norm less that 10−2, while FISTA-BKTR required 1315

iterations and 3512 matrix-vector multiplications. In Figure 3.4 we plot the behavior

43

Figure 3.3: Comparison on the µ values while solving (3.22) with ρ = 0.001 on Bdata

44

of the µ parameter for both algorithms, which clearly shows that FISTA-BKTR

benefits from much larger steps.

Figure 3.4: Comparison on the µ values while solving logistic regression problem on
”Optdigits” dataset.

3.6 Conclusion

In this chapter we present a generalized version of accelerated first-order schemes

capable of estimating the prox parameter via backtracking, thereby allowing for the

value of this parameter to increase as well as decrease. We show that the value of

45

the parameter depends on the so-called local composite Lipschitz constant of the

gradient, rather than the global Lipschitz constant. Moreover, via some examples,

it can be shown that the local constants can be much smaller than the global ones;

hence, one could potentially obtain better convergence bounds. To produce such

bounds, one would need to combine the analysis in [60] with the analysis of the

iterates of a first-order algorithm, which will be the subject of a future study. Our

computational experiments and the discussion of a practical implementation show

that in practice our proposed backtracking schemes offer improvements in terms of

accelerated first-order algorithms.

46

Chapter 4

Least-squares approach to risk

parity in portfolio selection

4.1 Introduction

Quantitative portfolio selection has been a focus of many investors and researchers

in the past decades. One central goal in quantitative portfolio selection is to man-

age the tradeoff between return and risk. Since 1950s, many optimization models

have appeared and they continue to play an important role in making investment

decisions. However, some strategies resulting from optimal portfolio selection models

have been observed to be difficult to implement in practice. One of the commonly

cited reasons is the reliance of many of these models on forecasts of future returns.

When estimated from historical information, these forecasts can be inaccurate pre-

dictors of future behavior of the security returns, and optimal portfolios constructed

using these predictors can therefore be inefficient.

47

One well-known example of an optimal portfolio selection strategy is the mean-

variance optimization model. Proposed by Markowitz, mean-variance optimization

approach has been regarded as a fundamental framework in portfolio construction. It

offered the first quantitative insight into the tradeoff between returns and risk. One

persistent criticism of the mean-variance model has been its sensitivity to inputs.

Among others, research by [11] has shown that slight changes in input parameters,

especially in the expected return estimates, can lead to dramatic changes in the

optimal portfolio composition.

In practice, some investors apply much simpler asset allocation and portfolio

selection strategies and might suffer from their limitations as a consequence. One

of these simpler approaches is the well-known “60/40” strategy (60% equity, 40%

bonds). From a risk management perspective, the relative balance between equity

and fixed income instruments of this strategy is deceptive; because of the higher risk

of the equity investments, often more than 90% of the risk of the portfolio comes

from equities. Another simple diversification strategy is the “1/n” method, namely,

portfolio construction with equal weights in all asset classes; see [23]. But, once again,

the diversification is achieved only at the capital allocation level and not in terms of

risk contributions, simply because the approach does not utilize any information on

the assets’ volatility or their correlations.

In this chapter, we investigate another portfolio selection strategy – the risk parity

approach. The idea of risk parity is not new and can be regarded as a special type

of diversification strategy. Using volatility as the measure of risk, the risk parity

approach aims to create a portfolio with equal risk contributions from each of the

assets in the portfolio. The past few years have witnessed an increasing focus on risk

parity research; see, for instance, [18,19,48]. Most of the existing work considers risk

parity in the context of long-only portfolios. In this case, it can be demonstrated that

48

a risk parity portfolio can be obtained from the solution of a convex optimization

problem. Under reasonable assumptions, this solution is unique. Some analysis on

theoretical properties of long-only risk parity portfolios can be seen in [48,63].

In the context of long-short portfolios, the risk parity portfolio selection is a

richer and more challenging problem. For example, if shorting is allowed multiple

risk-parity solutions may exist. We show that a convex model still applies if the

investor identifies in advance which assets should be shorted. However, without any

such restrictions we show that there could be a combinatorially large number of

solutions that satisfy risk parity and these solutions can be identified through an

enumeration strategy. In practice, investors may consider adding general bounds

on the individual weights of the assets which may limit the total number of risk

parity solutions. Moreover, if the bounds are sufficiently tight a risk parity solution

satisfying such bounds may not exist at all.

We propose a generalized risk parity model which allows for short sales and applies

to cases where risk parity solutions may not exist. Our model is similar to the model

proposed in [48] in that we minimize a function that measures deviation from risk

parity in a least-squares sense. However, our formulation has a simpler structure

and allows for easier analysis and efficient algorithmic approaches. As in [48], the

optimization model that we consider is not convex. When they exist, each risk parity

solution is a global optimum of the least-squares model. Moreover, no local optimum

solution exists on the interior of the feasible set; in other words, all local optima

of our proposed formulation occur due to the presence of bounds on the weights.

We develop an algorithmic framework based on alternating linearization methods

(ALMs) to solve our generalized model. The framework is simple and convergent to

a local optimum that is guaranteed to be a global optimum when no constraints are

binding. Our formulation also easily extends to the case of the multiple objectives;

49

for example, to the case where one chooses the best risk parity solution according to

some additional criterion, when multiple solutions exist.

The rest of the chapter is organized as follows. After a brief discussion of the

minimum variance optimization framework in Section 4.2, we introduce the concept

of risk parity and consider the convex log-barrier model as well as the proposed

least-squares model. In Section 4.3 we discuss some properties of the local and

global optima of our new model. In Section 4.4, we discuss some extensions based

on the least-square model, where we aim to choose the best risk parity solution.

We also propose another extension of the risk parity problem to the case where we

seek parity on risk contributions of groups of assets rather than individual assets.

We propose a class of algorithmic methods based on the ALM framework, to solve

the least-square model in Section 4.5. Experiments and computational results are

discussed in Section 4.6, followed by concluding remarks.

4.2 Risk parity problem

Numerous methods based on the famous Markowitz mean-variance framework have

been proposed to overcome its drawbacks while maintaining its advantages; see, for

instance, [65]. In this chapter, we focus on risk based diversification strategies. Un-

like the classical mean-variance approach, risk based strategies do not incorporate

expected returns into the formulation. Motivations for not using expected returns in

the portfolio construction include the difficulty of estimating these quantities accu-

rately, and the well documented sensitivity of the optimal weights to small changes

in expected returns. For these reasons, [48] argue that risk based strategies are more

robust than approaches using expected returns.

50

One prominent example of risk-based strategies in portfolio selection is the mini-

mum variance optimization approach. This approach aims to minimize the volatility

of the portfolio, or its active risk, and can be formulated as a convex quadratic op-

timization problem. This problem can be solved efficiently using widely available

optimization software and typically has a unique solution. Here we briefly introduce

the minimum variance optimization model to compare it to the risk parity approach.

Suppose we have n risky assets. Their covariance is given by a symmetric matrix

Σ which is assumed to be positive definite. The following optimization problem

minimizes the total variance of a fully-invested long-only portfolio:

min
x

1

2
x>Σx

s.t. xi ≥ 0
n∑
i=1

xi = 1,

(4.1)

where x = [x1, x2, . . . , xn]> is the vector of the weights of the n assets. The factor

1/2 in the objective is introduced to simplify the optimality conditions and has no

impact on the optimal portfolio. From the first-order optimality conditions of the

above problem we see that

Σx− λ− γe = 0, (4.2)

where e is an n-dimensional vector of all ones, λ ∈ Rn and γ ∈ R are the La-

grange multipliers corresponding to the long-only and full investment constraints,

respectively. Note that, complementary slackness conditions imply that if some xi

is strictly larger than zero, then the corresponding λi must be zero. Combining this

observation with (4.2), we obtain

(Σx)i = γ, ∀i s.t. xi 6= 0. (4.3)

51

From (4.3) we obtain:

(
Σx√
x>Σx

)
i

=

(
Σx√
x>Σx

)
j

,∀i, j s.t. xi, xj 6= 0. (4.4)

In this chapter, we make the common choice of using volatility σ(x) = (x>Σx)
1
2 as

our risk measure. With this definition of risk, note that
∂σ

∂x
=

Σx√
x>Σx

is the vector

of marginal risk contributions for the assets in the portfolio. Hence, we have

∂σ

∂xi
=

∂σ

∂xj
, ∀i, j s.t. xi, xj > 0. (4.5)

The above condition implies that, as long as we invest in an asset, its marginal

risk contribution should be the same as that of all other assets with positive weights

in the portfolio. As such, minimum variance approach leads to portfolios with equal

marginal risk contributions. In practice, while dominating other strategies from the

perspective of low volatility, the minimum variance approach often leads to con-

centrated portfolios, i.e., encourages investors to concentrate on a small number of

assets with lower risk profiles and to give up diversification. This behavior is often

undesirable and this is exactly what risk parity optimization intends to overcome.

Risk parity portfolios can be motivated by considering Euler decomposition of a

portfolio risk measure into contributions from each asset in the portfolio.

Theorem 4.2.1. (Euler’s theorem) Let a continuous and differentiable function f :

Rn → R be a homogeneous function of degree one; i.e. for any constant c ∈ R,

f(cx) = c · f(x). Then,

f(x) = x1 ·
∂f

∂x1

+ x2 ·
∂f

∂x2

+ . . .+ xn ·
∂f

∂xn
.

52

Simply put, a risk parity portfolio is a portfolio where the total contribution of

each asset to the portfolio risk is equal. When σ(x) = (x>Σx)
1
2 is used as the risk

measure, using Euler’s theorem, we can decompose σ(x) as σ(x) =
n∑
i=1

xi ·
∂σ

∂xi
. Here,

the quantity xi ·
∂σ

∂xi
represents the contribution of asset i to portfolio risk. In this

context, the risk parity problem aims to find any portfolio that satisfies

xi ·
∂σ

∂xi
= xj ·

∂σ

∂xj
,∀i, j. (4.6)

We will refer to any solution satisfying (4.6) as a risk parity solution. If we restrict

the weight vector to be normalized, we obtain the normalized risk parity problem:

xi ·
∂σ

∂xi
= xj ·

∂σ

∂xj
,∀i, j

n∑
i=1

xi = 1.
(4.7)

We will refer to any solution of (4.7) as normalized risk parity solution. Note that

one can easily convert a solution of (4.6) into a solution of (4.7) through simple

scaling, as long as the sum of the asset weights is not zero.

We will also consider situations where risk parity solutions may not exist because

of the presence of additional restrictions on the portfolio weights. In such cases, we

will look for portfolios that are “close to risk parity” and for this purpose it will be

important to quantify the deviation from risk parity. We address this issue in Section

4.2.3.

Let us assume for a moment that the correlation between any two assets is a

constant, that is ρij = ρ, ∀i, j. It can be shown that a closed form solution to (4.7)

can be derived under this assumption; see [48]. This solution is given by the following

identity: xi =
σ−1
i∑n

j=1 σ
−1
j

, where σ2
i represent the diagonal elements of the covariance

53

matrix Σ. Some literature refers to this case as the “naive risk parity” solution.

When the correlations are not constant, a closed-form solution for x does not exist

in general and numerical approaches need to be applied.

4.2.1 Long-only risk parity via convex optimization

Next, we consider the problem of finding a long-only risk parity solution, i.e., finding

a vector of weights of n assets x = [x1, x2, . . . , xn]> such that xi ·
∂σ

∂xi
= xj ·

∂σ

∂xj
,∀i, j

and x ≥ 0. In this case, it turns out that solving an artificial optimization problem

that incorporates a logarithmic barrier term is equivalent to finding a risk parity

solution:

min
x

1

2
x>Σx− c

n∑
i=1

lnxi

s.t. xi > 0,

(4.8)

where Σ is the covariance matrix and c is an arbitrary positive constant. Our use

of the logarithmic barrier term in the objective function of (4.8) is motivated by

a related formulation in [48] that uses a constraint incorporating the sum of the

logarithms. Other authors have also utilized the logarithmic barrier function for

solving the risk parity problem in independently developed studies; see [42,63].

Since Σ is positive definite and the logarithm function is strictly concave, the

objective function of (4.8) is strictly convex. Under strict convexity, we observe

that this convex optimization problem has a unique solution. From the first-order

optimality conditions, this solution lies at the point where the gradient of the ob-

jective function, Σx − cx−1 is zero, where x−1 = [1/x1, 1/x2, . . . , 1/xn]>. Hence, at

optimality we have (Σx)i =
c

xi
,∀i, which leads to

xi(Σx)i = xj(Σx)j, ∀i, j. (4.9)

54

It is now easy to see that (4.9) is equivalent to xi ·
∂σ

∂xi
= xj ·

∂σ

∂xj
,∀i, j and that risk

parity is achieved at the unique optimal solution of (4.8).

There is no guarantee that the weights in the solution of (4.8) will sum to one,

so the result may represent a levered or an under-invested portfolio. Fortunately,

we have the following result showing the existence and uniqueness of the risk parity

solution in the long-only case if we impose the additional constraint that the sum of

all weights equals to one. The proof is similar to Theorem 1.1 in [63].

Lemma 4.2.2. Let Σ be a positive definite covariance matrix. Then there exists a

unique solution x which satisfies:

xi(Σx)i = xj(Σx)j,∀i, j (4.10)
n∑
i=1

xi = 1, xi > 0, ∀i. (4.11)

In fact, any two long-only risk parity solutions differ by a constant factor.

Proof. The objective function of (4.8) is continuous and strongly convex and it in-

creases to infinity at the boundary of the feasible region. Hence, the intersection of

its level set and the feasible region is compact. This implies that it has a unique

global minimum, say, xc for any given c > 0. Consider the following optimization

problem:

min
x

1

2
x>Σx− αc

n∑
i=1

lnxi

s.t. xi > 0,

(4.12)

where α is a positive scalar. It is easy to verify that
√
αxc is the unique solution for

this problem since
√
αxci

[
Σ(
√
αxc)

]
i

= αc. Hence, as α varies from 0 to∞,
n∑
i=1

√
αxci

varies from 0 to ∞. Further, for α∗ =
1

(
∑n

k=1 x
c
k)

2
, the solution of (4.12), denoted

55

as x∗, satisfies
n∑
i=1

x∗i = 1. It is easy to see that x∗i =
xi∑n
k=1 x

c
k

and x∗ is unique and

independent of initial choice of c.

4.2.2 Risk parity solutions over orthants

In this subsection, we explore the set of risk parity solutions when the long-only

restriction on weights is removed. The approach discussed in Section 4.2.1 identifies

only the solution in the nonnegative orthant. To find solutions in other orthants, we

consider the following modified log-barrier approach:

min
x

1

2
x>Σx− c

n∑
i=1

ln βixi

s.t. βixi > 0,

(4.13)

where β = [β1, β2, . . . , βn]> ∈ {−1, 1}n, defines the orthant in which the solution is

sought. If βi = 1, then xi ∈ (0,+∞); otherwise, xi ∈ (−∞, 0). For each choice

of β, (4.13) is a convex optimization problem and thus it has a unique solution xβ.

Since there are 2n such different β vectors, there are 2n such solutions. Let β̄ = −β

define the complementary orthant of the orthant defined by β. It is easy to see that

xβ = −xβ̄. We have the following lemma.

Lemma 4.2.3. Let Σ be a positive definite covariance matrix. Then there exist at

most 2n−1 solutions which satisfy xi(Σx)i = xj(Σx)j,∀i, j; and
n∑
i=1

xi = 1.

Proof. For each β and xβ, x̂β =
xβ∑n
i=1 x

β
i

is a normalized risk parity solution satisfying

(4.7) as long as
n∑
i=1

xβi 6= 0. Note that
xi∑n
i=1 xi

=
−xi∑n
i=1(−xi)

. Also note that for all

56

unnormalized risk parity solutions in the same orthant either
n∑
i=1

xβi = 0 or
n∑
i=1

xβi < 0

or
n∑
i=1

xβi > 0. Hence, for every choice of β, β̄ = −β generates the same scaled risk

parity solution x̂β, and thus there are at most 2n−1 such solutions. In other words,

for each orthant, the normalized risk parity solution exists if and only if
n∑
i=1

xβi 6= 0

for any of the unnormalized risk parity solutions in that orthant. If
n∑
i=1

xβi < 0, then

the normalized risk parity solution lies in the complementary orthant.

Remark 4.2.4. Note that a scaled risk parity solution does not exist in the orthant

defined by β if
n∑
i=1

xβi = 0 in Lemma 4.2.3. Hence, there may be fewer than 2n−1

normalized solutions. When
n∑
i=1

xβi = 0 the portfolio is “market-neutral”. That is,

x represents a zero investment portfolio and its aggregate exposure to the market

is zero. This case is independently interesting and can sometimes be desirable in

portfolio selection.

To illustrate Lemma 4.2.3 with an example, let us consider the simple case when

the covariance matrix is diagonal, i.e.

Σ =



σ2
1

σ2
2

. . .

σ2
n


.

In this case risk parity is equivalent to the following system of (n − 1) linearly

57

independent equations:

β1σ1x1 = β2σ2x2

β1σ1x1 = β3σ3x3

...

β1σ1x1 = βnσnxn,

(4.14)

where βi ∈ {−1, 1},∀i ∈ {1, . . . , n}. Suppose σ−1
i +

∑
j 6=i

βj
βi
σ−1
j 6= 0,∀i. Then (4.14),

together with
n∑
i=1

xi = 1, leads to a set of closed form solutions

xi =
σ−1
i

σ−1
i +

∑
j 6=i

βj
βi
σ−1
j

. (4.15)

Since there are 2n different β, and each pair (β,−β) lead to the same system of

equations (4.14), there are at most 2n−1 different solutions. Additionally, in (4.14),

if βi = 1,∀i ∈ {1, . . . , n}, then (4.15) becomes xi =
σ−1
i∑
j σ
−1
j

, which is simply the

“naive risk parity” solution discussed previously.

Given that there may be exponentially many different risk-parity solutions in the

long-short case, additional preferences or restrictions on the weights can be used to

narrow down these choices. For example, one may look for a risk parity solution with

the least volatility or one with weights lying between given bounds. If investors know

a priori which assets are desirable to short, then the log barrier approach of Section

4.2.1 can be easily extended to find the desired long-short risk-parity portfolio by

selecting the appropriate β in (4.13). In the next two subsections, we discuss efficient

methods for finding solutions satisfying additional preferences or restrictions without

resorting to enumeration.

58

4.2.3 Least-squares model with general bounds

The log-barrier approach to finding risk parity solutions does not immediately extend

to scenarios with additional constraints or preferences. In particular, when general

bounds are added, risk parity solution may not exist, however, up to 2n−1 different

instances of (4.13) may have to be solved before infeasibility can be established.

Moreover, the log barrier formulation gives no direct guidance on how to produce

a feasible solution which may be “close to risk parity”. Simple approaches, such as

projecting infeasible normalized risk parity solutions onto the feasible region defined

by the constraints may generate portfolios that deviate substantially from risk parity.

In addition, it is not clear how to extend this approach to the cases when risk parity

is desirable for groups of assets rather than for individual assets (e.g., industry-based

groups).

In this section we propose a least-squares formulation for solving the risk parity

problem. Our formulation is similar to the following formulation proposed in [48]:

min
x

n∑
i=1,j=1

(xi(Σx)i − xj(Σx)j)
2

s.t. ai ≤ xi ≤ bi
n∑
i=1

xi = 1.

(4.16)

Above, ai and bi are arbitrary constants representing the bounds on the weight of the

i-th asset (ai can be less than zero if we allow short sales). The objective function

of (4.16) introduces a penalty term for each pair of risk contribution terms xi(Σx)i

and xj(Σx)j that are different from each other. Alternatively, one can consider using

59

penalty terms for deviations of risk contributions from their average value:

min
x

n∑
i=1

(xi(Σx)i −
∑n

j=1 xj(Σx)j

n
)2.

Our formulation is based on this second objective function, but replaces the average

risk contribution term with a free variable θ that is also optimized:

min
x,θ

n∑
i=1

(xi(Σx)i − θ)2

s.t. ai ≤ xi ≤ bi
n∑
i=1

xi = 1,

(4.17)

For future reference, we denote by F (x, θ) the objective function of (4.17):

F (x, θ) :=
n∑
i=1

(xi(Σx)i − θ)2. (4.18)

If the optimization problem (4.17) has an optimal value of zero, then risk parity is

achieved. Otherwise, the value of the objective function F (x, θ) can be regarded as

a minimum variance measure towards our goal.

The two formulations (4.16) and (4.17) are equivalent in the sense that any risk

parity solution is a solution to both optimization problems. However, our formu-

lation (4.17) offers a much simpler form of the objective function containing only

n elements in the sum, while the formulation from [48], contains an order of n2

elements. Hence, our formulation is computationally less demanding, is easier to

analyze and contains fewer nonlinearities. Moreover it allows us to develop efficient

optimization approaches as will be seen in Section 4.5 The auxiliary variable θ can

always be set to its optimal value based on the following lemma. However, allowing

θ to be a free variable significantly simplifies the formulation.

60

Lemma 4.2.5. For any fixed vector x, there exists one and only one θ∗ such that

(4.18) is minimized, and θ∗ = (
n∑
i=1

xi(Σx)i)/n = x>Σx/n.

Proof. For a fixed vector x, (4.18) is a strictly convex unconstrained function of

θ. Further, the function is minimized when first-order optimality is satisfied, which

implies θ∗ = (
n∑
i=1

xi(Σx)i)/n.

Example 4.2.6. Consider three assets with volatilities σ1 = 1, σ2 = 1, σ3 = 2,

respectively and assume the correlation matrix is the 3× 3 identity matrix.

Thus, the covariance matrix is

Σ =


1.0

1.0

4.0

 .

The normalized risk-parity solution in the positive orthant is x0 = [0.4; 0.4; 0.2].

Now, suppose we have a restricted feasible region: 0.5 ≤ x1 ≤ ∞, x2, x3 ∈ R+. If we

project x0 onto the feasible region, we obtain xp = [0.5; 0.35; 0.15]. This solution is

not “optimal” from the perspective of risk parity solution and the objective function

of (4.17). To see that, consider the solution obtained by optimizing (4.17): xopt =

[0.5; 0.333; 0.167]. We see that the objective function value at xp equals 0.0143, while

at xopt it equals 0.0128. Hence, in terms of risk parity, xopt is preferable to xp.

We can also compare these two solutions using measures of risk concentration.

For this purpose, we consider two metrics: the highest risk contribution by any asset

and the Herfindahl index. As its name suggests, the highest risk contribution is

defined as

HRC(x) := max
i

xi(Σx)i
x>Σx

, (4.19)

61

while the Herfindahl index is defined as follows:

h(x) =
n∑
i=1

[
xi(Σx)i
x>Σx

]2

. (4.20)

The values for the Herfindahl index range between
1

n
, for the risk-parity portfolio,

and 1, for a perfectly concentrated portfolio.

We observe that HRC(xp) = 0.5405, while HRC(xopt) = 0.5292; and hxp =

0.4002, while hxopt = 0.3909. While the differences are small, both measures indicate

that xopt is a better solution in terms of risk concentration, suggesting that optimizing

(4.17) leads to less concentrated portfolios.

Note that, unlike problems (4.1) and (4.8), (4.17) is a non-convex optimization

problem, hence in theory it is harder to solve and may have local solutions. However,

as we will show it is a useful formulation, as simple practical and fast optimization

schemes can be developed for this problem. Further, this formulation can be extended

to include additional optimization criteria and different variants of risk parity.

4.3 Local and global optima issues

In this section, we investigate conditions under which first-order optimality condi-

tions for (4.17) are sufficient for global optimality. The Lagrangian function for (4.17)

can be written as

L(x, θ) =
n∑
i=1

(xi(Σx)i − θ)2 − λ>a (x− a)− λ>b (b− x) + γ(
n∑
i=1

xi − 1), (4.21)

62

where λa, λb ∈ Rn
+, γ ∈ R. We now derive the first-order conditions:

∂L
∂xi

=
∂F

∂xi
− (λa)i + (λb)i + γ = 0, ∀i, (4.22a)

∂L
∂θ

=
∂F

∂θ
= 0, (4.22b)

n∑
i=1

xi − 1 = 0, (4.22c)

ai ≤ xi ≤ bi, ∀i, (4.22d)

λa, λb ≥ 0, (4.22e)

(λa)i(xi − ai) = 0, (λb)i(bi − xi) = 0. (4.22f)

The gradient of F with respect to x is

∇xF (x, θ) = 2
n∑
i=1

(xi(Σx)i − θ)(eiΣi + (eiΣi)
>)x, (4.23)

where ei ∈ Rn×1 is the ith column of the identity and Σi ∈ R1×n is the ith row of

the covariance matrix.

When constraints are excluded from (4.17) we have the following unconstrained

problem:

min
x,θ

F (x, θ) =
n∑
i=1

(xi(Σx)i − θ)2. (4.24)

In this case, the first order conditions are simpler:

∇xF = 0,
∂F

∂θ
= 0.

We have the following lemma for this unconstrained case:

Lemma 4.3.1. A solution pair {x, θ} is a global optimum of (4.24) with F (x, θ) = 0

63

if and only if ∇xF = 0,
∂F

∂θ
= 0.

Proof. 1) If F = 0, then xi(Σx)i − θ = 0, ∀i, from which ∇xF = 2
n∑
i=1

(xi(Σx)i −

θ)(eiΣi + (eiΣi)
>)x = 0 holds trivially.

2) If ∇xF = 0, then x>∇xF = 0; hence,

2
n∑
i=1

(xi(Σx)i−θ)x>(eiΣi+(eiΣi)
>)x = 2

n∑
i=1

(xi(Σx)i−θ)(xi(Σx)i+(xi(Σx)i)
>) = 0.

(4.25)

Let Bi = xi(Σx)i, note that Bi = B>i . Then, ignoring the constant factor, we have

n∑
i=1

(Bi − θ)Bi = 0. (4.26)

Applying the second condition
∂F

∂θ
= 0, which implies θ =

∑n
i=1 Bi

n
, we have

n
n∑
i=1

B2
i = (

n∑
i=1

Bi)
2. (4.27)

On the other hand, from Cauchy–Schwarz inequality we know that n
n∑
i=1

B2
i ≥

(
n∑
i=1

Bi)
2. Furthermore, (4.27) holds only when Bi = Bj for all i, j ∈ {1, . . . , n}.

Hence, F (x, θ) = 0.

In contrast, when constraints are imposed, local optima and local stationary

points can occur. The following simple example shows that the inclusion of the full

investment constraint, even without additional bounds, can lead to a local stationary

point that is not a global solution:

64

Example 4.3.2. Consider an example of two assets with volatility σ1 = 1, σ2 = 2,

respectively, and the covariance matrix

Σ =

 1 0

0 4

 .

Suppose there are no bounds on x1 and x2 but we have
n∑
i=1

xi = 1. Then it is

easy to solve the system of equations that satisfies KKT conditions. There are three

solutions, two of which, x1 = [
2

3
,
1

3
] and x2 = [2;−1] are risk parity solutions. The

third stationary point is x3 = [
4

3
,−1

3
], which is not a risk parity solution. Indeed,

this point corresponds to a local maximum of the function F .

The next example shows that a local minimum can also occur when there are

bound constraints in (4.17), even if there is a risk parity solution, and thus, a global

optimum, in the same orthant.

Example 4.3.3. Consider Example 4.3.2 but with additional bounds 1.2 ≤ x1 ≤

∞,−∞ ≤ x2 ≤ −0.2. x1 = 2, x2 = −1 is the risk parity solution that satisfies the

bounds. As Figure 4.1 shows, x1 = 1.2, x2 = −0.2 is a local minimum but is not a

global minimum.

These last two examples suggest that care must be taken in solving (4.17) if we

wish to avoid local solutions and find a global solution of the problem.

65

Figure 4.1: The function value in Example 4.3.3 with respect to x1. Note that,

in this 2 × 2 case, x2 = 1 − x1, and θ =
σ2

1x
2
1 + σ2

2x
2
2

2
=

σ2
1x

2
1 + σ2

2(1− x1)2

2
.

Hence, the figure here shows F (x1, x2, θ) = (x2
1 −

x2
1 + 4(1− x1)2

2
)2 + (4(1− x1)2 −

x2
1 + 4(1− x1)2

2
)2 when x1 ≥ 1.2. It shows that x1 = 1.2 is a local optimum on the

boundary.

66

4.4 Extended least-squares models

In this section, we discuss several useful extensions of the risk parity problems that

can be easily included in our least-squares model.

4.4.1 Minimum variance with risk parity

As we discussed above, when short positions are allowed, multiple risk parity so-

lutions may exist. In such cases, the investors have the option to define additional

criteria on their portfolio preferences to narrow down the choices for risk parity port-

folios, and possibly pick a “best” risk-parity portfolio according to the additional

criteria. Introducing preferences based on expected returns is one possible option,

but we do not consider this here as we are focused on risk-based strategies. Instead,

we seek the risk-parity solution with the least variance. One possible approach to

achieve this objective is to enumerate all risk parity solutions and then pick the one

with the least variance. Instead of this approach that may require identification

of exponentially many risk parity solutions, we consider a multi-objective formula-

tion where the objective function is a weighted sum of total portfolio variance and

least-squares risk parity term:

min
x,θ

n∑
i=1

(xi(Σx)i − θ)2 + ρx>Σx

s.t. ai ≤ xi ≤ bi
n∑
i=1

xi = 1,

(4.28)

where ρ ≥ 0 is the weight parameter. Note that, in the above formulation we simply

added a convex term to the objective function of (4.17).

67

Without the risk-parity term in the objective, (4.28) is simply the minimum

variance portfolio problem and is easy to solve using quadratic programming solvers.

It is also easy to show that for a large enough ρ problem (4.28) is convex in the feasible

domain, if this domain is bounded. We propose an approach where we simply solve a

sequence of problems (4.28) with decreasing values of ρ. This approach is described

in Algorithm 11 and is intended to find a risk parity solution with the smallest

variance:

Algorithm 11 Sequential min-variance risk parity algorithm

1. Choose ρ0 > 0, β ∈ (0, 1), ε > 0 and x0;
2. for k = 0, 1, . . .

If ρk ≥ ε, then find xk+1 that solves (4.28) with ρ = ρk using xk as a starting
point.

Set ρk+1 := ρkβ, CONTINUE.
Else, find xk+1 that solves (4.28) ρ = 0 using xk as a starting point. EXIT.

By setting initial ρ to a large value, we initiate Algorithm 11 with a potentially

easy to solve problem and a solution that is close to the minimum variance solution

but may be far from risk parity. Then, the algorithm solves a sequence of subprob-

lems of the form (4.28) with decreasing values ρ, initializing each new subproblem

with the solution of the previous subproblem. The goal is to converge to the risk

parity solution that has the smallest variance among all risk parity solutions. Recall

that each orthant contains at most one normalized risk parity solution. Algorithm

11 attempts to identify the correct orthant where the minimum variance risk parity

solution lies. Hence, once ρ is small enough (for instance, smaller than some pre-

defined tolerance ε, or once the convergence to the correct orthant is apparent), we

can drop the minimum variance term and solve the (pure) risk parity problem in the

right orthant. In this case, we have a single-orthant risk parity problem as in (4.13)

and can obtain the exact risk parity solution that has small volatility.

68

Note that, due to the nonconvexity of the objective function, there is no theoret-

ical guarantee that Algorithm 11 will always converge to the minimum variance risk

parity solution. However, this approach is significantly more efficient than comput-

ing 2n−1 possible solutions. In all our experiments, Algorithm 11 reliably produced

good solutions and did not get “trapped” in bad local minima.

Example 4.4.1. Often, the long-only risk parity portfolio is conservative in terms of

risk, but it may not be the least risky one among all risk parity portfolios, especially

in the presence of negatively correlated assets.

Consider three assets whose volatilities are given by σ1 = 1, σ2 = 1, σ3 = 2.

Moreover, assume the correlation matrix is given by

Corr =


1.0 −0.9 0.3

−0.9 1.0 −0.1

0.3 −0.1 1.0

 .

Thus, the covariance matrix is

Σ =


1.0 −0.9 0.6

−0.9 1.0 −0.2

0.6 −0.2 4.0

 .

Since this is a small instance, it is not hard to empirically check that there are a

total of 4 normalized risk parity solutions. We list these solutions in Table 4.1.

By successively setting the parameter ρ to be 1000, 10, 0.1, 0.001 and 10−5, and

solving the corresponding five subproblems, Algorithm 11 finds the risk parity solu-

tion [0.574; 0.531;−0.105]. As indicated in Table 4.1, this is precisely the minimum

69

Table 4.1: A comparison of strategies, with the lower and upper bounds to be a =
−1, b = 2.

Items for comparison xi RCi Volatility

Risk parity portfolio (1) [0.455;0.481;0.064] [0.333;0.333;0.333] 0.289

Risk parity portfolio (2) [-1.912;1.605;1.307] [0.333;0.333;0.333] 3.840

Risk parity portfolio (3) [1.784;-1.999;1.215] [0.333;0.333;0.333] 4.805

Risk parity portfolio (4) [0.574;0.531;-0.105] [0.333;0.333;0.333] 0.238

variance risk parity solution.

Our results suggest that, our method is very robust with respect to the starting

point. More results and larger instances are considered in numerical experiments in

Section 4.6

It is clear that a similar strategy can be applied to select best risk parity portfolio

based on another criterion, such as expected return or value at risk, etc.

4.4.2 Group risk parity

Another interesting extension of the risk parity problem is the case of group risk

parity where we seek parity of risk contributions from groups of assets instead of

individual assets. This variation is useful in the case when there are a large number

of assets; for instance, in the context of equity investing. The assets can be grouped

using a common risk factor such as industry membership or market capitalization

and we look for equal risk contribution from each factor instead of each individual

asset.

One consequence of requiring risk parity at the individual asset level is that each

70

asset receives a positive weight. This is not always desirable when investors prefer

to limit the number of positions taken, or when transaction costs are of concern.

While it is possible to add cardinality constraints to the formulation to address such

concerns, such an approach brings additional computational difficulty. We do not

discuss cardinality constraints here in the risk parity context and refer interested

readers to [13] for more details. Imposing risk parity at a group level instead of

at the individual asset level can also address this issue implicitly and can produce

“sparse” solutions with fewer holdings.

For group risk parity, we solve the following nonconvex problem:

min
x,θ

l∑
j=1

(
∑
i∈Gj

xi(Σx)i − θ)2

s.t. ai ≤ xi ≤ bi
n∑
i=1

xi = 1,

(4.29)

where Gj stands for the jth group, and l is the total number of groups. Here we

make two assumptions: 1) we invest in all groups (i.e., we do not aim to pursue

group sparsity); 2) there is no overlap (i.e., each asset can only lie in one of the

groups). Risk parity between groups is achieved if the optimal value of the objective

function is zero. In Section 4.6 we show how group risk parity may produce a

desirable portfolio using sector membership for grouping different assets in an equity

portfolio. In the next section we introduce an efficient algorithm that can handle

problem (4.17), as well as the variations (4.28) and (4.29).

71

4.5 Algorithms solving second order least-square

problems

In this section, we briefly introduce an algorithm for solving risk parity optimization

problem. Details of this algorithm and others for this class of problems can be found

in Chapter 5, including convergence analysis and additional numerical results. This

algorithm was initially inspired by an alternating linearization algorithm in [34].

However, here it is applied to a nonconvex problem and in a substantially different

setting.

Consider the following optimization problem:

min
x∈X ,θ

F (x) =
∑
i

((Aix)>(Bix)− θ)2, (4.30)

where x ∈ Rn, Ai, Bi ∈ Rm×n and X is a set defined by linear constraints.

Note that the risk parity models we discussed in the previous sections can be

embedded into this formulation. The objective function of risk parity problem (4.17)

fits the formulation of (4.30) by setting Ai = Σi ∈ R1×n as the ith row of the

covariance matrix, and Bi = ei ∈ R1×n as the ith column of the identity matrix. In

case of (4.29), Aj ∈ Rmj×n is defined by a submatrix of Σ which correspond to rows

with indices from set Gj. Bj ∈ Rmj×n is defined as follows: suppose the ith row of

Aj corresponds to the (ki)th row of Σ, then ith row of Bj corresponds to the (ki)th

row of the identity matrix:

(Bj)i,k =


1, k = ki

0, otherwise.

72

Note that (4.30) is equivalent to

min
x∈X ,θ

F (x, θ) =
n∑
i=1

Fi(x) =
n∑
i=1

(x>Mix− θ)2, (4.31)

whereMi = A>i Bi ∈ Rn×n. ClearlyMi is not generally symmetric or positive semidef-

inite. Hence (5.2) is a nonconvex optimization problem. We consider a variable split-

ting approach which replaces F (x, θ) by F (x, y, θ) =
n∑
i=1

(x>Miy − θ)2, s.t. y = x.

For brevity, let us omit θ from the variables of F and use F (x, y). Our method

generates two sequences {xk} and {yk} in such a way that xk → x∗ and/or yk → x∗

where x∗ is a local optimal solution of (4.30).

Given yk

F (x, yk) ≡
n∑
i=1

(x>Miy
k − θ)2, (4.32)

and given xk we have

F (xk, y) ≡
n∑
i=1

((xk)>Miy − θ)2, (4.33)

Both F (x, yk) and F (xk, y) are convex functions of x and y, respectively, for any

given yk and xk. Let ∇iF denote the partial derivative of F with respect to either x

(i = 1) or y (i = 2). In particular, using the form of (5.2), we have

∇1F (x, y) =
n∑
i=1

2(x>Miy − θ)Miy

∇2F (x, y) =
n∑
i=1

2(x>Miy − θ)M>
i x.

(4.34)

73

We now construct the following approximations of F (x, y):

Q1
µ(x, yk) , F (x, yk) +

〈
∇2F (yk, yk), x− yk

〉
+

1

2µ
‖x− yk‖2

2

Q2
µ(xk+1, y) , F (xk+1, y) +

〈
∇1F (xk+1, xk+1), y − xk+1

〉
+

1

2µ
‖xk+1 − y‖2

2,

(4.35)

where µ is some chosen positive scalar. In Chapter 5 the simple version of our ALM

algorithm, shown in Algorithm 14.

As already discussed in previous chapters, in practice, a backtracking strategy

can be applied to choose values of parameters µ at each iteration. A practical back-

tracking scheme is shown in Algorithm 15. Note that, in each minimization step we

check whether a sufficient reduction has been obtained. If so, the minimization step

is accepted and µ may be increased, otherwise it is decreased and a new candidate

step is computed. Each minimization step in Algorithms 14 and 15 is a solution of

a strictly convex quadratic programming problem, which can be obtained efficiently

by existing methods and software. We will discuss the implemented method in the

next chapter.

4.6 Numerical results

4.6.1 A comparison between strategies

We compare several asset allocation strategies on a small data set to illustrate the

benefits of the risk parity strategy. Consider the following example with 5 assets and

the covariance matrix of percentage returns (returns multiplied by 100) given by:

74

Table 4.2: A comparison of strategies, with the lower and upper bounds set to
a = 0, b = 1.

Items for comparison xi RCi Volatility

1/n rule [0.200;0.200;0.200;0.200;0.200] [0.119;0.524;0.219;-0.002;0.139] 7.07%

Minimum variance portfolio [0.050;0.006;0.000;0.862;0.082] [0.050;0.006;0.000;0.862;0.082] 2.16%

Risk parity portfolio [0.125;0.047;0.083;0.613;0.132] [0.200;0.200;0.200;0.200;0.200] 3.04%

Σ =



94.868 33.750 12.325 −1.178 8.778

33.750 445.642 98.955 −7.901 84.954

12.325 98.955 117.265 0.503 45.184

−1.178 −7.901 0.503 5.460 1.057

8.778 84.954 45.184 1.057 34.126


.

The covariance matrix above suggests that Asset 4 is a low risk asset while Asset

2 is a high risk asset. The other assets are in the middle of the risk spectrum. First,

we consider the long-only risk parity case, when the lower and upper bound of the

weights are set to be 0 and 1, respectively. As we have proved in Lemma 4.2.2, in

this case, there is a unique risk parity solution.

Table 4.2 shows a comparison of different strategies in terms of volatility and

risk concentration. We compare three strategies: 1/n rule, the minimum variance

portfolio, and the risk parity portfolio. The relative risk contribution of asset i,

denoted by RCi, is calculated as

RCi :=
xi(Σx)i
x>Σx

.

By construction, the minimum variance strategy has the least volatility among these

three strategies. However, the distribution of the risk contributions for the minimum

variance portfolio is very skewed — more than 86% of the total risk comes from

75

Table 4.3: A comparison of strategies, with the lower and upper bounds set to
a = 0.05, b = 0.35.

Items for comparison xi RCi Volatility

1/n rule [0.200;0.200;0.200;0.200;0.200] [0.119;0.524;0.219;-0.002;0.139] 7.07%

Minimum variance portfolio [0.200;0.050;0.050;0.350;0.350] [0.280;0.178;0.086;0.034;0.421] 4.13%

Optimal parity portfolio [0.204;0.060;0.130;0.350;0.256] [0.256;0.198;0.234;0.027;0.284] 4.44%

Asset 4. From Table 4.2 it can be observed that risk parity strategy also puts a high

weight on Asset 4, but has equal risk contribution from each asset by construction.

Further, the volatility of the risk parity portfolio is between that of the minimum

variance portfolio and the equally weighted portfolio, which indicates that risk parity

could be viewed as a compromise between these two strategies.

If there are binding constraints on asset weights a risk parity portfolio may not

exist, as discussed in previous sections. For instance, if we change the bounds to be

ai = 0.05, bi = 0.35, i = 1, . . . , 5, there is no risk parity solution. Due to its much

lower risk profile, Asset 4 requires a much higher weight than other assets to match

their risk contributions. Since the 0.35 upper bound prevents this, risk parity cannot

be achieved. Instead, we seek approximate risk parity by solving (4.17).

Let us call the optimal solution to (4.17) the “optimal parity” solution. From

Table 4.3, we observe that the risk contribution of Asset 4 in the optimal parity

portfolio is lower than other assets and the resulting excess is shared roughly evenly

among three of the four remaining assets. No asset has risk contribution more than

30% in the optimal parity portfolio.

Next, let us consider the long-short case by removing the bounds on asset weights.

In Lemma 4.2.3, we showed that for the long-short risk parity problem with n assets,

there could be as many as 2n−1 solutions. In our example, by solving (4.13) for all

orthants, we obtain 24 = 16 solutions. We enumerate these solutions in Table 4.4.

76

We also list the orthant that each solution lies in.

Finally, we compare the long-short minimum variance portfolio to the minimum

variance risk parity portfolio. We include the equally weighted portfolio in the com-

parison, shown in Table 4.5, for completeness. As discussed in Section 4.1, the

minimum variance risk parity portfolio can be found by applying Algorithm 11. The

solution, denoted as Risk parity portfolio* in Table 4.5, provides a favorable tradeoff

between lowering portfolio risk and balancing risk contributions from all assets com-

pared to the other strategies. Further, by examining Table 4.4, we verify that Risk

parity portfolio* is indeed the minimum variance risk parity portfolio.

4.6.2 Strategic asset allocation

In this subsection, we compare four different static investment strategies using real-

world data.

We consider the following common market indices to represent different asset

classes: S&P 500, MSCI World (Net), Russell 2500, Russell 2000 Growth, Russell

2000 Value, HFRI Equity Hedged Index, MSCI Emerging Markets (Net), HFRI

Emerging MKTS Total, HFRI FoF (Conservative Index), BC Treasury 5-10 Yr, BC

US Corporate High Yield Index, JPMorgan GBI-EM Index, JPMorgan EMBI+ In-

dex, S&P Global Natural Resources - Energy Index. Here, we use a monthly sampling

frequency, and the sampling period is from Nov. 2002 to Aug. 2012. We use the

returns of each one of these asset classes during the sampling period to estimate their

annualized expected returns and volatilities. For excess return and Sharpe ratio cal-

culations we estimate the risk-free rate from the 3-month T-bill rate which averages

approximately 1.8% annually during the sampling period.

77

T
ab

le
4.

4:
A

co
m

p
ar

is
on

of
lo

n
g-

sh
or

t
ri

sk
p
ar

it
y

so
lu

ti
on

s
b
y

en
u
m

er
at

io
n
.

It
em

s
fo

r
co

m
p

a
ri

so
n

x
i

V
ol

at
il

it
y

O
rt

h
a
n
t

C
om

p
le

m
en

ta
ry

or
th

an
t

R
is

k
p

a
ri

ty
p

or
tf

o
li

o
(1

)
[0

.1
2
5;

0.
04

7;
0.

08
3;

0.
61

3;
0.

13
2]

3.
04

%
[+

;+
;+

;+
;+

]
[−

;−
;−

;−
;−

]

R
is

k
p

a
ri

ty
p

or
tf

o
li

o
(2

)
[-

0
.2

2
3;

0.
07

4;
0.

12
5;

0.
82

0;
0.

20
4]

4.
26

%
[−

;+
;+

;+
;+

]
[+

;−
;−

;−
;−

]

R
is

k
p

a
ri

ty
p

or
tf

o
li

o
(3

)
[0

.1
5
7;

-0
.1

28
;0

.1
24

;0
.5

38
;0

.3
09

]
3.

34
%

[+
;−

;+
;+

;+
]

[−
;+

;−
;−

;−
]

R
is

k
p

a
ri

ty
p

or
tf

o
li

o
(4

)
[0

.1
5
4;

0.
07

3;
-0

.2
85

;0
.7

17
;0

.3
40

]
3.

48
%

[+
;+

;−
;+

;+
]

[−
;−

;+
;−

;−
]

R
is

k
p

a
ri

ty
p

or
tf

o
li

o
(5

)
[0

.1
6
5;

-0
.1

18
;-

0.
25

5;
0.

53
7;

0.
67

1]
3.

38
%

[+
;−

;−
;+

;+
]

[−
;+

;+
;−

;−
]

R
is

k
p

a
ri

ty
p

or
tf

o
li

o
(6

)
[-

0.
70

0;
-0

.2
33

;-
0.

50
3;

3.
29

8;
-0

.8
63

]
17

.9
4%

[−
;−

;−
;+

;−
]

[+
;+

;+
;−

;+
]

R
is

k
p

ar
it

y
p

o
rt

fo
li

o
(7

)
[0

.2
72

;0
.2

47
;0

.4
50

;1
.4

95
;-

1.
46

4]
5.

84
%

[+
;+

;+
;+

;−
]

[−
;−

;−
;−

;+
]

R
is

k
p

a
ri

ty
p

or
tf

o
li

o
(8

)
[-

0
.2

1
6;

-0
.1

62
;0

.1
82

;0
.7

26
;0

.4
71

]
4.

70
%

[−
;−

;+
;+

;+
]

[+
;+

;−
;−

;−
]

R
is

k
p

a
ri

ty
p

or
tf

o
li

o
(9

)
[-

0
.2

4
5;

0.
11

7;
-0

.3
93

;0
.9

85
;0

.5
36

]
5.

01
%

[−
;+

;−
;+

;+
]

[+
;−

;+
;−

;−
]

R
is

k
p

a
ri

ty
p

or
tf

o
li

o
(1

0)
[0

.3
6
6;

-0
.0

97
;-

0.
20

1;
1.

28
9;

-0
.3

56
]

6.
67

%
[+

;−
;−

;+
;−

]
[−

;+
;+

;−
;+

]

R
is

k
p

ar
it

y
p

o
rt

fo
li

o
(1

1
)

[-
0.

5
53

;0
.5

41
;0

.9
34

;2
.9

02
;-

2.
82

4]
11

.8
7%

[−
;+

;+
;+

;−
]

[+
;−

;−
;−

;+
]

R
is

k
p

ar
it

y
p

o
rt

fo
li

o
(1

2
)

[-
0.

5
13

;0
.5

38
;-

0.
42

6;
2.

70
7;

-1
.3

07
]

11
.3

6%
[−

;+
;−

;+
;−

]
[+

;−
;+

;−
;+

]

R
is

k
p

ar
it

y
p

o
rt

fo
li

o
(1

3
)

[0
.2

87
;-

0.
10

3;
0.

44
1;

1.
07

2;
-0

.6
96

]
5.

58
%

[+
;−

;+
;+

;−
]

[−
;+

;−
;−

;+
]

R
is

k
p

a
ri

ty
p

or
tf

o
li

o
(1

4)
[0

.2
7
2;

0.
24

5;
-0

.2
20

;1
.4

03
;-

0.
70

0]
5.

65
%

[+
;+

;−
;+

;−
]

[−
;−

;+
;−

;+
]

R
is

k
p

ar
it

y
p

o
rt

fo
li

o
(1

5
)

[-
0.

4
57

;-
0.

18
3;

0.
89

5;
1.

97
9;

-1
.2

34
]

10
.8

7%
[−

;−
;+

;+
;−

]
[+

;+
;−

;−
;+

]

R
is

k
p

ar
it

y
p

o
rt

fo
li

o
(1

6
)

[-
0.

2
08

;-
0.

15
0;

-0
.3

46
;0

.7
11

;0
.9

92
]

4.
69

%
[−

;−
;−

;+
;+

]
[+

;+
;+

;−
;−

]

78

Table 4.5: A comparison of strategies, without any bounds on asset weights

Items for comparison xi RCi Volatility

1/n rule [0.200;0.200;0.200;0.200;0.200] [0.119;0.524;0.219;-0.002;0.139] 7.07%

Minimum variance portfolio [0.050;0.006;-0.012;0.856;0.100] [0.050;0.006;-0.012;0.856;0.100] 2.16%

Risk parity portfolio* [0.125;0.047;0.083;0.613;0.132] [0.200;0.200;0.200;0.200;0.200] 3.04%

We compare the following four strategies: 60/40 rule (allocated between S&P 500

and BC Treasury 5-10 Yr indices, representing equity and fixed income investments),

1/n rule, the minimum variance portfolio, and the risk parity portfolio. For each

strategy, the weights and risk contributions of different asset classes are shown in

Figure 4.2 and 4.3, respectively. For each one of the resulting portfolios, we compare

the expected excess return, volatility, Sharpe ratio, 5% nonparametric Value-at-Risk

of these strategies. In addition, we compare two risk concentration metrics, namely

the HRC and the Herfindahl index that are defined by (4.19) and (4.20), respectively.

It can be observed that for both of 60/40 rule and the equally weighted portfolio,

the volatility and 5% VaR are high compared to the minimum variance and risk

parity portfolios. The risk parity portfolio achieves the highest Sharpe ratio among

the four strategies. In terms of risk concentration, the traditional 60/40 rule is

dominated by equity risk (more than 95%), as expected. As in the example of the

previous section, the minimum variance portfolio, also has a high risk concentration:

almost two thirds of the risk is contributed by the least risky asset, namely the HFRI

FoF Conservative Index. This can be clearly observed from Figure 4.3, showing risk

contribution of different assets. Overall, the risk parity portfolio provides a good

compromise between balancing risk contributions and achieving reasonable amount

of expected returns.

79

T
ab

le
4.

6:
A

co
m

p
ar

is
on

of
st

ra
te

gi
es

on
as

se
t

al
lo

ca
ti

on
ex

am
p
le

,
w

it
h

th
e

lo
w

er
an

d
u
p
p

er
b

ou
n
d
s

se
t

to
a

=
0,
b

=
1.

It
em

s
fo

r
co

m
p

ar
is

on
E

x
p

ec
te

d
ex

ce
ss

re
tu

rn
V

ol
at

il
it

y
S

h
ar

p
e

R
at

io
V

aR
5
%

H
ig

h
es

t
R

C
H

er
fi

n
d

a
h

l
in

d
ex

60
/
40

ru
le

4.
33

%
9.

36
%

0.
46

2
4.

43
%

9
5.

4
9%

0
.8

7
83

1/
n

ru
le

8
.5

9%
12

.3
9%

0.
69

3
5.

80
%

13
.1

2%
0
.0

9
00

M
in

im
u

m
va

ri
an

ce
p

or
tf

o
li

o
2
.5

9%
3.

55
%

0.
73

0
1.

17
%

61
.7

9
%

0.
5
27

8

R
is

k
p

a
ri

ty
p

or
tf

o
li

o
6.

57
%

7.
72

%
0.

85
1

3.
13

%
7
.1

4
%

0.
0
71

4

80

Figure 4.2: Weights of different asset classes in the asset allocation example

Figure 4.3: Risk contribution of different asset classes in the asset allocation example

81

4.6.3 US equity sector allocation

In this section, we consider a sector allocation problem for US equities. We perform

a simulation over a 40-year period with annual rebalances and compare the perfor-

mance of three different strategies. As in Section 4.6.1, we consider equal weighting,

minimum variance and risk parity strategies. Similar experiments or simulated ex-

amples can be found in, for instance, [19, 48].

We consider 17 sectors representing the US equity universe (food, mines, oil, clths,

durbl, chems cnsum, cnstr, steel, fabpr, machn, cars, trans, utils, rtail finan, other)

as detailed in Kenneth French’s data library.1 We also use return data provided in

this library.

We run simulations using monthly sector returns from Oct. 1972 to Sep. 2012.

Since the sampling period is relatively long, we do not assume that input parameters

to portfolio construction strategies are constant over time and we take into consid-

eration the time dependency of the return and risk parameters. For each year, we

estimate the forward-looking expected returns and covariance matrix based on the

monthly returns of the previous j years, with j = 3, 5 and 10 (we do not generate

results for the first j years). The risk-free rate is assumed to be the 3-month T-bill

rate. Meanwhile, considering the rebalancing costs, we apply annual rebalancing.

The average annualized excess return, volatility, Sharpe ratio and risk contribution

are reported. We also plot the excess return and cumulative excess return over time

in Figures 4.4 - 4.6.

It can be observed from Tables 4.7, 4.8 and 4.9 that minimum variance portfolio

has less volatility (and sometimes enjoys a slightly higher Sharpe ratio) than the other

two strategies, while its risk concentration is much higher as well. As a comparison,

1Details are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html

82

Table 4.7: A comparison of strategies for US sector allocation (3 yr rolling windows)

Items for comparison Excess return Volatility Sharpe Ratio Highest RC Herfindahl index

1/n rule 8.04% 15.30% 0.525 9.76% 0.0674

Minimum variance portfolio 6.39% 11.67% 0.547 51.79% 0.4089

Risk parity portfolio 8.59% 13.77% 0.624 14.72% 0.2034

Table 4.8: A comparison of strategies for US sector allocation (5 yr rolling windows)

Items for comparison Excess return Volatility Sharpe Ratio Highest RC Herfindahl index

1/n rule 7.97% 15.46% 0.516 9.83% 0.0676

Minimum variance portfolio 6.65% 11.66% 0.570 49.67% 0.3738

Risk parity portfolio 7.08% 14.11% 0.507 14.11% 0.1329

very often the volatility of risk parity portfolio lies between the other two, which once

again shows that risk parity is a compromise between equal weighting and minimum

variance approaches. Moreover, the risk parity strategy realizes higher returns than

the minimum variance strategy under all three moving window lengths considered,

as illustrated in Figures 4.4, 4.5, and 4.6.

4.6.4 Group risk parity portfolios based on the US large cap

universe

In this section, we study a stock selection strategy on the US large cap equities as

defined by the components of the S&P 500 index. We build our return and covariance

estimates using daily returns of S&P 500 constituents, from Aug. 21, 2009 to Aug.

Table 4.9: A comparison of strategies for US sector allocation (10 yr rolling windows)

Items for comparison Excess return Volatility Sharpe Ratio Highest RC Herfindahl index

1/n rule 8.90% 15.15% 0.588 9.98% 0.0684

Minimum variance portfolio 7.59% 11.39% 0.667 54.90% 0.4072

Risk parity portfolio 9.57% 14.54% 0.658 16.11% 0.1542

83

Figure 4.4: Annual and cumulative returns for US sector allocation strategies (3 yr
rolling windows)

84

Figure 4.5: Annual and cumulative returns for US sector allocation strategies (5 yr
rolling windows)

85

Figure 4.6: Annual and cumulative returns for US sector allocation strategies (10
yr rolling windows)

86

20, 2010 (see: http://pages.swcp.com/stocks/). We ignore those stocks with less

than 200 trading days of data. In total, there are 482 stocks and 245 trading days

considered. We now compare the simple “1/n” and minimum variance strategy with

group risk parity over this universe.

The groups are determined by Global Industry Classification Standard (GICS

Sector).2 Using the GICS classification, we partition the S&P 500 stocks into ten

sectors: Consumer Discretionary, Consumer Staples, Energy, Financials, Health

Care, Industrials, Information Technology, Materials, Telecommunication Services

and Utilities. Note that there is no overlap between groups, which means that each

stock belongs to one and only one group.

Since the data is sampled from the time period of only one year, we ignore the time

dependency of the parameters when testing the performance of different strategies.

Here we have 244 daily returns in the sample data. We divide this data into two

groups: 163 days for training, and the remaining 81 days for testing. We estimate

expected excess returns and covariances using the training data, build a portfolio

using various strategies using these estimates, and monitor the performance of the

resulting portfolios, out-of-sample, during the testing period.

The results are shown in Table 4.10. The highest group risk contribution is defined

as HGRC := max
j

∑
i∈Gj xi(Σx)i

x>Σx
. Also, the group Herfindahl index is defined as

hG =

p∑
j=1

[∑
i∈Gj xi(Σx)i

x>Σx

]2

.

Since our tests use the validation data, which is different from our training data, we

do not expect to achieve perfect risk parity during the testing period. But, as can be

2The standard can be accessed at: http://en.wikipedia.org/wiki/List of S%26P 500 companies.

87

Table 4.10: A comparison of strategies on the US large cap universe, with the lower
and upper bounds to be a = 0, b = 1.

Items Excess return Volatility Highest RC Highest Group RC Group Herfindahl index

1/n rule -27.60% 28.93% 3.94% 23.81% 0.142

Min. var. -26.03% 18.54% 40.40% 65.10% 0.449

Group risk par. -19.96% 23.46% 2.07% 11.13% 0.101

seen from Table 4.10, the group Herfindahl index for the group risk parity strategy

is not far from the perfect one (which is 1/10 = 0.1 since we have 10 groups). As a

comparison, the portfolio using 1/n rule has worse excess return (note that in this

particular testing period, we have a down market) and higher volatility, and thus is

dominated. Moreover, minimum variance portfolio, while having the least volatility,

suffers from risk concentration both on stock level and group level. Its highest group

risk contribution is 65.10%: more than half of total risk lies in the group “Consumer

Staples” (this can be clearly seen in Figure 4.7). Furthermore, at the individual

stock level, the maximum risk contribution is more than 40 percent (General Mills -

40.40%). This is a very high concentration of risk given that the investment universe

includes hundreds of securities.

4.6.5 Long-only vs. long-short portfolios

One of the main contributions of this chapter is its introduction of strategies for

determining long-short risk parity portfolios. In this section, we provide an example

to compare long-only portfolios with long-short ones and illustrate that allowing short

positions in a risk parity portfolio provides significant opportunities for reducing

volatility and Value-at-Risk while preserving the equal risk contribution property.

Depending on investors’ view on the future market trends, three types of long-

short portfolios can be considered: they may have a long-side bias, as in the case of

88

Figure 4.7: Risk contribution of different groups based on testing data

popular 130/30 strategies; they may have a short-side bias; or, they may be market-

neutral. In our discussion in Section 2, we focused on long-short portfolios with a

long-side bias. We proved that risk parity solutions exist in this case and furthermore

there could exist as many as 2n−1 solutions if we enforce a full-investment constraint.

Risk parity portfolios with a short-side bias can be regarded as complementary

counterparts to those with long-side biases and can be found by solving the following

problem:

xi ·
∂σ

∂xi
= xj ·

∂σ

∂xj
,∀i, j

n∑
i=1

xi = −1.
(4.36)

Clearly, a solution of problem (4.36) can be generated by solving (4.7) and flipping

the sign of each resulting weight.

In contrast, the case of risk parity under market neutrality is more complicated,

and it is not clear whether there exists a risk parity solution beyond the trivial one

(and, if yes, how many there are). In this chapter, we only consider an illustrative

89

Table 4.11: A comparison of long-only and long-short strategies on asset allocation
example

Items for comparison Bounds Volatility VaR 5% Highest RC Herfindahl index

Long-only min var portfolio [0,1] 3.55% 1.17% 61.79% 0.5278

Long-short min var portfolio [-1,2] 2.16% 1.00% 82.93% 1.6200

Long-only risk par portfolio [0,1] 7.72% 3.13% 7.14% 0.0714

Long-short risk par portfolio [-1,2] 2.57% 1.06% 7.14% 0.0714

asset allocation example with a long-side bias. Market neutral risk parity portfolios

will be considered as a subject for future research.

In Table 4.11 we show a comparison between long-only and long-short strategies

on the asset allocation example introduced in Section 4.6.2. We omit the results for

60/40 rule and 1/n rule since we reported on them earlier. Here, the long-short risk

parity portfolio is computed by applying Algorithm 11. The long-short risk parity

portfolio has much smaller volatility and VaR when compared to the long-only risk

parity portfolio. For comparison, the weights and risk contributions of each asset are

shown in Figures 4.8 and 4.9, respectively.

It can be observed that, for the long-short minimum variance portfolio, the volatil-

ity is less than its long-only counterpart, as expected from the expansion of the fea-

sible region. However, its highest risk contribution and Herfindahl index are also

larger, which indicates higher risk concentration. On the other hand, the long-short

risk parity portfolio greatly reduces the volatility as compared with the long-only

one, without causing any increase in either of the concentration metrics.

90

Figure 4.8: Long-only vs. long-short portfolios: weights of asset classes in asset
allocation example

Figure 4.9: Long-only vs. long-short portfolios: risk contributions of asset classes
in asset allocation example

91

4.6.6 Efficiency of algorithms

While this chapter is not aimed at algorithmic details, here we briefly discuss the

efficiency of the algorithms shown in Section 4.5, in application to the instances

discussed so far in this section. Further discussion on algorithms and corresponding

numerical experiments are provided in [4].

Our implementation is written in MATLAB and experiments were performed

using MATLAB 2013a on a laptop with Intel Core i5 1.8 GHz CPU and 4GB RAM.

We apply Mosek 7.0 to solve the QP subproblems in Algorithm 15, when optimizing

Q1 and Q2.

In Table 4.12, we compare the efficiency of the proposed algorithm on different

data sets. A random symmetric positive definite matrix can be generated from

Σ = AA>, where Aij is uniformly distributed within the interval [0, 1]. Recall that

the main computational cost of each algorithm lies in the number of quadratic models

it solves as the subproblem. Hence, here we report the number of iterations and the

total number of QPs solved. We compare the performance of the algorithms by

recording the number of iterations they took until the largest KKT violation (in

absolute value) fell below 10−4 and 10−6. It can be seen that, after the largest KKT

violation is less than 10−6, in most cases the function value is less than 10−9, which

indicates that an approximate risk-parity solution has been obtained. In the scenario

with tighter bounds, the objective function does not fall below 10−7 because there is

no risk parity solution.

As an alternative to ALM, optimization methods from MATLAB optimization

toolbox can be used to solve (4.17). However, our results indicate that these methods

are unreliable. For instance, for the 14-asset strategic asset allocation example from

92

Table 4.12: A comparison of ALM with backtracking on different instances. The
starting point is chosen to be the equally weighted portfolio, i.e., x0

i = 1/n. Due to
the scaling of the data, we chose a large initial µ. The number of iterations (k), the
number of QPs solved, and the objective function value (F-value) are compared. ε
is the threshold for the largest KKT violation.

Instance (size) Starting µ Bounds k (ε = 10−4) QP F-value

Random I (20) 0.01 a = 0; b = 1 6 14 1.01× 10−11

Random II (200) 0.0001 a = 0; b = 1 5 12 1.59× 10−12

5 assets example (5) 1000 a = 0; b = 1 1 6 1.21× 10−6

5 assets example (5) 1000 a = 0.05; b = 0.35 1 6 1.21× 10−6

5 assets example (5) 1000 a = −1; b = 2 1 6 1.21× 10−6

Asset allocation (14) 10000 a = 0; b = 1 1 2 2.68× 10−8

US equity (482) 1000 a = 0; b = 1 1 2 1.11× 10−11

Instance (size) Starting µ Bounds k (ε = 10−6) QP F-value

Random I (20) 0.01 a = 0; b = 1 7 17 8.86× 10−15

Random II (200) 0.0001 a = 0; b = 1 7 18 6.58× 10−18

5 assets example (5) 1000 a = 0; b = 1 11 16 1.01× 10−9

5 assets example (5) 1000 a = 0.05; b = 0.35 6 20 1.63× 10−7

5 assets example (5) 1000 a = −1; b = 2 11 16 1.01× 10−9

Asset allocation (14) 10000 a = 0; b = 1 6 12 3.89× 10−9

US equity (482) 1000 a = 0; b = 1 2 4 1.10× 10−11

Section 4.6.2, we can solve the generalized risk parity problem (4.17) using MAT-

LAB function fmincon using two algorithms - SQP and Interior Point. We set the

function tolerance (which controls both the size of the latest change in the objective

function value and the first-order optimality measure) as 10−8 and the maximum

function evaluation number as 10000. Table 5.9 compares the results generated by

our ALM with the results obtained by MATLAB’s fmincon. We observe that, in

this example, fmincon-SQP completely fails, as it does not progress from the start-

ing point. fmincon-interior point performs better but still not nearly as well as

our algorithm — it takes longer to find a far worse solution than ALM. Our ALM

algorithm finds a solution which is close to optimum by taking only 12 iterations and

by solving 26 QPs. This result shows the efficiency of the algorithm we proposed.

We also compare ALM with other methods to solve the risk parity optimization

93

T
ab

le
4.

13
:

A
co

m
p
ar

is
on

of
al

go
ri

th
m

s
on

th
e

14
-a

ss
et

st
ra

te
gi

c
as

se
t

al
lo

ca
ti

on
in

st
an

ce
in

S
ec

ti
on

4.
6.

2.
T

h
e

st
ar

ti
n
g

p
oi

n
t

is
ch

os
en

to
b

e
th

e
eq

u
al

ly
w

ei
gh

te
d

p
or

tf
ol

io
,

i.
e.

,
x

0 i
=

1/
n

.

A
lg

or
it

h
m

A
L

M
f
m
in
co
n

-
S

Q
P

f
m
in
co
n

-
in

te
ri

or
p

o
in

t

x
1
∼
x
7

[0
.0

43
0
.0

38
0
.0

35
0.

03
3

0.
03

5
0.

06
9

0
.0

27
]

[0
.0

71
0.

07
1

0.
07

1
0.

07
1

0.
0
71

0.
0
71

0
.0

71
]

[0
.0

57
0.

05
2

0.
04

7
0.

0
45

0
.0

47
0.

09
0

0.
03

8
]

x
8
∼
x
1
4

[0
.0

52
0.

17
0

0.
25

9
0.

06
6

0.
05

6
0.

08
3

0
.0

35
]

[0
.0

71
0.

07
1

0.
07

1
0.

0
71

0
.0

71
0
.0

71
0.

07
1]

[0
.0

69
0.

12
2

0.
1
16

0
.0

87
0.

07
4

0.
10

9
0.

0
4
7
]

R
C
1
∼
R
C
7

[0
.0

72
0.

07
3

0.
07

3
0
.0

73
0.

07
3

0.
07

0
0
.0

75
]

[0
.0

81
0.

09
2

0.
10

4
0
.1

11
0
.1

04
0
.0

48
0.

13
1
]

[0
.0

7
8

0.
0
81

0
.0

82
0
.0

84
0.

08
2

0.
07

4
0.

08
6
]

R
C
8
∼
R
C
1
4

[0
.0

72
0.

07
1

0.
05

7
0.

07
2

0.
07

3
0.

07
4

0.
07

3
]

[0
.0

6
3

0.
01

9
0.

00
4

0
.0

49
0
.0

57
0
.0

36
0.

10
1
]

[0
.0

7
5

0
.0

41
0
.0

13
0
.0

76
0.

07
6

0.
07

2
0.

0
8
1
]

S
u
cc

es
s/

F
ai

lu
re

S
u
cc

es
s

F
ai

lu
re

P
ar

ti
a
l

su
cc

es
s

C
P

U
ti

m
e

(s
)

0.
04

7
-

0
.4

57

94

Table 4.14: A CPU time comparison (in seconds) of ALM and Spinu’s Newton
method for solving instances of various sizes. The starting point is chosen to be the
equally weighted portfolio, i.e., x0

i = 1/n.

Thresholds 10−3 10−6 10−9

Instance size ALM Newton ALM Newton ALM Newton

5× 5 0.0146 0.0005 0.0188 0.0005 0.0210 0.0005

10× 10 0.0188 0.0006 0.0188 0.0006 0.0213 0.0006

20× 20 0.0185 0.0008 0.0185 0.0008 0.0214 0.0008

200× 200 0.2597 0.0275 0.2597 0.0275 0.2597 0.0275

1000× 1000 6.4051 2.2817 8.1324 2.2817 8.1324 2.2817

problem. In particular, [63] applies a damped Newton method to solve the long-only

risk parity problem (4.8) — the log-barrier risk parity model. [63] shows that the

log-barrier function is self-concordant and (4.8) can be efficiently solved using convex

optimization. In contrast, our generalized method solves (4.17) — a nonconex quartic

which is potentially more difficult. Here we test both methods on randomly generated

covariance matrices with different sizes. Table 4.14 compares the efficiency in terms of

CPU time required to reduce the chosen deviation measure below a certain threshold

value. Here, we choose the deviation measure to be
n∑
i=1

(
xi(Σx)i
x>Σx

− 1

n
)2, and thresholds

to be 10−3, 10−6 and 10−9. Note that, for both methods, the corresponding optimal

solution has a deviation measure zero when no bounds are enforced. As shown in

Table 5.9, Newton method is faster than the ALM approach in all the instances we

tested. This is not surprising since, seeking to solve a more general problem, our

model is computationally more complex. Further, it does not utilize the full second-

order information, as shown in [4], because we want to ensure that subproblems are

convex. As seen in Section 2.3, the log-barrier approach does not directly extend to

the cases when general bounds are added and thus we here only compare the long-

only full investment case. These results indicate that, when no customized bounds

are needed, the convex model is more efficient but its application is limited compared

95

to our general framework, which is reliable and comparatively efficient as well.

4.7 Conclusion

In this chapter, we discuss the problem of finding portfolios that satisfy risk parity

of either individual assets or groups of assets as closely as possible. We analyze

the limitations of the convex optimization approach, which was proposed in prior

literature. We then propose an alternative nonconvex least-squares model whose set

of optimal solutions includes all risk parity solutions. We also propose a modified

formulation which aims at selecting the most desirable risk parity solution according

to some predetermined criteria. Our model has many advantages, especially when

general bounds are considered or when other constraints are added. Furthermore,

we propose an alternating linearization framework to solve this nonconvex model.

Numerical experiments indicate the effectiveness of our technique. Extensions of our

models and methods to broader domains remain a topic of future research.

96

Chapter 5

Alternating direction schemes for

minimizing a nonconvex objective

that is not necessarily composite

and its application in second-order

least-squares

5.1 Introduction

Minimizing a sum of squares is a classical approach to finding an approximate solution

to (possibly) overdetermined systems of equations. In this chapter we are interested

in the case when the equations are quadratic. Specifically, consider solving the

97

following system of quadratic equations:

x>Mix = ci,∀i ∈ {1, ...,m}, x ∈ X (5.1)

where X is some convex set and Mi ∈ Rn×n are matrices, not necessarily symmetric.

In this chapter, we consider solving this problem by minimizing a sum of squares:

min
x∈X

F =
m∑
i=1

Fi(x) =
m∑
i=1

(x>Mix− ci)2, (5.2)

which we refer to, in this chapter, as second-order least-squares problem. Thus, we

aim to minimize a forth-order (quartic) polynomial, which is nonconvex in general,

over some convex set. Solving a system of quadratic equations or minimizing a

quartic polynomial is NP-hard in general (see, for instance, [20,47]).

There are several simple extensions of (5.1) and (5.2) to which methods in this

chapter can be readily applied. For instance, (5.1) can be extended by adding a

non-homogeneous term on the left hand side, i.e.

x>Mix+ p>i x = ci,∀i ∈ {1, ...,m}, (5.3)

where mi ∈ Rn is a given vector.

Another natural extension is the introduction of a regularization term. System

(5.3) may be under-determined or it only needs to be satisfied approximately, i.e.

x>Mix + p>i x ≈ ci,∀i ∈ {1, ...,m}. In these situations, we may consider a problem

in this form:

min
x∈X

F =
∑
i

(x>Mix+ p>i x− ci)2 + q(x), (5.4)

where q(x) is a regularization function that has some desired properties.

98

Below are the practical examples that provided initial motivation for the methods

in this chapter.

Example 5.1.1. Least-squares risk parity problem.

Risk parity arises in portfolio selection when the objective is to develop portfo-

lios for which the contributions of risk from all assets are equally weighted [48]. If

volatility of the returns is chosen as the risk measure, then risk parity problem can

be represented as

xi(Σx)i = xj(Σx)j, ∀i, j,

ai ≤ xi ≤ bi
n∑
i=1

xi = 1,

(5.5)

where x is the weight vector of individual assets, ai and bi are lower and upper

bounds on the weight of the i-th asset, and Σ is the covariance matrix of the assets.

Depending on the constraints on x, the existence of the exact solution of (5.5) may

not be simple to establish. As an alternative, in [5], the following least-square model

is proposed for risk parity portfolios:

min
x,θ

n∑
i=1

(xi(Σx)i − θ)2 + q(x)

s.t. ai ≤ xi ≤ bi
n∑
i=1

xi = 1,

(5.6)

where q(x) is a customized measure function. In the standard risk parity portfolio

selection problem, q(x) = 0. It was shown in [5] that risk parity solution may not be

unique when shorting of assets is allowed (ai < 0 for some i). In that case one may

aim at finding a risk parity solution with the least variance, for instance. In that

case q(x) = ρx>Σx, where ρ > 0 is a regularization parameter.

99

The risk parity formulation (5.6) clearly fits the form (5.4), with X = {x : a ≤

x ≤ b} ⊗ R, Mi = Σ>i ei, and pi = (−en+1)>, where Σi ∈ R1×(n+1) is the i-th row of

the covariance matrix with a zero added as the n + 1st element and ei ∈ R1×(n+1) is

the i-th row of the identity.

Example 5.1.2. Group risk parity problem.

More generally, one may divide assets into groups by sectors (of industry). In

this case the risk parity between these sectors rather than individual assets is desired.

This leads to the following grouped formulation [5]:

min
x,θ

l∑
j=1

(
∑
i∈Gj

xi(Σx)i − θ)2

s.t. ai ≤ xi ≤ bi
n∑
i=1

xi = 1,

(5.7)

where Gj stands for the jth group, and l is the total number of sectors. Again, this

problem can be written in form (5.4), with X and pi defined as in individual risk

parity case and Mj = A>j Bj, where Aj ∈ Rmj×(n+1) contains all rows of Σ indexed by

Gj and appended by a zero element and Bj ∈ Rmj×(n+1) is defined as follows. Suppose

the i-th row in Aj is the corresponding (ki)th row in Σ, then

(Bj)i,k =


1, k = ki

0, otherwise.

For the main part of this chapter we generalize the setting further. In particular,

we consider optimizing (over a convex set X) an objection function F (x), which can

be written as F (x) = h(f(x), g(x)), where f and g are (possibly) vector functions of

x, and h is some function of the corresponding arguments. We make some standard

100

assumptions on the smoothness and boundedness of F , but the key assumption

for the purposes of this chapter is that h, f and g are such that for any fixed x̄,

h(f(x̄), g(x)) and h(f(x), g(x̄)) are smooth and convex functions. This assumption

applies to our second-order least squares problem (5.4).

Based on the representation of function F (x) we propose an algorithmic frame-

work based on variable splitting and augmented Lagrangian technique. Our frame-

work consists of the well-known alternating direction method of multipliers (ADMM)

and alternating linearization method (ALM) which has been widely studied in recent

literature, primarily for convex optimization. Our focus and main contribution is to

analyze these methods in a nonconvex setting where the objective function cannot

be represented as a sum of multiple functions. The problem under discussion is po-

tentially nonconvex, with convexity being assumed in some subspace when variable

splitting is applied, and our methods are convergent to a local minimum. We provide

global complexity analysis for both ADMM and ALM and show that they converge

at the sub-linear rate of O(1/
√
k). The difference between the two frameworks is

that ALM requires computing partial gradient information and as a result benefits

from possibility of varying the choice of proximal parameter and choosing it via

backtracking. It also requires constraints x ∈ X to be enforced for each subproblem

optimization. In ADMM, on the other hand, the choice of the proximal parameter

has to be fixed and sufficiently small (at least in theory), while the constraints are

only enforced for one of the subproblems on each iteration. Both frameworks are

simple and rely on solving a sequence of convex subproblems. Our experiments show

that ALM is more efficient in terms of the number of convex subproblems that need

to be solved. We also show, that our alternating linearization scheme is related to

the classical Levenberg-Marquard method in case of solving least-squares problems.

Since our methods find local stationary points they provide upper bounds on

101

objective function value. While we do not focus on global optimization techniques

here, we provide some lower bounds for the risk parity problems specifically, to

demonstrate that our local solutions happen to be global in our numerical example.

In particular, we consider the sum-of-square (SOS) techniques which is a popular

approach for polynomial optimization [43,54,55]. SOS finds a global lower bound by

checking the membership in the sum-of-square cone via semidefinite programming

(SDP). There have been several variants of SOS methods and we discuss some of

them in this chapter. These techniques are usually computationally expensive as

the dimension of the resulting SDP problem grows fast, but they appear to produce

useful results for the applications that we are interested in.

The rest of the chapter is organized as follows. After a brief discussion of the

problem structure, in Section 5.2.3 we introduce the class of algorithms based on

variable splitting and augmented Lagrangian function and develop and analyze the

ADMM method. We introduce and analyze the ALM method in Section 5.2.4. We

discuss the application of SOS technique and its variants in Section 5.4. The exper-

iments for risk parity problem and computational results are presented in Section

5.5, followed by conclusion remarks in Section 5.6.

102

5.2 Alternating direction schemes for minimizing

a nonconvex objective that is not necessarily

composite

5.2.1 Notations and preliminaries

Consider the following nonlinear optimization problem:

min
x∈X

F (x), (5.8)

where X ∈ Rn is a simple convex set. We seek local solutions x̄ that satisfy first-order

optimality condition

〈∇F (x̄), x− x̄〉 ≥ 0,∀x ∈ X . (5.9)

Suppose that the function F can be written as a function of two blocks, i.e. F (x) =

h(f(x), g(x)), where function f is Rn → Rm1 , g is Rn → Rm2 and h is Rm1+m2 → R.

Note that we do not assume that the objective can be decomposed as a sum of f

and g.1

Consider the following function of x, which is restriction of F , with the second

block, g, fixed, given a fixed x̄.

F1(x, x̄) = h(f(x), g(x̄)). (5.10)

1As mentioned in previous chapters, such functions are called composite functions, in recent
literate, and are assumed to have the form F (x) = f(x) + g(x), or in multi-block case, F (x) =
n∑

i=1

fi(x).

103

Similarly, if we fix the first block, f , given x̄, we have the following function

F2(x̄, x) = h(f(x̄), g(x)). (5.11)

In this section, we use the “2-block” notations so that the subscript i = 1, 2

indicates which block is variable. In particular the partial derivative of the objective

over the ith block is denoted as ∇iF (i = 1, 2). Then ∇1F (x, x̄) = ∇fh(f(x), g(x̄)) ·

∇xf(x) and ∇2F (x̄, x) = ∇gh(f(x̄), g(x)) · ∇xg(x), are the gradients of (6.9) and

(6.10), respectively, where ∇fh and ∇gh are the corresponding partial derivatives of

h with respect to the first and second block. Note that, for any x, the relationship

between the full gradient of F and our notations is simply

∇F (x) = ∇1F (x, x) +∇2F (x, x). (5.12)

In particular, this and (5.9) imply that x∗ is a stationary point of (5.2) as long as

〈∇1F (x∗, x∗) +∇2F (x∗, x∗), x− x∗〉 ≥ 0, ∀x ∈ X . (5.13)

We now list the key assumptions on the function F and the resulting functions F1

and F2. Two assumptions are standard - smoothness of the functions and bounded-

ness from below. The third assumption - convexity of the functions F1 and F2 - is the

key assumption which allows us to develop efficient framework based on alternating

directions.

Assumption 5.2.1.

• Lipschitz continuity of the gradients. Gradients of functions ∇F (x),

104

∇1F (x, x̄) and ∇2F (x̄, x) are Lipschitz continuous with Lipschitz constant L,

for any x̄ ∈ X , i.e. F, F1, F2 ∈ C1,1
L (X),

• Blockwise convexity. F1(x, x̄), F2(x̄, x) are convex over x, for any x̄ ∈ X ,

• Boundedness from below. F (and hence F1(x, x̄) and F2(x̄, x)) is bounded

from below, for any x̄ ∈ X , i.e. F >∞.

For each block, we define the following two functions as local approximations of

F at any given x̄ ∈ Rn.

Q1
µ(x, x̄) = F1(x, x̄) + 〈∇2F (x̄, x̄), x− x̄〉+

1

2µ
‖x− x̄‖2

2

Q2
µ(x̄, x) = F2(x̄, x) + 〈∇1F (x̄, x̄), x− x̄〉+

1

2µ
‖x− x̄‖2

2,

(5.14)

where µ is a positive scalar. These functions will be used by our alternating lin-

earization method in Section 5.2.4.

Below are some examples of F (x) and the resulting functions F1, F2, Q1
µ and Q2

µ

. We start with the standard composite function case.

Example 5.2.2. Assume that h = f + g and thus

F (x) = f(x) + g(x),

where f(x) and g(x) are convex and smooth scalar functions. Then we define F1(x, x̄) =

f(x) + g(x̄) and F2(x̄, x) = f(x̄) + g(x), which clearly leads to

Q1
µ(x, x̄) = f(x) + g(x̄) + 〈∇g(x̄), x− x̄〉+

1

2µ
‖x− x̄‖2

2

Q2
µ(x̄, x) = f(x̄) + g(x) + 〈∇f(x̄), x− x̄〉+

1

2µ
‖x− x̄‖2

2.

(5.15)

105

Note that our approximation functions in this case are the same as the standard

block-wise proximal functions from the composite optimization literature.

We now turn to more complex function structures.

Example 5.2.3. Assume that h = f · g and thus

F (x) = f(x)g(x),

where f(x) and g(x) are convex, smooth and nonnegative. Then we define F1(x, x̄) =

f(x)g(x̄) and F2(x̄, x) = f(x̄)g(x), which implies that F1 and F2 satisfy Assumption

and we have

Q1
µ(x, x̄) = f(x)g(x̄) + f(x̄) 〈∇g(x̄), x− x̄〉+

1

2µ
‖x− x̄‖2

2

Q2
µ(x̄, x) = f(x̄)g(x) + g(x̄) 〈∇f(x̄), x− x̄〉+

1

2µ
‖x− x̄‖2

2.

(5.16)

Finally, we present another general setting which includes the objective function

of (5.2) and satisfies Assumption 5.2.3.

Example 5.2.4. Assume that h =
∑
i

((f i)>gi − ci)2 and thus

F (x) =
∑
i

(f i(x)>gi(x)− ci)2, (5.17)

where each f i(x) = [f i1(x), f i2(x), ..., f imi(x)] and gi(x) = [gi1(x), gi2(x), ..., gimi(x)] is an

affine function of x, Rn → Rmi.

It is easy to see, that is functions f i and gi are affine and homogeneous (that is

they do not contain a constant term), then this form is equivalent to (5.2), with an

appropriate choice of Mi and ci parameters, otherwise formulation (5.4) applies with

106

q(x) = 0. Clearly, when q(x) is a smooth convex function, then h =
∑
i

(f>i gi−ci)2 +

q(x) should be considered.

In the risk parity case, in particular, we have

min
x,θ

F (x) =
n∑
i=1

(x>Mix− θ)2

s.t. x ∈ X ,

which can be written as (5.17) with f i(x, θ) = [x,−1] and gi(x, θ) = [Mix, θ], i =

1, . . . , n are (n + 1)-dimensional affine vector functions of x and θ and ci = 0, ∀i.

For any given x̄: F1(x, x̄, θ̄) =
m∑
i=1

(x>Mix̄ − θ̄)2 and F2(x̄, x) =
m∑
i=1

(x̄>Mix − θ)2.

Both F1 and F2 are convex quadratic functions and Assumption 5.2.3 is satisfied.

5.2.2 Variable splitting and augmented Lagrangian based

methods

In this section, we discuss several alternating direction methods, all of which are

based on the augmented Lagrangian framework with variable splitting. Augmented

Lagrangian method (with variable splitting) and its variants have been increasingly

popular in recent literature [2, 12, 34,62,64].

In particular observe that (6.8) can be equivalently written as

min
x∈X ,y

F (x, y) = h(f(x), g(y))

s.t. x = y, (5.18)

where x, y ∈ Rn. In other words, we map the dimension of decision variable from n

107

in (6.8) to 2n in (6.6).

Consider problem in the form of (6.6). Provided a penalty parameter 1/µ (µ > 0),

we have the following augmented Lagrangian function:

LA(x, y;λ) = F (x, y)− λ>(x− y) +
1

2µ
‖x− y‖2, (5.19)

and, hence, (6.6) can be solved by the augmented Lagrangian method described in

Algorithm 12.

Example 5.2.5. In the second-order least-squares case, we split the variables as

follows

min
x,y

F (x) =
n∑
i=1

(x>Miy − ci)2

s.t. x = y

x ∈ X .

(5.20)

Then the augmented Lagrangian function is defined as

LA(x, y;λ) =
n∑
i=1

(x>Miy − ci)2 − λ>(x− y) +
1

2µ
‖x− y‖2.

Algorithm 12 Augmented Lagrangian method (AL)

1. Choose µ0, λ0, and x0 = y0;
2. for k = 0, 1, ..., do

[xk+1, yk+1] := arg min
x∈X ,y

LA(x, y;λk);

update the multiplier λk+1 = λk − 1

µk
(xk+1 − yk+1);

possibly choose new penalty parameter µk+1.

The convergence of augmented Lagrangian method (see Algorithm 12) has been

well studied (see, for instance, [9, 72]). Furthermore, the minimization of the aug-

ment Lagrangian in Algorithm 12, can be performed by applying block coordinate

decent method (BCD) until first-order optimality is guaranteed. Convergence of

108

block coordinate decent method, under the assumption of uniqueness of minimizers

over blocks, and for simple convex constraints is studied, for instance, in [37].

5.2.3 Alternating direction methods of multipliers

Alternating direction methods of multipliers (ADMM), or alternating direction aug-

mented Lagrangian method (ADMM), can be regarded as a variant of augmented

Lagrangian with subproblems solved inexactly by BCD. ADMM and other alternat-

ing direction methods (ADMs) can be tracked back to the Douglas-Rachford method

in the 1950s [26] and ADMs for solving variational problems associated with PDEs in

the 1970s [30, 33]. In ADMM the multiplier is updated after only one minimization

step over each x and y blocks instead of after minimizing the augmented Lagrangian

over x and y jointly. A simple framework of ADMM for solving (6.6) is given in

Algorithm 13.

Algorithm 13 Alternating direction methods of multipliers (ADMM)

1. Choose µ, λ0, and x0 = y0;
2. for k = 0, 1, ..., do

xk+1 := arg min
x∈X
LA(x, yk;λk);

yk+1 := arg min
y
LA(xk+1, y;λk);

update the multiplier λk+1 = λk − 1

µ
(xk+1 − yk+1);

ADMM has been widely used and well studied, in the large-scale convex optimiza-

tion setting in the case of composite structure of the objective function (see [12] for a

review). In the nonconvex setting, ADMM has been applied to obtain KKT solutions

often obtaining competitive results, empirically. However, its theoretical properties

are not well understood in the nonconvex case. Typically, convergence is shown un-

der the assumption that the successive differences of the iterates converge to zero

(see, for instance, an ADMM for polynomial optimization described in [41]). While

109

such assumption seems reasonable in that the iterates produced by the algorithm

do not exhibit any erratic behavior, it is not clear if this condition can be verified

in advance or enforced during the progress of the algorithm. Recently Hong, et al.

show the convergence of a family of ADMMs without this assumption when applied

to a family of n-block structured composite nonconvex problems [40]. Our results in

this chapter also do not rely on this assumption, but are different from [40] in that

our objective function is not assumed to be a sum of multiple functions (composite

form). Note that it is not trivial to extend our convergence result to problems with

more than two blocks. However, the two-block results shown in this section readily

apply to the second-order least-squares problem which is the focus of our work.

Our strategy to prove the convergence of ADMM is similar to that of [40], in

that it relies on obtaining a sufficient function decrease of augmented Lagrangian.

In our proof, we frequently use the term “x-update” and “y-update”, which refer

to the update rule of each block of variables x and y, respectively. First, we have

the following result to bound the augmented Lagrangian function value, which is a

relaxed version of Lemma 2.3 in [40].

Lemma 5.2.6. Let Assumption 5.2.3 hold with the Lipschitz constant L and let

µ ≤ 1

4L
. Then for the sequence of iterates {xk, yk, λk} defined by Algorithm 13, the

augmented Lagrangian function converges to some limit L∗:

lim
k→∞
LA(xk, yk;λk) = L∗

Proof. By the first-order optimality condition of y-update in Algorithm 13, we have

∇2F (xk+1, yk+1) + λk − 1

µ
(xk+1 − yk+1) = 0,

which leads to

110

λk+1 = λk − 1

µ
(xk+1 − yk+1) = −∇2F (xk+1, yk+1). (5.21)

Thus, we can bound the change of λ:

‖λk+1 − λk‖ = ‖∇2F (xk+1, yk+1)−∇2F (xk, yk)‖

≤ L
(
‖xk+1 − xk‖+ ‖yk+1 − yk‖

)
,

(5.22)

where L is a Lipschitz constant of the gradient.

Now, we can bound the change of the augmented Lagrangian function value,

after the update of the primal variables. Since it is assumed that at each iteration

F1(x, yk) is convex, the function of subproblem of ADMM can be regarded as a sum

of convex and strongly convex function and thus is strongly convex, i.e., we have

LA(xk, yk;λk) ≥ LA(xk+1, yk;λk)−
〈
∇1LA(xk+1, yk;λk), xk+1 − xk

〉
+

1

2µ
‖xk+1−xk‖2.

From the optimality of the subproblem we obtain that

LA(xk, yk;λk)− LA(xk+1, yk;λk) ≥ 1

2µ
‖xk+1 − xk‖2. (5.23)

Similarly, for y-update, it holds that

LA(xk+1, yk;λk)− LA(xk+1, yk+1;λk) ≥ 1

2µ
‖yk+1 − yk‖2. (5.24)

We also bound the change of the augmented Lagrangian function value, after the

111

update of the multipliers:

LA(xk+1, yk+1;λk+1)− LA(xk+1, yk+1;λk)

= F (xk+1, yk+1)−
〈
λk+1, xk+1 − yk+1

〉
+

1

2µ
‖xk+1 − yk+1‖2

−F (xk+1, yk+1)−
〈
λk, xk+1 − yk+1

〉
+

1

2µ
‖xk+1 − yk+1‖2

= −
〈
λk+1 − λk, xk+1 − yk+1

〉
= µ‖λk+1 − λk‖2.

By using (5.22), we further have

LA(xk+1, yk+1;λk+1)− LA(xk+1, yk+1;λk)

≤ µL2
(
‖xk+1 − xk‖+ ‖yk+1 − yk‖

)2

≤ 2µL2
(
‖xk+1 − xk‖2 + ‖yk+1 − yk‖2

)
.

(5.25)

With (5.23), (5.24) and (5.25), we finally have

LA(xk+1, yk+1;λk+1)− LA(xk, yk;λk)

≤
(

2µL2 − 1

2µ

)
‖xk+1 − xk‖2 +

(
2µL2 − 1

2µ

)
‖yk+1 − yk‖2, (5.26)

which indicates a monotonic decrease of augmented Lagrangian function value as

long as µ <
1

2L
. For instance, we can choose µ to be

1

4L
.

112

Moreover, we can bound the value of LA by F :

LA(xk+1, yk+1;λk+1)

= F (xk+1, yk+1)−
〈
λk+1, xk+1 − yk+1

〉
+

1

2µ
‖xk+1 − yk+1‖2

= F (xk+1, yk+1) +
〈
∇2F (xk+1, yk+1), xk+1 − yk+1

〉
+

1

2µ
‖xk+1 − yk+1‖2

≥ F (xk+1),

for µ ≤ 1

L
. Since it is assumed that F is bounded from below, it follows that

the sequence {LA(xk, yk;λk)} is also bounded from below and thus the augmented

Lagrangian function value converges.

Remark 5.2.7. It is possible to prove this result without assuming convexity of

F1, F2, by choosing µ large enough so that the augmented Lagrangian is strongly

convex at each iteration.

Now we show that, under further assumptions, any limit point of the sequence

{xk} is a stationary point of (6.8).

Theorem 5.2.8. Let Assumption 5.2.3 hold with the Lipschitz constant L and let

µ <
1

4L
. Then any limit point of sequence {xk} generated by Algorithm 13 is a

stationary point of (6.8).

Proof. As LA(xk, yk;λk) converges by Lemma 5.2.6, it follows from (5.22) and (5.26)

that

xk+1 − xk → 0

yk+1 − yk → 0

λk+1 − λk → 0,

which indicates that xk − yk → 0 from (5.21), since µ is bounded from above.

113

Assume {x̄, ȳ, λ̄} is a limit point of the sequence {xk, yk, λk}. Our goal is to prove

the first-order condition, i.e. for any x such that x 6= x̄ and x ∈ X , it holds that〈
∇F (x̄),

x− x̄
‖x− x̄‖

〉
≥ 0, which is equivalent to (5.9).

In fact, for any x 6= x̄,

〈
∇F (x̄),

x− x̄
‖x− x̄‖

〉
=

1

‖x− x̄‖
〈∇1F (x̄, ȳ) +∇2F (x̄, ȳ), x− x̄〉

+
1

‖x− x̄‖
〈∇1F (x̄, x̄)−∇1F (x̄, ȳ), x− x̄〉+

1

‖x− x̄‖
〈∇2F (x̄, x̄)−∇2F (x̄, ȳ), x− x̄〉

=
1

‖x− x̄‖
〈
∇1F (x̄, ȳ)− λ̄, x− x̄

〉
+

1

‖x− x̄‖
〈∇1F (x̄, x̄)−∇1F (x̄, ȳ), x− x̄〉+

1

‖x− x̄‖
〈∇2F (x̄, x̄)−∇2F (x̄, ȳ), x− x̄〉 ,

(5.27)

where we have 〈∇1F (x̄, x̄)−∇1F (x̄, ȳ), x− x̄〉 ≤ L‖x̄ − ȳ‖‖x − x̄‖, and moreover,

〈∇2F (x̄, x̄)−∇2F (x̄, ȳ), x− x̄〉 ≤ L‖x̄ − ȳ‖‖x − x̄‖, and thus the last two terms of

(5.27) vanish as x̄ − ȳ → 0. From the first order optimality of the x-update, we

also have
〈
∇1F (x̄, ȳ)− λ̄, x− x̄

〉
≥ 0,∀x ∈ X . Thus,

〈
∇F (x̄),

x− x̄
‖x− x̄‖

〉
≥ 0 which

indicates that x̄ is a stationary point of F .

We will now prove the convergence rate result for Algorithm 13. We will show

that the sequence of iterates converges to the first order optimality conditions at

a sublinear rate, where we say that a two-block pair (x̄, ȳ) satisfies the first-order

optimality conditions for (6.6) when

〈∇1F (x̄, ȳ), x− x̄〉+ 〈∇2F (x̄, ȳ), x− x̄〉 ≥ 0, ∀x ∈ X

x̄− ȳ = 0.
(5.28)

114

Clearly, (5.28) is equivalent to (5.9).

Theorem 5.2.9. Let Assumption 5.2.3 hold with the Lipschitz constant L and let

µ <
1

4L
. Let {xk, yk, λk} be the sequence of iterates defined by Algorithm 13, Denote

ĝk ≡ min
1≤i≤k

{‖xi− xi−1‖+ ‖yi− yi−1‖} and Īk ≡ {(xi, yi) : ‖xi− xi−1‖+ ‖yi− yi−1‖ =

ĝk, 1 ≤ i ≤ k}. Then for any fixed x ∈ X , which is not a stationary point of (6.6),

and any k, one (and only one) of the following is true:

1. ĝk = 0, and (5.28) is satisfied by x̄ = xk and ȳ = yk.

2. ĝk > 0. Consider a subsequence {x̂k, ŷk}, where (x̂k, ŷk) ∈ Īk. Then∇F (x̂k, ŷk)

satisfies first-order optimality conditions (5.28) with an error, which converges to zero

at a sublinear rate of O(
1√
k

).

Proof. Consider the sequence of two-block variables {xk, yk}.

If ĝk = 0, then it is obvious that a limit point is obtained, and it is a stationary

point by Theorem 2.1.

Now suppose ĝk > 0, and we aim to bound each condition of (5.28) and show

that each condition is satisfied with an error which converges to zero at the rate of

O(
1√
k

).

First, we bound the change of primal variables in Īk by the change of augmented

115

Lagrangian function value. From (5.26), we have

LA(x0, y0;λ0)− LA(x∗, y∗;λ∗)

≥ LA(x0, y0;λ0)− LA(xk, yk;λk)

≥
k∑
i=1

(
1

2µ
− 2µL2)‖xi − xi−1‖2 +

k∑
i=1

(
1

2µ
− 2µL2)‖yi − yi−1‖2

≥ 1

2
kδ
(
‖xi − xi−1‖+ ‖yi − yi−1‖

)2

=
1

2
kδĝ2

k,

(5.29)

where δ =
1

2µ
− 2µL2. Since we choose 0 < µ ≤ 1

4L
, δ > 0.

Thus, we have

ĝk ≤
√

2(LA(x0, y0;λ0)− LA(x∗, y∗;λ∗))

kδ
. (5.30)

Now we bound each condition of (5.28) by (5.30). From the x-update, we have〈
∇1L(xk, yk−1;λk−1), x− xk

〉
≥ 0, ∀x ∈ X , which is written as

〈
∇1F (xk, yk−1) +∇2F (xk, yk) +

1

µ
(yk − yk−1), x− xk

〉
≥ 0, ∀x ∈ X . (5.31)

Here we use the fact that ∇1L(xk, yk−1;λk−1) = ∇1F (xk, yk−1)−λk−1 +
1

µ
(xk−yk−1)

and λk−1 = λk +
1

µ
(xk − yk) = −∇2F (xk, yk) +

1

µ
(xk − yk).

Similarly to (5.27), we now bound
〈
∇1F (xk, yk), x− xk

〉
+
〈
∇2F (xk, yk), x− xk

〉

116

as following

〈
∇1F (xk, yk), x− xk

〉
+
〈
∇2F (xk, yk), x− xk

〉
=

〈
∇1F (xk, yk−1) +∇2F (xk, yk) +

1

µ
(yk − yk−1), x− xk

〉
+
〈
∇1F (xk, yk)−∇1F (xk, yk−1), x− xk

〉
−
〈

1

µ
(yk − yk−1), x− xk

〉
≥ −(L+

1

µ
)‖x− xk‖‖yk − yk−1‖.

(5.32)

Thus, it follows that

〈
∇1F (xk, yk) +∇2F (xk, yk),

x− xk

‖x− xk‖

〉
≥ −(L+

1

µ
)‖yk − yk−1‖. (5.33)

Consider a subsequence {(x̂k, ŷk)}, where (x̂k, ŷk) ∈ Īk. From (5.33), we have

〈
∇1F (x̂k, ŷk) +∇2F (x̂k, ŷk),

x− x̂k
‖x− x̂k‖

〉
≥ −(L+

1

µ
)ĝk

≥ −(L+
1

µ
)

√
2(LA(x0, y0;λ0)− LA(x∗, y∗;λ∗))

kδ
.

(5.34)

On the other hand, for any k, we have xk− yk = −µ(λk−λk−1), which combined

with (5.22) implies that

‖xk − yk‖ = µ‖λk − λk−1‖ ≤ µL
(
‖xk − xk−1‖+ ‖yk − yk−1‖

)
. (5.35)

(5.35) indicates that, for (x̂k, ŷk) ∈ Īk, we have

‖x̂k − ŷk‖ ≤ µ̄Lĝk ≤ µ̄L

√
2(LA(x0, y0;λ0)− LA(x∗, y∗;λ∗))

kδ
. (5.36)

117

(5.34) and (5.36) demonstrate that sequences xk, yk and ∇F (x̂k, ŷk) satisfy first-

order optimality conditions with errors that converge to zero at a sublinear rate

O(
1√
k

). Thus, our proof is complete.

Remark 5.2.10. When X = Rn, by choosing x = x̂k −
∇F (x̂k, ŷk)

‖∇F (x̂k, ŷk)‖
in (5.34) we

have

‖∇F (x̂k, ŷk)‖ ≤ (L+
1

µ
)

√
2(LA(x0, y0;λ0)− LA(x∗, y∗;λ∗))

kδ
, (5.37)

which recovers the standard complexity result in the unconstrained case, i.e. it takes

O(
1

ε2
) iterations for the norm of ∇F (x̂k, ŷk) to reach a value below ε.

5.2.4 Alternating linearization method

In this section we consider alternating linearization method (ALM), which is closely

related to ADMM. The relationship between the two methods in the composite

convex setting is derived in [34]. In this chapter, we discuss alternating linearization

method in a nonconvex setting where the objective may not be decomposable.

Recall the notations in (5.14). Suppose that both sequences {xk} and {yk} are

bounded, and that the function F can be bounded locally from above by the following

approximation term with sufficiently small µ:

Q1
µ(x, yk) = F1(x, yk) +

〈
∇2F (yk), x− yk

〉
+

1

2µ
‖x− yk‖2

2.

118

Formally put, the following condition holds for sufficiently small µ:

F (xk+1) ≤ Q1
µ(xk+1, yk), (5.38)

where xk+1 := arg min
x∈X

Q1
µk1

(x, yk). Similarly,

F (yk+1) ≤ Q2
µ(xk+1, yk+1) (5.39)

holds for small enough µ, where yk+1 := arg min
y∈X

Q2
µk2

(xk+1, y). In the next section, it

will be shown through simple expansion that our assumption holds for the second-

order least-squares case. Furthermore, such µ can be found by backtracking at

each iteration. The basic ALM algorithm is presented in Algorithm 14 and the

backtracking version is in Algorithm 15

Algorithm 14 Alternating linearization method (ALM)

1. Choose µ0
1 = µ0

2 = µ0, and x0 = y0;
2. for k = 0, 1, ...

(a) xk+1 := arg min
x∈X

Q1
µk1

(x, yk); choose µk+1
1 such that (6.12) holds;

(b) yk+1 := arg min
y∈X

Q2
µk2

(xk+1, y); choose µk+1
2 such that (5.39) holds;

The convergence analysis of ALM is similar as the analysis in the Iterative

Shrinkage-Thresholding Algorithm (ISTA and FISTA) by Beck and Teboulle [7], Al-

ternating Linearization Method (ALM) in the convex setting by Goldfarb et al. [34]

and Block Coordinate Decent (BCD) method by Xu and Yin [74]. However, all of

the above results apply only to the convex domain, which cannot be easily embed-

ded into the case of problem (5.2). Moreover, unlike the ALM in [34], we do not

have a composite function form where the linearly separable structure can be taken

advantage of (see [34] for details to apply ALM to composite convex functions).

The descent step of Algorithm 14 can be guaranteed by the following result.

119

Lemma 5.2.11. Let the objective function and its block-wise representation be de-

fined as (6.8), (6.10) and (6.9). Define

x̂ := arg min
x∈X

Q1
µ(x, u) ≡ arg min

x∈X
F1(x, u) + 〈∇2F (u, u), x− u〉+

1

2µ
‖x− u‖2,

where u ∈ Rn. Suppose the following condition holds

F (x̂) ≤ Q1
µ(x̂, u). (5.40)

Then we have

F (u)− F (x̂) ≥ 1

2µ
(‖x̂− u‖2). (5.41)

Similarly, define

ŷ := arg min
y∈Y

Q2
µ(u, y) ≡ arg min

y∈Y
F2(u, y) + 〈∇1F (u, u), y − u〉+

1

2µ
‖y − u‖2,

where u ∈ Rn. Suppose the following condition holds

F (ŷ) ≤ Q2
µ(u, ŷ). (5.42)

Then we have

F (u)− F (ŷ) ≥ 1

2µ
(‖ŷ − u‖2). (5.43)

Proof. From the condition (5.40), we have

F (u)− F (x̂) ≥ F (u)−Q1
µ(x̂, u)

= F (u)− (F1(x̂, u) + 〈∇2F (u, u), x̂− u〉+
1

2µ
‖x̂− u‖2).

(5.44)

120

Since F1(x, u) is convex for any given u, we have

F (u) ≥ F1(x̂, u) + 〈∇1F (x̂, u), u− x̂〉 . (5.45)

It follows that

F (u)− F (x̂) ≥ F (u)−Q1
µ(x̂, u)

≥ F1(x̂, u) + 〈∇1F (x̂, u), u− x̂〉 −Q1
µ(x̂, u)

= 〈∇1F (x̂, u) +∇2F (u, u), u− x̂〉 − 1

2µ
‖x̂− u‖2.

(5.46)

Since the subproblem is solved for optimality, it satisfies the first-order optimality

condition: 〈
∇1Q

1
µ(x̂, u), x− x̂

〉
≥ 0, ∀x ∈ X ,

which means that this condition holds for x = u:

〈
∇1Q

1
µ(x̂, u), u− x̂

〉
≥ 0,

i.e. 〈
∇1F (x̂, u) +∇2F (u, u) +

1

µ
(x̂− u), u− x̂

〉
≥ 0. (5.47)

From (5.46) and (5.47), we have

F (u)− F (x̂) ≥ 〈∇1F (x̂, u) +∇2F (u, u), u− x̂〉 − 1

2µ
‖x̂− u‖2

≥ − 1

µ
(x̂− u)>(u− x̂)− 1

2µ
‖x̂− u‖2

=
1

2µ
‖x̂− u‖2.

(5.48)

Similarly, the other part of the proof follows.

121

The following result shows the convergence of the primal function value for Al-

gorithm 14.

Theorem 5.2.12. Let the objective function, its block-wise representation and its

approximation be defined as (6.8), (6.9), (6.10), and (5.14), respectively. Let As-

sumption 5.2.3 hold with the Lipschitz constant L. Suppose at iteration k, µk1, µ
k
2 are

chosen to satisfy (6.12) and (5.39), respectively, and are bounded from zero by some

constant τ > 0. Then, by Algorithm 14, the sequence {F (xk)} converges to F (x∗),

where x∗ is a stationary point of F . Furthermore, denote ĝk ≡ min
1≤i≤k

‖xi − yi−1‖ and

Īk ≡ {xi : ‖xi − yi−1‖ = ĝk, 1 ≤ i ≤ k}. Then one and only one of the following is

true:

1. ĝk = 0, and the limit point is obtained;

2. ĝk > 0. Consider a subsequence {x̂k}, where x̂k ∈ Īk. Then ∇F (x̂k) satis-

fies first-order optimality condition (5.9) with an error that converges to zero at a

sublinear rate O(
1√
k

).

Proof. From Algorithm 14 we have

xk := arg min
x∈X

Q1
µk1

(x, yk−1)

for k ≥ 1.

Let u = yk−1 in Lemma 5.2.11. Then we have

2µk1(F (yk−1)− F (xk)) ≥ ‖xk − yk−1‖2 ≥ 0. (5.49)

122

Similarly, for the subproblem updating y, we have

2µk2(F (xk)− F (yk)) ≥ ‖xk − yk‖2 ≥ 0. (5.50)

Hence,

F (xk−1) ≥ F (xk) and F (yk−1) ≥ F (yk), for all k. (5.51)

Now we have a non-increasing sequence F (xk) bounded from below. Thus, {F (xk)}

converges. Since the left hand sides of (5.49) and (5.50) go to zero when k →∞, we

have xk − yk → 0, and also

xk − xk−1 → 0. (5.52)

If it happens that yk−1 = arg min
x∈X

Q1
µk1

(x, yk−1), then it naturally follows that xk =

yk−1 is a stationary point. If yk−1 6= arg min
x∈X

Q1
µk1

(x, yk−1), since xk is a minimizer of

Q1
µk1

(x, yk−1), it satisfies the foliowing first-order condition:

〈
∇1F (xk, yk−1) +∇2F (yk−1, yk−1) +

1

µk1
(xk − yk−1), x− xk

〉
≥ 0, ∀x ∈ X . (5.53)

Hence, we have

〈
∇1F (xk, xk) +∇2F (xk, xk), x− xk

〉
=

〈
∇1F (xk, yk−1) +∇2F (yk−1, yk−1) +

1

µk1
(xk − yk−1), x− xk

〉
+
〈
∇1F (xk, xk)−∇1F (xk, yk−1), x− xk

〉
+
〈
∇2F (xk, xk)−∇2F (yk−1, yk−1), x− xk

〉
−
〈

1

µk1
(xk − yk−1), x− xk

〉
.

(5.54)

As xk−xk−1 → 0,∇1F (xk, xk)−∇1F (xk, xk−1)→ 0 due to the fact that ‖∇1F (xk, xk)−

∇1F (xk, yk−1)‖2 ≤ L‖xk − yk−1‖. Similarly, ∇2F (xk, xk) − ∇2F (yk−1, yk−1) → 0.

123

That, combined with (5.52) and (5.54), leads to

〈
∇1F (xk, xk) +∇2F (xk, xk), x− xk

〉
≥ 0, k →∞ ∀x ∈ X .

Thus, {F (xk)} converges to F (x∗), where x∗ is a stationary point.

Furthermore, from (5.54) it leads to

〈
∇1F (xk, xk) +∇2F (xk, xk), x− xk

〉
≥ −(2L+

1

µk1
)‖x− xk‖ · ‖xk − yk−1‖,

(5.55)

where L is a Lipschitz constant for the gradients of F1, F2. For any x 6= xk and x ∈ X ,

we can bound

〈
∇1F (xk) +∇2F (xk),

x− xk

‖x− xk‖

〉
from below by −(2L +

1

µk1
)‖xk −

yk−1‖.

Denote µmax = max
1≤i≤k

{µi1}, µmin = min
1≤i≤k

{µi1}. From monotonicity of the function

value (5.49) and (5.50), we have

F (xi−1)− F (xi) ≥ F (yi−1)− F (xi) ≥ 1

2µi1
‖xi − yi−1‖2,

and further

F (x0)− F (x∗)

≥ F (x0)− F (xk)

≥
k∑
i=1

1

2µi1
‖xi − yi−1‖2

≥
k∑
i=1

1

2µmax
‖xi − yi−1‖2

≥ k

2µmax
(ĝk)

2.

(5.56)

124

Thus, we have

ĝk ≤
√

2µmax(F (x0)− F (x∗))

k
. (5.57)

Consider a subsequence {x̂k}, where x̂k ∈ Īk. Combining (5.55) and (5.57), we come

to the following inequality for any x ∈ X :

〈
∇1F (x̂k, x̂k) +∇2F (x̂k, x̂k),

x− x̂k
‖x− x̂k‖

〉
≥ −(2L+

1

µmin
)ĝk

≥ −(2L+
1

µmin
)

√
2µmax(F (x0)− F (x∗))

k
.

(5.58)

While the right-hand-side of (5.58) goes to zero at O(
1√
k

), it follows that∇F (x̂k)

converges to first-order optimality at a sublinear rate.

When X is Rn, by choosing x = x̂k −
∇F (x̂k)

‖∇F (x̂k)‖
, we have

‖∇F (x̂k)‖ ≤ (2L+
1

µmin
)

√
2µmax(F (x0)− F (x∗))

k
, (5.59)

which recovers the standard complexity result in the unconstrained case, i.e. it takes

O(
1√
k

) iterations for the norm of ∇F (x̂k) to go to zero.

5.2.5 Practical ALM with backtracking and skipping

In the previous section we discuss the alternating linearization framework. At each

iteration, the sufficient function decrease is obtained by the condition that the re-

sulting function value is no larger than the approximation function value. In the

application that we are interested in, a prox parameter µ can be conveniently found

125

so that such condition can be satisfied.

Algorithm 15 Alternating linearization method with backtracking (ALM)

1. Choose µ0
1 = µ0

2 = µ0, and x0 = y0;
2. for k = 0, 1, ...

(a) xk+1 := arg min
x∈X

Q1
µk(x, y

k);

(b) if F (xk+1) ≤ Q1
µk1

(xk+1, yk) then

µk+1
1 := µk1;

else
find the smallest n s.t. µ̄ := µk1β

n, x̄ := arg min
x∈X

Q1
µ̄(x, yk) and F (x̄) ≤

Q1
µ̄(x̄, yk);

µk+1
1 := µk1β

n, xk+1 := arg min
x
Q1
µk+1
1

(x, yk);

(c) yk+1 := arg min
y∈X

Q2
µk2

(xk+1, y);

(d) if F (yk+1) ≤ Q2
µk2

(xk+1, yk+1) then

µk+1
2 := µk2;

else
find the smallest n s.t. µ̄ := µk2β

n, ȳ := arg min
y∈X

Q2
µ̄(xk+1, y) and F (ȳ) ≤

Q2
µ̄(xk+1, ȳ);

µk+1
2 := µk2β

n, yk+1 := arg min
y∈X

Q2
µk+1
2

(xk+1, yk+1).

However, in some cases, finding µ that satisfies function reduction conditions

may be time consuming, especially when one of the two block gradients has a large

Lipschitz constant. When this happens to only one block, we can simply skip the step

related to that block and still obtain the convergence. This idea was first proposed

in [34] for convex composite case.

When skipping step is constantly applied to one block, we have what we call a

partial linearization method (PLM), presented in Algorithm 16. The term “partial”

is in a sense that only one block of variables is linearized. In the next section, we

will give a specific interpretation when the second-order least-squares problem is

considered.

126

Algorithm 16 Partial linearization method (PLM)

1. Choose µ0, β ∈ (0, 1) and x0;
2. for k = 0, 1, ...

(a) xk+1 := arg min
x∈X

Q1
µk(x, x

k);

(b) if F (xk+1) ≤ Q1
µk(x

k+1, xk) then

µk+1 := µk;
else

find the smallest n s.t. µ̄ := µkβn, x̄ := arg min
x∈X

Q1
µ̄(x, xk) and F (x̄) ≤

Q1
µ̄(x̄, xk);

µk+1 := µkβn, xk+1 := arg min
x∈X

Q1
µk+1(x, x

k); go to (b).

5.2.6 Connection between ALM and ADMM.

Let us establish the connection between Algorithms 13 (ADMM) and 14 (ALM). Both

algorithm perform optimization of two convex functions on each step. In particular,

given yk and λk ADMM optimizes

LA(x, yk;λk) = F1(x, yk)−
〈
λk, x− yk

〉
+

1

2µ
‖x− yk‖2,

while ALM optimizes

Q1
µ(x, yk) = F1(x, yk) +

〈
∇2F (yk), x− yk

〉
+

1

2µ
‖x− yk‖2.

Hence the two steps are identical if λk = −∇2F (yk) ≡ −∇2F (yk, yk) and then same

value of µ is used. Consider the optimality conditions satisfied by yk, since it is an

unconstrained minimizer of

LA(xk, y;λk−1) = F2(xk, y)−
〈
λk−1, y − xk

〉
+

1

2µ
‖xk − y‖2,

which is

∇yF2(xk, yk) + λk−1 +
1

µ
(yk − xk) = 0,

127

Hence, from the update rule of λk, we have

λk = λk−1 − 1

µ
(xk − yk) = −∇yF2(xk, yk) ≡ −∇2F (xk, yk).

Similarly, if the order of subproblems is reversed in Algorithms 13, and if X = Rn,

then

λk = −∇1F (xk, yk).

Hence, ADMM can be regarded as an inexact version of ALM, where λ is not updated

as the exact partial gradient but some “mixture” of gradient information. In prac-

tice, the update of multipliers in ADMM is less costly than computing the gradient

information in ALM, but as a results ADMM does not guarantee a descent step. In

our analysis this difference inflicts limitation on ADMM convergence results to the

case of constant, sufficiently small parameter µ, while in the case of ALM we were

able to analyze the case where µk is a variable parameter chosen to satisfy sufficient

decrease condition.

5.3 The connection between A/PLM and Levenberg-

Marquardt method.

If we consider problem (5.2) simply as a nonlinear least squares problem, then we can

apply classical methods such as Gauss-Newton method and Levenberg-Marquardt

(LM) method [72]. By exploiting the structure of the least-squares problems, these

methods compute exact gradient and partial Hessian information. In particular, they

approximate the Hessian using Jacobian of the constraints (the functions inside the

squares) and omit the second order information from those functions, since in many

128

cases the contribution of this second order information is negligible compared with

the Jacobian induced Hessian approximation. In this section, we relate these classic

methods and our alternating linearization schemes, in the second-order least-squares

setting. We show that our ALM method is a simplified version of the LM method.

We will consider the least-squares problem (5.2) instead of the more general form

(5.4) for simplicity of notation. We can write (5.2) as follows:

min
x∈X

F =
m∑
i=1

r2
i (x) =

m∑
i=1

(x>Mix− ci)2, (5.60)

where r(x) is a residual vector and ri(x) = x>Mix− ci is the ith residual. Then the

Jacobian of r function is:

J(x) =


(
∂r1(x)

∂x
)>

...

(
∂rm(x)

∂x
)>



=


(M1x+M>

1 x)>

...

(Mmx+M>
mx)>

 .
(5.61)

Both Gauss-Newton method and Levenberg-Marquardt method store the Jaco-

bian matrix after each iteration and compute the gradient as

∇F (x) = J(x)>r(x)

=
m∑
i=1

(x>Mix− ci)(Mix+M>
i x).

(5.62)

129

Furthermore, the Hessian can be written explicitly as

∇2F (x) = J(x)>J(x) +
∑
i

ri(x)∇2ri(x)

=

[
(M1 +M>

1)x ... (Mn +M>
n)x

]
(M1x+M>

1 x)>

...

(Mmx+M>
mx)>


+

m∑
i=1

(x>Mix− ci)(Mi +M>
i).

(5.63)

In the case of both, Gauss-Newton and Levenberg-Marquardt, methods the sec-

ond term in (5.63) is ignored. This gives an efficient and relatively accurate approxi-

mation of the Hessian, in the cases when the magnitude of the second term in (5.63)

is significantly smaller than that of the first. In particular, this is the case, when

the residual x>Mix− θ is approximately zero for all i. For instance, the risk parity

problems (when risk parity exists) belong to this case.

Levenberg-Marquardt method is considered more robust than Gauss-Newton be-

cause it adds a positive definite matrix to J(x)>J(x), (usually an identity matrix

multiplied by a scalar) and solves the modified subproblem. Specifically, at each

iteration, it solves

xk+1 = arg min
x
F (xk)+∇F (xk)>(x−xk)+

1

2
(x−xk)>[J(x)>J(x)](xk)+

1

µ
I)(x−xk).

(5.64)

The relationship between Levenberg-Marquardt method and our alternating lin-

earization method can be analyzed as follows. Recall our partial linearization method

130

(Algorithm 16). At each iteration, the following function is minimized:

Q1
µ(x) = F (x, xk) +∇2F (xk)>(x− xk) +

1

2µ
‖x− xk‖2, (5.65)

and

F (x, xk) = F (xk)−
∑
i

[(xk)>M>
i (x− xk)]2 + 2

∑
i

(x>Mix
k − ci)(xk)>M>

i (x− xk).

Note that

2
∑
i

(x>Mix
k − ci)(Mix

k)

= 2
∑
i

((xk)>Mix
k − ci)(Mix

k) + 2
∑
i

((x− xk)>Mix
k − ci)(Mix

k)

= ∇1F (xk) + 2
∑
i

((x− xk)>Mix
k − ci)(Mix

k)

and recall that ∇2F (xk) +∇1F (xk) = ∇F (xk). Thus, function Q1
µ(x) in (5.65) can

be written as

Q1
µ(x) = F (xk) +∇F (xk)>(x− xk) +G(x),

where the first two terms are exactly the same as (5.64), and G(x) contains all the

remaining terms of Q1
µ(x), and, hence,

G(x) =
∑
i

(x− xk)>[Mix
k(xk)>M>

i +
1

2µ
I](x− xk).

Recall that, in Levenberg-Marquardt method,

J(xk)>J(xk) =
∑
i

(Mix
k +M>

i x
k)(Mix

k +M>
i x

k)>

Hence, our linearization approach can be regarded as a cheap variant of Levenberg-

Marquardt method when only part of the second-order information is considered.

131

For alternating linearization method, the analysis is similar, in which case partial

Hessian approximations Mix
k(xk)>M>

i and M>
i x

k(xk)>Mi are used in an alternating

manner. Specifically, for each subproblem,

Q1
µ1

(x) = F (yk) +∇F (yk)>(x− yk) +
m∑
i=1

(x− yk)>[Miy
k(yk)>M>

i +
1

2µ1

I](x− yk)

Q2
µ2

(y) = F (xk+1) +∇F (xk+1)>(y − xk+1)

+
m∑
i=1

(y − xk+1)>[M>
i x

k+1(xk+1)>Mi +
1

2µ2

I](y − xk+1),

where µ1, µ2 are positive scalars.

5.4 Relaxations and lower bounds

We have presented several algorithms based on alternating direction and variable

splitting techniques. All these algorithms are local algorithms, hence they provide

no guarantee that a global minimum will be found. Solutions obtained by these

methods provide an upper bound of the global minimum. In this section, we apply

relaxation schemes in an attempt to find a (possibly) good lower bound of the global

optimum. In particular, in the case of risk parity problems, when risk parity exists,

the global optimal solution of (5.1) is zero, otherwise it is positive. Assume that our

ALM or ADMM methods find a local minimum with a positive value of the objective

function. If a lower bound can be computed which is positive, this will provide a

certification that a risk parity solution does not exists. Clearly, if the lower bound

is equal to the local optimal value, then this certifies that a global optimum has

132

actually been obtained.

5.4.1 SOS relaxations

The objective function of (5.1) is a quartic polynomial. Hence recent advances in

polynomial optimization are generally applicable for our problem (see, for instance,

[49] for a review). It is well known that polynomial optimization problem can be

reduced to the problem of determining whether a polynomial is nonnegative (we

expand on this below). It is also known that a polynomial is nonnegative if it has a

sum-of-squares (SOS) decomposition (while the reverse in not true, examples can be

seen in [59] for instance). Existence of an SOS for a given polynomial, can, in turn,

be determined by solving a semidefinite programming (SDP) feasibility problem, and

thus is considered as tractable for small to medium scaled problem [55]. Hence, SOS

can be used to compute a global lower bound for a nonconvex optimization problem.

Consider a multivariate polynomial p(x1, ..., xn) , p(x) of degree 2d. Then p(x)

is representable as an SOS if there exists a positive semidefinite matrix Q, such that

p(x) = z>Qz, (5.66)

where z = [1, x1, x2, ..., xn, x1x2, ..., x
d
n]>. The size of z is

 n+ d

d

. It can be shown

that (5.66) is equivalent to p(x) =
∑
i

f 2
i (x), where fi(x) are polynomials [55]. Note

that the matrix Q may not be unique.

Example 5.4.1. Recall the objective function in our least-squares formulation in risk

parity problem: p(x, θ) =
n∑
i=1

(x>Mix− θ)2. In order to have the form (5.66), we can

133

first homogenize the degree of the polynomial by substituting θ =
1

n

n∑
j=1

x>Mjx (more

on validity of that choice below). Also, note that, for any M ∈ Rn×n, there always ex-

ists a vector p ∈ Rn such that x>Mx = p>x̄, where x̄ = [x2
1, x1x2, ..., x1xn, x

2
2, ..., x

2
n]>

is a vector of all the monomials of degree 2. The size of x̄ is

 n+ 1

2

 . Then we

have:
n∑
i=1

(x>Mix−
1

n

n∑
j=1

x>Mjx)2

=
n∑
i=1

(x>Mix)2 − 1

n
(
n∑
j=1

x>Mjx)2

=
n∑
i=1

x̄>pip
>
i x̄−

1

n
x̄>(

n∑
j=1

pi)(
n∑
j=1

pi)
>x̄

= x̄>Qx̄,

where Q =
n∑
i=1

pip
>
i −

1

n
(
n∑
j=1

pi)(
n∑
j=1

pi)
>, and the positive definiteness of Q follows

naturally from Cauchy-Schwarz.

All of the problems of form of (5.2)) considered in this chapter can be reformulated

into (5.66). The existence of an SOS decomposition of a polynomial in n variables of

degree 2d can be decided efficiently by solving a semidefinite programming feasibility

problem [54].

Example 5.4.2. Consider the following 2 × 2 risk parity problem. The covariance

matrix is given by

Σ =

 1

4

 .

Thus, the objective function is given by F (x) =
2∑
i=1

(xi(Σx)i−
1

2
x>Σx)2 =

1

2
(x2

1−

134

4x2
2)2. Thus, we can write

F (x) =
1

2
(x2

1 − 4x2
2)2

= [x2
1 x1x2 x

2
2]


q11 q12 q13

q12 q22 q23

q13 q23 q33



x2

1

x1x2

x2
2


= q11x

4
1 + 2q12x

3
1x2 + (2q13 + q22)x2

1x
2
2 + 2q23x1x

3
2 + q33x

4
2.

Then we can determine an SOS decomposition by equating the corresponding co-

efficients and thus obtaining the following SDP feasibility problem:

Find Q � 0, s.t. q11 = 1, 2q13 + q22 = −8, q33 = 16.

Global bounds for polynomial functions

SOS technique can be used to compute the global lower bounds for polynomial

functions. Consider the following problem:

min F (x)

s.t. x ∈ X .
(5.67)

Problem (5.67) is equivalent to

max γ

s.t. F (x)− γ ≥ 0, ∀x ∈ X .
(5.68)

135

Further, (5.68) can be approximated by

max γ

s.t. F (x)− γ is SOS, ∀x ∈ X .
(5.69)

Obviously, the optimal value of (5.69) is a lower bound for the global minimum

of the original problem (5.67).

If a polynomial is SOS, then it is nonnegative for any x. To take the constraints

x ∈ X into account and hence to strengthen the lower bound on F (x) the concept

of Schmdgen Positivstellensatz can be applied.

Theorem 5.4.3. (Schmdgen Theorem, ’1991, [61]) Let K = {x ∈ Rn : g1(x) ≥

0, ..., gm(x) ≥ 0} be a compact set. If a polynomial p(x) is positive on K, then

p(x) ∈ P (g1, ..., gm), where

P (g1, ..., gm) =

 ∑
ν∈{0,1}m

σν(x)g1(x)ν1 ...gm(x)νm : each σν is SOS

 .

Suppose we have the following constrained optimization problem:

min F (x)

s.t. gi(x) ≥ 0, i = 1, ...,m1

hj(x) = 0, j = 1, ...,m2.

(5.70)

Then a lower bound of F (x) can be computed by:

136

max γ

s.t. F (x)− γ = σ0(x) + σ1(x)g1(x) + ...+ σm1(x)gm1(x)

+σ12(x)g1(x)g2(x) + ...+ σ12...m(x)g1(x)...gm1(x) +

m2∑
j

λj(x)hj(x),

(5.71)

where σi(x)’s are a set of SOSs and λj(x)’s are a set of polynomials. Similarly to the

unconstrained case, we can find such decomposition by solving an SDP. In fact, the

SOSTOOLS that we apply for an implementation for risk parity optimization in the

next section solves (5.71) to find a global bounds. We refer interested readers to [57]

for more details.

As an alternative of Schmdgen’s Positivstellensatz, we can apply Putinar’s Posi-

tivstellensatz which needs a stronger assumption but also has a stronger conclusion.

For a detailed review on Positivstellensatz and its applications, interested readers

can refer to [49].

Theorem 5.4.4. (Putinar Theorem, ’1993, [58]) Let K = {x ∈ Rn : g1(x) ≥

0, ..., gm(x) ≥ 0} be a compact set, and the quadratic module be defined as

M(g1, ..., gm) =

{
m∑
i=1

σi(x)gi(x) : each σi is SOS

}
.

Suppose there exists N such that N −‖x‖2
2 ∈M(g1, ..., gm). If p(x) is positive on K,

then p(x) ∈M(g1, ..., gm).

The condition N − ‖x‖2
2 ∈ M(g1, ..., gm) is called archimedean condition. Note

that the risk parity optimization problem satisfies the archimedean condition. The

reason is that in portfolio optimization the leveraging level is always bounded, which

means the weights always satisfy
n∑
i=1

x2
i ≤ R for some large enough R and the

137

archimedean condition holds.

Theorem 5.4.4 states that, under certain assumptions, a polynomial positive on

K can be represented in Putinar’s way as long as the degree of each σi is high enough.

There exist upper bounds on the degree, for instance see [53], however, these bounds

usually do not present a practical approach, as high degree SOS problems lead to very

large SDPs. In practice, the maximum degree of the SOS is increased sequentially

and for each degree an SOS approach is applied and an SDP is solved. This is referred

to as increasing the hierarchy of SOS relaxations.

5.4.2 DSOS and SDSOS optimization: alternatives to SOS

optimization

While computing SOS decomposition is generally tractable, the size of resulting

SDP problem grows very quickly with the original dimension and the degree of

the polynomial. Hence further relaxations, via diagonally dominant sum-of-squares

(DSOS) and scaled-diagonally-dominant-sum-of-squares (SDSOS) decompositions,

which lead to linear programs and second order cone programs, respectively, have

recently been proposed [3]. The cones of polynomials that admit DSOS and SDSOS

decompositions are subsets of the cone of SOS polynomials, but they lead to more

tractable optimization problems.

Definition 5.4.5. A symmetric matrix A is diagonally dominant (dd) if aii ≥∑
j 6=i

|aij| for all i. A is scaled diagonally dominant (sdd) if there exists an elementwise

positive vector y such that aiiyi ≥
∑
j 6=i

|aij|yj for all i.

Then two subsets of SOS cone, DSOS and SDSOS, are defined as follows.

138

Definition 5.4.6. (Ahmadi and Majumdar, ’2013)

A polynomial p is diagonally-dominant-sum-of-squares (DSOS) if it can be written

as

p =
∑
i

αim
2
i +

∑
i,j

βi,j(mi ±mj)
2,

for some monomials mi,mj and some nonnegative scalars αi, βi,j.

A polynomial p is scaled-diagonally-dominant-sum-of-squares (SDSOS) if it can

be written as

p =
∑
i

αim
2
i +

∑
i,j

(βimi ± γjmj)
2,

for some monomials mi,mj and some constants αi ≥ 0, βi, γi.

Let DSOSn,2d, SDSOSn,2d, SOSn,2d and PSDn,2d, denote cones of, respectively,

DSOS, SDSOS, SOS and nonnegative polynomials of degree 2d in dimension n. It is

clear that DSOSn,2d ⊆ SDSOSn,2d ⊆ SOSn,2d ⊆ PSDn,2d. It is shown in [3] that a

polynomial p of degree 2d is DSOS (or SDSOS) if and only if it has a representation

p(x) = z>(x)Qz(x), where z(x) is the standard monomial vector of degree d, and

Q is a DD (or SDD) matrix. It has also been proven that the set of DSOSn,2d

(or SDSOSn,2d) has a polyhedral (second order cone) representation and thus the

search over DSOSn,2d (SDSOSn,2d) for a fixed d reduces to a linear programming

(second-order cone programming) problem.

In the next section we will show that applying the SOS, DSOS and SDSOS

relaxation to the risk parity problem produces useful lower bounds and in the case

of SDSOS good lower bounds can be obtained efficiently.

139

5.5 Numerical results on risk parity portfolio se-

lection problem

In this section, we use risk parity portfolio selection problem (5.6) (with q(x) = 0)

as the specific application to perform numerical experiments. It was shown in [5]

that if all ai = 0, bi = 1 for all i, then a unique risk parity solution exists. It was

further shown in [5] that if ai < 0 for some i then there may be multiple risk parity

solutions and in the case when bounds are not tight at the solution, all local minima

are global. Tighter box constraints, on the other hand, may result in no risk parity

solution and multiple local optima may exist. We will demonstrate on some simple

examples, that our alternating direction approaches find the global optimum in each

case. In [5] these methods were used in case of multiple risk parity solutions and

regularization term q(x) =
1

2
x>Σx and also produced global solutions.

5.5.1 A comparison of local alternating direction algorithms.

We compare algorithms described in Sections 5.2.3 and 5.2.4 on randomly generated

data and real data sets.

In risk parity problem (5.6) θ is a free variable of dimension one. It is possible

to derive simplified versions of ALM and PLM in such a way, that optimization over

θ is performed as a separate step after optimization over x. In particular, θ can be

updated by the exact minimization at the end of each iteration. We observe that,

∂F

∂θ
= −2

n∑
i=1

(x>Mix− θ),

140

which leads to the following simple update θk =
1

n

n∑
i=1

(xk)>Mix
k. Note that if

such an update is used instead of simultaneous optimization over x and θ, then

our ALM scheme performs three optimization steps over three blocks of variables

instead of two and our theory may no longer apply. In fact, as our computational

results show, updating θ separately leads to inferior results. Optimizing over x

and θ simultaneously reduced overall number of iterations, while it does not result

in substantially more difficult subproblems. Hence, this modification of PLM and

ALM is undesirable both in theory and in practice. We simply include it here for

comparison.

For both PLM and ALM, we have shown that the convergence holds if µk is cho-

sen so that the function value at the new iterate is not larger than the value of the

approximation function Q. Choosing small value of µk a priori will guarantee this,

but will result in slow progress of the algorithm. Hence, we apply backtracking pro-

cedure to find an acceptable value of details about applying backtracking alternating

linearization method for convex composite optimization can be found in [60].

In the case of augmented Lagrangian method and alternating direction augmented

Lagrangian method (ADMM) µ should be selected sufficiently small and constant,

according to our theory. In order to avoid computing the Lipschitz constant of the

gradient we allow some parameter tuning to improve the results. In augmented La-

grangian method, we also allow inexact minimization for the subproblem at beginning

iterations, to achieve fast convergence (see, e.g. [10]).

In what follows we compare the following algorithms.

1. ALM-θ - Algorithm 14 with separate θ update.

2. ALM - Algorithm 14 with simultaneous optimization over x and θ;

141

3. PLM-θ - Algorithm 16 with separate θ update;

4. PLM - Algorithm 16 with simultaneous optimization over x and θ;

5. AL-BCD - Augmented Lagrangian method with block coordinate descent method

to solve the subproblem;

6. ADMM: Algorithm 13 with properly chosen µ;

Our implementations and experiments were performed in MATLAB R2013a on a

laptop with Intel Core Duo 1.8 GHz CPU and 2GB RAM. Mosek 7.0 was applied to

solve the QP subproblem. In [5], the basic versions of ALM were shown to be superior

to MATLAB fmincon, hence we do not include these comparisons here. In Table 5.1

and Table 5.2, we compare the algorithms on random data. An arbitrary symmetric

positive semidefinite matrix can be generated as Σ = AA>, where Aij is uniformly

distributed within the interval [0, 1]. Recall that the main computational cost of each

algorithm lies in the number of quadratic models it solves as the subproblem. Hence,

in each table we report the number of iterations and the total number of QP solved.

We set the termination criterion to when the largest KKT violation falls below ε,

with ε chosen to be 10−3, 10−5, etc. We recorded the number of the iterations and the

number of subproblem (QP) solves it took each algorithm to reach this threshhold.

The maximum iteration number is 10000.

Table 5.1: A comparison of algorithms on a randomly generated instance (20× 20).
The starting point is chosen to be equally weighted portfolio, i.e., x0

i = 1/n. The
lower and upper bounds are chosen to be a = 0, b = 1. The starting µ is chosen to
be 0.01.

Algorithm iter. (10−3) QP F-value iter. (10−5) QP F-value iter. (10−7) QP F-value

PLM-θ 18 29 1.06× 10−8 32 50 1.28× 10−12 45 70 1.44× 10−16

PLM 7 7 2.67× 10−9 9 9 2.94× 10−13 11 11 2.53× 10−17

ALM-θ 12 40 2.20× 10−8 21 66 1.03× 10−12 28 89 1.93× 10−16

ALM 5 12 9.29× 10−10 6 14 1.11× 10−12 8 21 1.18× 10−19

AL-BCD 3 52 1.11× 10−8 5 94 3.56× 10−14 6 116 4.03× 10−17

ADMM 19 38 9.43× 10−9 33 66 1.27× 10−12 48 96 1.02× 10−16

142

Table 5.2: A comparison of algorithms with fixed steplengths on a randomly gener-
ated instance (200× 200). The starting point is chosen to be equally weighted port-
folio, i.e., x0

i = 1/n. The lower and upper bounds are chosen to be a = −1, b = 2.
The starting µ is chosen to be 0.01.

Algorithm iter. (10−3) QP F-value iter. (10−5) QP F-value iter. (10−7) QP F-value

PLM-θ 15 30 7.28× 10−10 27 50 5.65× 10−14 44 77 1.54× 10−17

PLM 4 4 1.51× 10−10 5 5 2.63× 10−13 7 7 1.16× 10−18

ALM-θ 14 55 7.33× 10−10 23 82 2.57× 10−14 28 100 2.16× 10−18

ALM 3 13 1.66× 10−12 4 16 3.53× 10−17 5 20 7.36× 10−18

AL-BCD 12 790 1.88× 10−8 17 1496 3.04× 10−12 22 2110 5.55× 10−17

ADMM 45 90 6.15× 10−6 92 184 9.84× 10−12 103 206 1.96× 10−15

Tables 5.1 and 5.2 contain results for randomly generated data of two different

sizes. We observe that all algorithms find the global minimum. The AL-BCD method

requires the least number of iterations, but the largest number of QP solves, since

each iteration requires multiple such solves. Both PLM and ALM tend to require

fewer QP solves, compared to ADMM and AL-BCD, which is likely the result of

using the gradient information backtracking approach for selecting µk.

We also compare the algorithms on one data set created to simmulate difficult

risk parity cases with 5 risky assets [5]. The covariance matrix of the percentage

annual return is given by:

Σ =



94.868 33.750 12.325 −1.178 8.778

33.750 445.642 98.955 −7.901 84.954

12.325 98.955 117.265 0.503 45.184

−1.178 −7.901 0.503 5.460 1.057

8.778 84.954 45.184 1.057 34.126


.

In Table 5.3 we present results for the case of lower and upper bounds set to 0

and 1, respectively. In this case risk parity solution exists and is unique [5]. In Table

5.4 we show the results for the case of tight upper and lower bounds, where a risk

parity solution, satisfying these bounds, does not exists.

143

Finally we test the algorithms on real instances of covariance matrices of different

sizes using risk parity model (5.6) and group risk parity model (5.7). These results

are listed in Tables 5.5-5.7 and also include the case where risk parity does not exist.

All our results show that ALM and PLM are comparable to each other in terms

of the number of QP solves and they both typically outperform other methods,

such as ALM-θ and PLM-θ, as well as ADMM. The only exception in which ALM-

θ outperforms ALM in terms of speed is in Table 5.7. However, ALM achieves a

smaller objective function value (1.22× 10−13) than ALM-θ (5.41× 10−13).

Table 5.3: A comparison of algorithms on 5×5 instance. The starting point is chosen
to be equally weighted portfolio, i.e., x0

i = 1/n. The lower and upper bounds are
chosen to be a = 0, b = 1. The starting µ is chosen to be 0.1.

Algorithm iter. (10−3) QP F-value iter. (10−5) QP F-value Final solution

PLM-θ 55 95 4.87× 10−9 77 131 1.34× 10−12 [0.125;0.047;0.083;0.613;0.132]

PLM 41 84 1.59× 10−9 50 101 5.41× 10−14 [0.125;0.047;0.083;0.613;0.132]

ALM-θ 47 174 3.08× 10−9 64 230 1.26× 10−13 [0.125;0.047;0.083;0.613;0.132]

ALM 20 82 1.65× 10−9 26 102 4.52× 10−14 [0.125;0.047;0.083;0.613;0.132]

AL-BCD 18 2058 7.04× 10−13 23 2744 5.67× 10−16 [0.125;0.047;0.083;0.613;0.132]

ADMM 91 182 3.67× 10−9 106 212 1.18× 10−13 [0.125;0.047;0.083;0.613;0.132]

Table 5.4: A comparison of algorithms on 5×5 instance. The starting point is chosen
to be equally weighted portfolio, i.e., x0

i = 1/n. The lower and upper bounds are
chosen to be a = 0.05, b = 0.35. The starting µ is chosen to be 0.1.

Algorithm iter. (10−3) QP F-value iter. (10−5) QP F-value Final solution

PLM-θ 28 52 16.0344 61 87 16.0344 [0.204;0.060;0.130;0.350;0.256]

PLM 23 46 16.0344 29 55 16.0344 [0.204;0.060;0.130;0.350;0.256]

ALM-θ 19 79 16.0344 26 98 16.0344 [0.204;0.060;0.130;0.350;0.256]

ALM 14 62 16.0344 21 82 16.0344 [0.204;0.060;0.130;0.350;0.256]

AL-BCD 507 15786 16.0344 522 15846 16.0344 [0.204;0.060;0.130;0.350;0.256]

ADMM 309 618 16.0344 325 650 16.0344 [0.204;0.060;0.130;0.350;0.256]

5.5.2 Implementation of SOS optimization on risk parity

optimization problem

In this section, we discuss the application of SOS relaxation and its variants discussed

in Section 5.4 to risk parity. As mentioned above, it has been shown in [5], that all

144

Table 5.5: A comparison of algorithms on asset allocation instance (14 × 14). The
starting point is chosen to be equally weighted portfolio, i.e., x0

i = 1/n. The lower
and upper bounds are chosen to be a = 0, b = 1. The starting µ is chosen to be 1.

Algorithm it. (10−3) QP F-value it. (10−5) QP F-value Final solution

PLM-θ 127 212 8.61× 10−8 210 343 7.78× 10−12

x1 ∼ x3 : 0.0416, 0.0360, 0.0328
x4 ∼ x6 : 0.0313, 0.0334, 0.0687
x7 ∼ x9 : 0.0249, 0.0506, 0.1661
x10 ∼ x12 : 0.2892, 0.0630, 0.0532
x13 ∼ x14 : 0.0760, 0.0332

PLM 131 225 7.15× 10−8 215 363 8.62× 10−12

ALM-θ 31 111 2.30× 10−8 45 159 2.95× 10−12

ALM 10 58 3.40× 10−8 14 69 5.82× 10−12

AL-BCD 42 1276 1.19× 10−10 44 1676 3.11× 10−14

ADMM 85 170 2.88× 10−8 106 212 6.26× 10−13

Table 5.6: A comparison of algorithms on asset allocation instance with tight bounds
(14×14). The starting point is chosen to be equally weighted portfolio, i.e., x0

i = 1/n.
The lower and upper bounds are chosen to be a = 0.06, b = 0.08. The starting µ is
chosen to be 1.

Algorithm it. (10−3) QP F-value it. (10−5) QP F-value Final solution

PLM-θ 11 24 0.06645 17 32 0.06645
x1 ∼ x3 : 0.0594, 0.0500, 0.0500
x4 ∼ x6 : 0.0500, 0.0500, 0.0984
x7 ∼ x9 : 0.0500, 0.0715, 0.1000
x10 ∼ x12 : 0.1000, 0.0957, 0.0796
x13 ∼ x14 : 0.1000, 0.0500

PLM 11 24 0.06645 14 29 0.06645

ALM-θ 7 34 0.06645 8 37 0.06645

ALM 4 25 0.06645 5 27 0.06645

AL-BCD 772 14432 0.06645 1211 16188 0.06645

ADMM 980 1960 0.06645 1508 3016 0.06645

unconstrained local optima of (5.6) are actually risk parity solutions. However, if a

local solution has an active bound constraint, then this may be a local solution, as

seen in some examples in Section 5.5.1, and it is unclear if it also is a global one.

Here, we can apply SOS techniques to find a global lower bounds for such cases.

We use SOSTOOLS MATLAB toolbox for constructing and solving SOS relax-

ation [57]. SOSTOOLS reformulate SOSs as semidefinite programs (SDPs), which is

then solved by a standard SDP solver such as SeDuMi or SDPT3.

Example 5.5.1. Consider the 5× 5 example introduced in Section 5.5.1. As shown

in Table 5.4, by imposing sufficiently tight bound constraints, a risk parity solution

is not reached. We now would like to verify that risk parity solution does not indeed

exist, and, if possible, verify the global optimality of our local solution by constructing

a lower bound. We used function findbound in SOSTOOLS. In this case, after

reformulation, SDPT3 solved an SDP feasibility problem and gave a lower bound of

145

Table 5.7: A comparison of algorithms on equity market instance (482× 482) with
group risk parity enforced. The starting point is chosen to be equally weighted
portfolio, i.e., x0

i = 1/n. The lower and upper bounds are chosen to be a = 0, b = 1.
The starting µ is chosen to be 0.1.

Algorithm iter. (10−3) QP F-value iter. (10−5) QP F-value

PLM-θ 38 66 4.62× 10−9 568 610 1.39× 10−13

PLM 47 88 8.45× 10−9 338 400 1.11× 10−13

ALM-θ 11 41 2.18× 10−9 101 228 5.41× 10−13

ALM 10 43 4.38× 10−10 261 556 1.22× 10−13

AL-BCD 19 184 1.75× 10−10 30 890 1.67× 10−15

ADMM 48 96 6.51× 10−9 77 154 7.64× 10−13

16.0344 which is equal to the objective value obtained by local algorithms, as is shown

in Table 5.4.

While constructing an SOS representation of a nonnegative polynomial reduces

to solving an SDP feasibility problem and can be done in polynomial time, the

size of the resulting SDP grows very rapidly with the dimension and the degree of

the polynomial. Moreover, in the constrained case, such as ours, we need to apply

Positivstellensatz (5.71) which increases the size of the SDP even further. To improve

efficiency of the SOS relaxations, we propose a simple adaptive strategy, where we

add some of the box constraints to the formulation is a sequential manner.

Our simple sequential SOS method is stated as Algorithm 17 and the results

of a comparison between applying SOSTOOLS to the original formulation and our

adaptive strategy can be seen in Table 5.8. Instead of imposing all constraints at

once, we first use our local algorithm to obtain a stationary point and thus have an

initial “guess” which bound should be activated. We add the corresponding bounds

to the formulation and solve the corresponding subproblem with SOSTOOLS and

SeDuMi. Clearly each SOS subproblem provides a lower bound for our main problem,

since it is a relaxation applied to a relaxed feasible set. SOSTOOLS also provides

another solution x, which is a new stationary point. We then proceed by adding new

146

constraints if they are violated by the new solutions x. Hence we obtain a sequence of

tighter relaxations and nondecreasing lower bounds. In our experiments this simple

strategy substantially reduced the size of the SDPs and the overall complexity. For

instance, for the 5× 5 case with bounds [0.05, 0.35] the original constrained problem

results in a 126× 2808 SDP (using SOSTOOLS). If we apply Algorithm 17, then we

solve two subproblems whose sizes are 126× 534 and 126× 863, respectively. As can

be observed in Table 5.8, this can significantly accelerate the algorithm.

We have tested the SOS approach on two 5× 5 instances, in each case using two

settings - tight bounds and the full [0, 1] interval for each variable. Clearly, when the

bounds are not tight, then risk parity solution exists and the lower bound is known

to be 0 and hence there is no need for applying SOS tools. However, we use this

setting for testing efficiency and accuracy of the SOS approach and Algorithm 17.

In fact in some cases Algorithm 17 produced the accurate bound after solving only

one SDP problem.

To demonstrate the challenge of using SOS we tested the 14× 14 asset allocation

instance with bounds to be [0, 1]. As we can see from Table 5.8, when we test the our

approach find an inaccurate (positive) bound after more than 1 hour, while directly

applying SOSTOOLS fails to provide an answer within 24 hours.

It is important to note that in order to apply Schmdgen Positivstellensatz in

(5.71), we need the assumption that the solution lies in a compact set. Here, although

we do not add all constraints at once, we can still assume, without loss of generality,

that the solution lies in a large enough bounded set.

147

Algorithm 17 Sequential sos method for risk parity optimization

1. Apply local algorithms (ADMM or ALM) to solve (5.6) and obtain a stationary
point x0 and the corresponding objective function value f(x0);
2. Initialize the constraint set X 0, where X 0 contains only the bounds which are
activated by x0 and all the equality constraints.
3. for k = 0, 1, ...

(a) Solve (5.71) by SOSTOOLS, and obtain new local solution xk+1 ∈ X k and
a global lower bound γk+1;

(b) if xk+1 ∈ X true then
break, and γk+1 is a global lower bound for f ;

else
add bounds that are violated by xk+1 and obtain new feasible set X k+1.

Go to (a).

Table 5.8: A comparison of algorithms on instances with different bounds. Original
SOSTOOLS application (denoted as Org. in the table) is compared with relaxed
sequential algorithm (Rel.). The default tolerance on duality gap is set to 10−8).

Instance CPU time (s) Global lower bounds

Name (size) Bounds Org. Rel. Org. Rel. Opt.

5 assets-scaled (5) [0.05, 0.35] 160.13 16.94 16.03 16.03 16.03

5 assets-unscaled (5) [0, 1] 115.83 24.34 2.48× 10−10 1.54× 10−11 0

Rand I (5) [0.15, 0.25] 152.97 8.46 2.01× 10−3 2.01× 10−3 2.01× 10−3

Rand I (5) [0, 1] 115.98 5.65 2.70× 10−10 9.28× 10−10 0

Asset Allocation (14) [0,1] - 4855.32 - 2.12× 10−7 0

DSOS and SDSOS optimization

As discussed in Section 5.4, we can apply DSOS and SDSOS relaxations as potential

alternatives of SOS. The hope is that these techniques could provide us with a quality

bound at a much smaller computational cost.

Specifically, SDSOS approach reduces to the following problem when seeking a

148

Table 5.9: A comparison of DSOS and SDSOS approach, on solving a 5×5 example.
We compare the final lower bound found with a increase of the degree.

Method Bound (d = 4) CPU Time Bound (d = 6) CPU Time OPT

DSOS 9.983 2.198 14.958 12.858 16.0344

SDSOS 16.021 1.986 16.027 11.142 16.0344

lower bound for risk parity problem:

max λ

s.t.
n∑
i=1

(xi(Σx)i −
1

n
x>Σx)2 − λ−

n∑
i=1

L(x)g(x)− r(x)(
n∑
i=1

xi − 1) ∈ SDSOSn,d

L(x) ∈ SDSOSn,d,
(5.72)

where n is the dimension (the number of assets), d is the degree of SDSOS.

The result using DSOS and SDSOS solving the 5× 5 instance is listed in Table

5.9. We used package called SPOTless (see: github.com/spot-toolbox/spotless) to

model the DSOS and SDSOS cones and apply Mosek 7.0 to solve the resulting

convex optimization problem (LP and SOCP, respectively). We can see that DSOS

approximation gave a poor bound (but positive) when the maximum degree was set

to 4 and improved the bound to optimal when the degree was increased to 6. SDSOS

relaxation obtained good results at (surprisingly) slightly lower computational cost.

Further extensive testing is needed to explore the usefulness of these approaches and

is a subject of future research.

5.6 Conclusion

In this chapter, we proposed a family of alternating direction methods for minimizing

nonlinear nonconvex problems with special structure which allows convenient 2-block

149

variable splitting. In particular these methods apply to minimizing sums of squares

of quadratic functions. We propose an alternating directions method of multipliers

and an alternating linearization method and we provide convergence rate results for

both classes of methods. The experiments on risk parity optimization problem shows

the efficiency of these methods and their ability to recover a global minimum for this

application. Global optimization techniques from polynomial optimization literature

are applied to complement our local methods and to provide lower bounds. Exploring

new applications of our methods is subject of future study.

150

Chapter 6

Alternating direction methods for

the optimal power flow problem

6.1 Introduction

Optimal power flow (OPF) problem, one of the most important and widely studied

problems in the power system, aims to minimize a cost function subject to power

flow and operational constraints. This is a challenging problem due to the fact that

the feasible region is nonconvex and thus is hard to tackle. In fact, it has been shown

in [44] that OPF is NP-hard in the worst case.

Research in recent years has seen a great amount of efforts in applying global op-

timization techniques in OPF problem. In [6], OPF problem can be convexified by

dropping the rank-one constraint and solved using standard semidefinite program-

ming (SDP) approach. Lavaei and Low solve the dual of the original nonconvex OPF,

which is an SDP. Furthermore, they show that, for the standard IEEE benchmark

151

library, a necessary and sufficient condition is satisfied such that the duality gap for

the OPF problem is zero [44]. More recently, polynomial optimization techniques

have also been considered in [32].

The limitations of SDP type of approaches lie in the fact that the relaxation is not

always exact, which may lead to an infeasible solution. As an alternative to the route,

efficient local methods have been proposed in several papers. In particular, You and

Peng suggest a nonconvex alternating direction method of multipliers (ADMM) for

OPF [76]. ADMM is a well-known method that has been widely studied by the

convex optimization community. The OPF problem fits the alternating direction

method because it is natural to separately deal with the convex constraints and

nonconvex rank-one constraint. However, the convergence results of ADMM applied

to nonconvex problems have not been studied extensively before. Hence, in spite of

the effectiveness indicated by the numerical results, there is no theoretical guarantee

that the method will converge.

In this chapter we propose an algorithmic framework based on classic augmented

Lagrangian function. Our framework consists of two alternating direction schemes

to solve the subproblem, including the well-known alternating direction method of

multipliers and alternating linearization method. Our focus and main contribution

is to provide an optimization method for the nonconvex OPF that can be guaranteed

to converge to satisfy KKT optimality conditions. Moreover, our method is conver-

gent to a local minimum and can always recover a rank-one solution within some

predetermined tolerance.

The rest of the chapter is organized as follows. After a brief discussion of the

problem structure in Section 6.2, we discuss a class of algorithms based on augmented

Lagrangian function and their convergence properties in Section 6.3. In Section 4, we

152

discuss the advantages and disadvantages of our ADMM and propose an alternative

approach. We show experiments and computational results in Section 5, followed

with conclusion remarks.

6.2 The optimal power flow problem

6.2.1 Notations and preliminaries

In this chapter, we use the same notation as in [44] and [32]. . Consider a power

system P = (N,E), where N is the set of buses and E is the set of edges connecting

the buses. Note that E ⊆ N × N . Also, let G ⊆ N be the set of generators. For

each bus k ∈ N , let Vk = < [Vk]+ j= [Vk] be the complex voltage. Let Sdk = P d
k + jQd

k

denote the net complex power load at each bus k ∈ N and P g
k + jQd

k be the power

generated at each bus k ∈ G, and Slm = Plm + jQlm be the apparent power flow on

the edge (l,m) ∈ E. The network admittance matrix is denoted as y ∈ C|N |×|N |.

We define the parameters of the system as follows.

• Pmin
k , Pmax

k , Qmin
k and Qmax

k are the generation capacity limits (either active or

reactive) at each bus k ∈ G.

• V min
k and V max

k are the limits of the absolute value of the voltage at each bus

k ∈ N .

• Smax
lm and Pmax

lm are the limit of the apparent power flow on each edge (l,m) ∈ E.

• 4V max
lm is the line capacity limit on edge (l,m) ∈ E.

153

Thus, the classical OPF problem aims to minimize the total cost of power gener-

ation as follows.

min
∑
k∈G

fk(P
g
k)

s.t. Pmin
k ≤ P g

k ≤ Pmax
k , ∀k ∈ G

Qmin
k ≤ Qg

k ≤ Qmax
k , ∀k ∈ G

V min
k ≤ |Vk| ≤ V max

k , ∀k ∈ N

|Slm| ≤ Smax
lm , ∀(l,m) ∈ E

|Plm| ≤ Pmax
lm , ∀(l,m) ∈ E

|Vl − Vm| ≤ 4V max
lm , ∀(l,m) ∈ E.

(6.1)

The objective function contains a sum of the generation cost from each generator.

The cost from each generator, with c2
k, c

1
k, c

0
k nonnegative, is often defined as

fk(P
g
k) = c2

k(P
g
k)2 + c1

k(P
g
k) + c0

k.

6.2.2 Reformulation

It has been shown in [44] that problem (6.1) can be reformulated as follows

154

min
∑
k∈G

fk(x)

s.t. Pmin
k ≤ Tr(Ykxx

>) + P d
k ≤ Pmax

k

Qmin
k ≤ Tr(Ȳkxx

>) +Qd
k ≤ Qmax

k

(V min
k)2 ≤ Tr(Mkxx

>) ≤ (V max
k)2

(Tr(Ylmxx
>))2 + (Tr(Ȳlmxx

>))2 ≤ (Smax
lm)2

Tr(Ylmxx
>) ≤ Pmax

lm

Tr(Mlmxx
>) ≤ (4V max

lm)2.

(6.2)

The objective function then becomes:

fk(x) = c2
k(P

d
k + Tr(Ykxx

>))2 + c1
k(P

d
k + Tr(Ykxx

>)) + c0
k.

6.3 An alternating direction approach based on

rank-one relaxation

We can define W = xx> and formulate the problem as a rank-constrained problem.

Clearly, ACOPF is a nonconvex problem, due to this quadratic equality. In tradi-

tional SDP relaxation approach, the rank-one constraint for W is ignored and thus

a convex relaxation problelm is solved. An alternative approach is to formulate the

problem into a rank-minimization problem. However, rank-minimization approach

does not always recover the rank-one feasible solution (see, for instance, [46] for a

discussion).

In [4], a least-squares approach is proposed to find an approximate solution as an

155

alternative to solving the following system of quadratic equations:

x>Mix+m>i x = θi,∀i ∈ {1, ...,m}, (6.3)

where Mi ∈ Rn×n are matrices not necessarily symmetric—let alone positive semidef-

inite, mi ∈ Rn is a given vector. In the chapter, they consider solving this problem

by minimizing second-order sum of squares:

min
x∈X

F =
m∑
i=1

fi(x) =
m∑
i=1

(x>Mix+m>i x− θi)2, (6.4)

where X is some convex set.

In this chapter we propose an algorithmic framework based on augmented La-

grangian function. The goal is to relax the difficult rank-one constraint, i.e. rank(W) =

1, implied by W = xx>, and recover the feasibility at the limit. Our framework con-

sists of the well-known alternating direction method of multipliers (ADMM) to solve

the subproblem, and our method is convergent to a local minimum. Our framework

is simple and relies on solving a sequence of convex subproblems, which makes it

easy to implement on standard nonlinear optimization solvers.

6.3.1 Outer loop: augmented Lagrangian method

For the outer loop, we apply the classic augmented Lagrangian method (AL) to relax

the equality constraints for a set of least-squares. A basic augmented Lagrangian

method can be implemented as Algorithm 4 for minimizing a general nonlinear prob-

lem subject to an equality constraint.

Now let us describe the situation in our case. Recall that we can add a rank

156

constraint W = xx>. Thus, we can apply Algorithm 12 and solve the following

subproblem at each iteration:

min LA :=
∑
k∈G

fk(W)− Tr(Λ>(W − xx>)) +
1

2µ
‖W − xx>‖2

F

s.t. Pmin
k ≤ Tr(YkW) + P d

k ≤ Pmax
k

Qmin
k ≤ Tr(ȲkW) +Qd

k ≤ Qmax
k

(V min
k)2 ≤ Tr(MkW) ≤ (V max

k)2

(Tr(YlmW))2 + (Tr(ȲlmW))2 ≤ (Smax
lm)2

Tr(YlmW) ≤ Pmax
lm

Tr(MlmW) ≤ (4V max
lm)2

W � 0.

(6.5)

For simplicity, for future reference we will denote the feasible region of (6.5) as

W ∈ SW , since x now is a free variable.

The convergence of augmented Lagrangian method has been well studied in many

literatures [9, 72].

6.3.2 Alternating direction method of multipliers (ADMM)

For the subproblem, here we apply variable splitting and solve the following problem

which is equivalent to (6.5)

157

min LA(W,x, z) :=
∑
k∈G

fk(W)− Tr(Λ>(W − xz>)) +
1

2µ
‖W − xz>‖2

F

s.t. W ∈ SW

x = z,

(6.6)

where x, z ∈ Rn. In other words, we map the dimension of decision variable from

(
n(n+ 1)

2
+ n) in (6.2) to (

n(n+ 1)

2
+ 2n) in (6.6).

Consider problem in the form of (6.6). Given a penalty parameter 1/ν (ν > 0),

we have the following augmented Lagrangian function:

LadmmA (W,x, z; δ) :=
∑
k∈G

fk(W)− Tr(Λ>(W − xz>))

+
1

2µ
‖W − xz>‖2

F − δ>(x− z) +
1

2ν
‖x− z‖2,

(6.7)

where δ is a multiplier. Note that throughout the iterations for each subproblem, Λ

is maintained as a constant.

As described in previous chapters, alternating direction methods of multipliers

(ADMM), or so-called alternating direction augmented Lagrangian method (ADAL),

can be regarded as AL-BCD with each subproblem solved only inexactly. A simple

framework of ADMM can be implemented as Algorithm 18.

Algorithm 18 Alternating direction methods of multipliers (ADMM) for ACOPF
subproblem

1. Choose µ0, λ0, and W 0, x0 = z0;
2. for k = 0, 1, ..., do

[W k+1, xk+1] := arg min
W∈SW ,x

LadmmA (W,x, zk; δk);

zk+1 := arg min
z
LadmmA (W k+1, xk+1, z; δk);

update the multiplier δk+1 = δk − 1

νk
(xk+1 − zk+1);

choose new penalty parameter νk+1.

158

Convergence properties of ADMM

The convergence properties of ADMM solving nonconvex problems with certain

structures have been shown in Chapter 5. Here we argue that our case satisfies

the function format that guarantees the convergence results in Chapter 5.

Recall that in Chapter 5, we consider the objective function in the following form:

min
x∈X

F (x), (6.8)

where x ∈ Rn. Further, we assume that the variables can be split into two blocks,

i.e. F (x) = h(f(x), g(x)) but do not assume that the objective can be decomposed

as a linear sum of functions consisting of these blocks. Denote the following as a new

function of x at some given x̄

F1(x, x̄) = h(f(x), g(x̄)), (6.9)

which is indeed the function of x with the second block, g, fixed at a given x̄.

Similarly, if we fix the first block at some x0 and vary the other, we have another

function

F2(x̄, x) = h(f(x̄), g(x)). (6.10)

Then under the assumption that F1, F2 are convex, as well as some mild conditions,

we can show that augmented Lagrangian function value converges by the iteration in

Algorithm 13, and further, any limit point of sequence {xk} generated by Algorithm

13 is a stationary point of F .

In the ADMM-OPF case, we have W and x as variables. However, we only split

x rather than W and x together. Now we will show that such partial splitting fits

159

into the above case.

Since we need to solve the augmented Lagrangian form with ADMM, we can

rewrite the objective function in (6.5) as

LA(W,x) = F1(W) + F2(W,x),

where F1(W) =
∑
k∈G

fk(W) and F2(W,x) = −Tr(Λ>(W − xx>)) +
1

2µ
‖W − xx>‖2

F .

Furthermore, it is obvious that F2(W,x) = h(f>g), where h(M) = −Tr(Λ>M) +

1

2µ
‖M‖2

F , f(W,x) =

 W

x>

 and g(W,x) =

 I

−x>

 are affine functions. Thus,

we can apply the splitting:

min LA(W,V, x, z) := F1(W) + F2(W,V, x, z) = F1(W) + h(f(W,x)>g(V, z))

s.t. W ∈ SW , x = z, W = V.

(6.11)

Moreover, we can write down the augmented Lagrangian function to relax the

splitting constraint.

LadmmA (W,V, x, z; Λ, δ)

:= F1(W) + h(f(W,x)>g(V, z))− Tr(Λ>(W − V))

+
1

2µ
‖W − V ‖2

F − δ>(x− z) +
1

2ν
‖x− z‖2,

where ∆ and δ are multipliers; µ and ν are positive scalars.

Note that, since g(V, z) =

 I

−z>

, V does not appear in g. Thus, for small

enough µ, V should always be equal to W to minimize LadmmA , in which case we have

160

(6.7) and further Algorithm 18. Thus, we have shown that we may apply partial

splitting (i.e. splitting between x’s and z’s) and include W in the minimization of

one block and maintained in the other, and our convergence result holds.

Remark 6.3.1. Note that, given the augmented Lagrangian formulation (6.5), it is

natural to consider ADMM to solve the outer loop directly. The reason is simple.

Although the rank-one set is nonconvex, a symmetric positive semidefinite matrix

being mapped to the rank-one set resulted in an analytic solution. For instance, a

simple ADMM heuristic scheme solving OPF is considered in Algorithm 19 (see, for

instance, [76]). However, there is no guarantee that Algorithm 19 would converge.

Algorithm 19 An ADMM heuristic scheme for ACOPF

1. Choose µ0, λ0, and W 0, Z0;
2. for k = 0, 1, ..., do

W k+1 := arg min
W∈SW

LA(W,xk; Λk);

xk+1 :=

√
σk+1

1 vk+1
1 ,

where σ1, v1 are the top singular value/vector of W k+1.

update the multiplier Λk+1 = Λk − 1

µk
(W k+1 − xk+1(xk+1)>);

choose new penalty parameter µk+1.

6.3.3 Practical issues

The efficiency of the algorithm lies in the number of (sparse) QPs that our method

tends to solve. In terms of practical implementation, there are several issues worth

being pointed out.

Warm-start

It is known that both AL and ADMM can be slow, especially when the starting point

is far from the optimal solution and high accuracy is desired. In the OPF case, we

161

can warm start our algorithm by the solution obtained by the SDP relaxation. To be

specific, we solve an SDP without the rank-one constraint. We then map the solution

W 0, which is obtained by solving (6.5), to the rank-one set, and obtain the starting

points x0 and z0 through a partial singular value decomposition (SVD). Simply put,

x0 = z0 =
√
σ1v1,

where σ1, v1 are the top singular value/vector of W 0.

Subproblem 1: QP/SDP

The main computational cost of ADMM lies in minimizing (6.7), which has a quadratic

objective. This subproblem can be reformulated into SDP with a linear objective by

adding linear matrix inequalities (LMI). Let ξ = vec(W − xz>) ∈ Rn2

, s ∈ R. Then

‖W − xz>‖2
F ≤ s is equivalent to

 s ξ

ξ> I

 � 0.

The reformulation of
∑
k∈G

fk(W) and the constraint (Tr(YlmW))2+(Tr(ȲlmW))2 ≤

(Smax
lm)2 can be seen (formula (6) and (5), respectively) in [44].

Subproblem 2: closed-form solution

In ADMM, very often the computational efforts for each subproblem are quite dif-

ferent. In Algorithm 18, note that z is not contained in either fk or the constraint

set SW . Thus, we can simply solve the correponding subproblem in closed form. By

162

settting the gradient to zero, we derive that

zk+1 =
µν

ν(xk+1)>xk+1 + µ

[
(
1

ν
I +

1

µ
W k+1 − Λj)>xk+1 − δk

]
,

where I is an identity matrix, Λj is the multiplier matrix obtained from the jth outer

loop.

Stopping criterion and the choice of prox parameter

Since we aim to find a KKT point, we could stop the algorithm when the largest

KKT violation from (6.2) is below some ε > 0. In practice, we can often test if the

residuals are within the ε-band [12], i.e.

‖xk − zk‖ ≤ ε1

‖W k − xk(zk)>‖F ≤ ε2,

where ε1 controls the feasibility of the AL subproblem, ε2 together with ε1 controls the

feasibility of the original problem. Or we can use, equivalently, ‖W k − xk(xk)>‖F ≤

εprimal, to measure the feasibility of the primal problem. For the dual problem, we

may measure the dual feasiblity by

1

µ
‖xk+1(xk+1)> − xk(xk)>‖2

F ≤ εdual.

As for the choice of the prox parameter, µ is often decreased (to enforce feasibility)

after a certain number of iterations, in AL. For instance, we can apply the augmented

Lagrangian algorithm shown in Algorithm 4, and choose µk ∈ (0, βµk−1] where 0 <

163

β < 1.

For ADMM, the convergence results are shown to be valid when ν is maintained

as a constant (see Chapter 5 for details). However, in practice we rarely use a

small prox parameter at the very beginning and maintain its value throughout the

iterations. Instead, we can apply some backtracking tricks to increase the potential

stepsizes and accelerate the algorithms.

Inexactness

It is known that augmented Lagrangian method converges while the subproblem is

solved inexactly. Hence, throughout implementation, we sequentially increase the

accuracy in solving the subproblem. For instance, we may terminate the subproblem

by setting ε1 = γβk, where γ, β are nonnegative constants and k is the outer iteration

number.

6.3.4 An alternating linearization method to solve the sub-

problem

As an alternative of ADMM, one may consider the alternating linearization method

to solve the subproblem. Instead of using AL and ADMM described previously,

in this section we consider alternating linearization method (ALM). ALM can be

naturally related to ADMM since the update of the multiplier λ in the dual space in

some sense can be regarded as computing the gradient in the primal space. In this

section, we discuss applying alternating linearization method to solve (6.5).

164

Define the following approximation function with smaller enough ν:

Q1
ν(W,x, z

k) = FAL(W,x, zk) +
〈
∇2FAL(zk), x− zk

〉
+

1

2ν
‖x− zk‖2,

where FAL(W,x, z) =
∑
k∈G

fk(W)− Tr(Λ>(W − xz>)) +
1

2µ
‖W − xz>‖2

F and further

∇2FAL(zk) = Λ>zk − 1

µ

(
W k − zk(zk)>

)>
zk. Suppose the following condition holds

for small enough µ:

F (W k+1, xk+1, xk+1) ≤ Q1
ν(W

k+1, xk+1, zk), (6.12)

where xk+1 is in the neighborhood centered at zk, i.e. xk+1 ∈ B(zk; r). Such µ can

be found by backtracking at each iteration.

Similarly, we can define

Q2
ν(W

k+1, xk+1, z) = FAL(W k+1, xk+1, z) +
〈
∇1FAL(xk), z − xk+1

〉
+

1

2ν
‖xk+1 − z‖2,

where ∇1FAL(xk+1) = Λxk+1 − 1

µ

(
W k+1 − xk+1(xk+1)>

)
xk+1.

Thus, we obtain the following alternating linearization method (Algorithm 20).

Note that many situations are similar as ADMM. For instance, we only update W in

the block with x to be minimized, and keep W fixed when minimizing z. Also, since

minimizing z is a unconstrained problem, at each iteration we can carry a closed-form

solution to obtain zk+1.

Algorithm 20 Alternating linearization method for OPF (ALM-OPF)

1. Choose ν0
1 = ν0

2 = ν0, and x0 = z0;
2. for k = 0, 1, ...

(a) [W k+1, xk+1] := arg min
W∈S,x

Q1
νk1

(W,x, zk); choose νk+1
1 ;

(b) zk+1 := arg min
y∈X

Q2
νk2

(W k+1, xk+1, z); choose νk+1
2 ;

165

Again, we refer to Chapter 5 for the convergence properties of ALM-OPF.

6.4 Numerical results

In this section, we provide some preliminary results for numerical experiments. Our

implementations were written in MATLAB and run in MATLAB R2013a on a laptop

with Intel Core Duo 1.8 GHz CPU and 2GB RAM. We use CVX as the problem

parser and apply Sedumi as the subproblem solver.

We first apply our augmented Lagrangian framework in a standard testing set:

case9 (see: http://www.pserc.cornell.edu//matpower/docs/ref/matpower5.0/ for a

full description). As we discussed earlier, the computational cost of our methods

(both AL-ADMM and AL-ALM) relies on the number of subproblems solved. Thus,

we compare the number of QPs/SDPs solved when the rank-one violation below

a certain tolerance. We also list the number of outer iteration (i.e. augmented

Lagrangian iteration) in the parentheses.

Through all instances, the optimal bound is checked by using Lavaei and Low

bound, which is tight in the instances tested.

We can observe that, although the number of outer iteration is comparable (as

expected) for the two algorithms, the number of subproblems solved by ALM are

clearly less than ADMM. In fact, in previous chapters when we test ALM and ADMM

on other second-order least-square type of problems (e.g. risk parity problems), we

observe similar behavior. We emphasize that this may be the result of the fact that

ALM takes advantage of the gradient information as well as its backtracking strategy

to obtain a good estimate of the prox parameter.

166

Table 6.1: A comparison of algorithms solving case9. The starting prox parameter
is set to be 1.

Algorithms k(10−2) k(10−3) k(10−4) Final value Matpower Optimal

AL-ADMM 16(3) 58(7) 131(10) 5.297× 103 5.297× 103 5.297× 103

AL-ALM 16(3) 28(7) 40(10) 5.297× 103

Table 6.2: A comparison of algorithms solving case14. The starting prox parameter
is set to be 0.1.

Algorithms k(10−2) k(10−4) k(10−5) Final value Matpower Optimal

AL-ADMM 17(2) 41(7) 120(12) 8.082× 103 8.082× 103 8.082× 103

AL-ALM 13(2) 21(3) 30(5) 8.082× 103

We also report the final function value (i.e. optimal bound) with the one solved

by Matpower. As we can see, they are fully comparable with the optimal one. Similar

behavior can be observed for case14.

We now test a more difficult instance: case2w. The standard OPF package Mat-

power cannot find a good solution when trying to solve this instance. Our methods

clearly find a better KKT point in this case. Note that, by default, Matpower applies

Newton method to solve OPF problem. The solutions generated by Matpower can

be with high accuracy but may be far from the optimal [14, 32].

Table 6.3: A comparison of algorithms solving case2w. The starting prox parameter
is set to be 1.

Algorithms k(10−2) k(10−3) k(10−4) Final value Matpower Optimal

AL-ADMM 26(3) 55(5) 143(6) 8.778× 102 9.078× 102 8.778× 102

AL-ALM 15(3) 23(5) 25(6) 8.778× 102

167

6.5 Conclusion

In this chapter, we propose a family of alternating direction methods minimizing

second-order least-squares problems, and further to solve the optimal power flow

problem (OPF). Our methods rely on solving convex subproblem and can the limit

point obtained can be guaranteed to satisfy KKT optimality conditions. Despite be-

ing slow when a high accuracy is desired, our gradient-based methods can be effective

when medium-accuracy is required. Preliminary experiment fulfills our expectation.

How to further enhance our algorithms in terms of both speed and the quality of

solutions remain a topic of further research.

168

Chapter 7

Conclusion

This dissertation sets out new algorithmic approaches for structured convex and

nonconvex problems. All of our methods are motivated by gradient-based methods,

which have been researched heavily in the last few years. We first enhance existing

accelerated first-order methods by backtracking line search and provide improved

complexity estimate. Motivated by our methods in composite convex optimization,

we also establish new alternating direction approaches to tackle some nonconvex

problems which are difficult in general but have certain structure. Numerical results

in both risk parity optimization and optimal power flow indicate the efficiency of our

methods.

In Chapter 3 we study an accelerated first-order scheme for composite convex

problems, which can be used as an extension of FISTA and FALM. It has been

shown that, the combination between FISTA and variable stepsizes (prox parame-

ters) yield an efficient method in solving problems where a large Lipschitz estimate

is encountered. The computational results show that FISTA and FALM can better

off by allowing for the complexity estimates that depend on the “average” prox pa-

169

rameter value.

From Chapter 4 to Chapter 6, we focus on the optimization of some structured

nonlinear nonconvex problems. In Chapter 4 we discuss the risk parity portfolio

selection problem. Risk parity optimization aims to find such portfolios for which

the contributions of risk from all assets are equally weighted. Due to the problem

structure, the standard convex approach has a number of limitations, especially in

terms of versatility to extend the model when general bounds or other constraints

are added. Due to these limitations, we propose a nonconvex generalized risk parity

model and apply the alternating direction framework to solve this model. Numerical

experiments indicate the effectiveness of our technique.

Chapter 5 deals with the convergence and complexity theory of alternating di-

rection type of methods solving structured nonlinear nonconvex problems, and in

particular, second-order least-squares problem. Moreover, we apply some global op-

timization techniques from polynomial optimization literature to complement our

local methods and to provide lower bounds.

Chapter 6 applies our theory in second-order least-squares in the optimal power

flow problem (OPF). The OPF problem is NP-hard in general due to the rank-one

recovery constraint, and our method aims to find a stationary point. Compared with

SDP type of approach, our method is convergent to a local minimum and can al-

ways recover a rank-one solution within some predetermined tolerance. Preliminary

numerical results show the efficiency of our approach.

170

Bibliography

[1] M. Afonso, J. Bioucas-Dias, and M. Figueiredo. Fast image recovery us-

ing variable splitting and constrained optimization. preprint available at

http://arxiv.org/abs/0910.4887, 2009.

[2] M. Afonso, J. Bioucas-Dias, and M. Figueiredo. An augmented Lagrangian ap-

proach to the constrained optimization formulation of imaging inverse problems.

Image Processing, IEEE Transactions on, 20(3):681–695, 2011.

[3] A. Ahmadi and A. Majumdar. DSOS and SDSOS optimization: LP and SOCP-

based alternatives to sum of squares optimization. In Information Sciences and

Systems (CISS), 2014 48th Annual Conference on, pages 1–5. IEEE, 2014.

[4] X. Bai and K. Scheinberg. Alternating direction methods for non convex opti-

mization with applications to second-order least-squares and risk parity portfolio

selection. Available at optimization-online, 2015.

[5] X. Bai, K. Scheinberg, and R. Tutuncu. Least-squares approach to risk parity

in portfolio selection. Available at SSRN, 2013.

[6] X. Bai, H. Wei, K. Fujisawa, and Y. Wang. Semidefinite programming for op-

timal power flow problems. International Journal of Electrical Power & Energy

Systems, 30(6):383–392, 2008.

171

[7] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[8] S. Becker, J. Bobin, and E. J. Candès. NESTA: A Fast and Accurate First-Order

Method for Sparse Recovery. SIAM Journal on Imaging Sciences, 4(1):1–39,

Jan. 2011.

[9] D. Bertsekas. Constrained optimization and Lagrange multiplier methods, vol-

ume 1. Academic Press, 1982.

[10] D. Bertsekas. Nonlinear programming. Athena Scientific, 1999.

[11] M. Best and R. Grauer. On the sensitivity of mean-variance-efficient portfolios

to changes in asset means: some analytical and computational results. Review

of Financial Studies, 4(2):315–342, 1991.

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-

tion and statistical learning via the alternating direction method of multipliers.

Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

[13] R. Brito and L. Vicente. Efficient cardinality/mean-variance portfolios. In

System Modeling and Optimization, pages 52–73. Springer Berlin Heidelberg,

2014.

[14] W. Bukhsh, A. Grothey, K. McKinnon, and P. Trodden. Local solutions

of the optimal power flow problem. Power Systems, IEEE Transactions on,

28(4):4780–4788, 2013.

[15] E. Candès. Compressive sampling. Proc. International Congress of Mathematics,

3:1433–1452, 2006.

[16] E. Candès and J. Romberg. l1-Magic: Recovery of Sparse Signals via Convex

Programming. Technical report, Caltech, 2005.

172

[17] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal

reconstruction from highly incomplete frequency information. IEEE Transac-

tions on Information Theory, 52:489–509, 2006.

[18] D. Chaves, J. Hsu, F. Li, and O. Shakernia. Risk parity portfolio vs. other asset

allocation heuristic portfolios. Journal of Investing, 20(1):108–118, 2011.

[19] D. Chaves, J. Hsu, F. Li, and O. Shakernia. Efficient algorithms for computing

risk parity portfolio weights. Journal of Investing, 21(3):150–163, 2012.

[20] N. Courtois, A. K., J. Patarin, and A. Shamir. Efficient algorithms for solv-

ing overdefined systems of multivariate polynomial equations. In Advances in

Cryptology-EUROCRYPT 2000, pages 392–407. Springer, 2000.

[21] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm

for linear inverse problems with a sparsity constraint. Communications in Pure

and Applied Mathematics, 57:1413–1457, 2004.

[22] D. Davis and W. Yin. Convergence rate analysis of several splitting schemes.

August 2014.

[23] V. DeMiguel, L. Garlappi, and R. Uppal. Optimal versus naive diversification:

How inefficient is the 1/n portfolio strategy? Review of Financial Studies,

22(5):1915–1953, 2009.

[24] D. Donoho. Compressed sensing. IEEE Transactions on Information Theory,

52:1289–1306, 2006.

[25] D. Donoho. For most large underdetermined systems of linear equations, the

minimal l1 norm solution is also the sparsest solution. Communications on Pure

and Applied Mathematics, 59(6):797–829, 2006.

173

[26] J. Douglas and H. Rachford. On the numerical solution of heat conduction

problems in two and three space variables. Transactions of the American math-

ematical Society, 82(2):421–439, 1956.

[27] M. Figueiredo and R. Nowak. An EM algorithm for wavelet-based image restora-

tion. IEEE Transactions on Image Processing, 12:906–916, 2003.

[28] M. Figueiredo, R. Nowak, and S. Wright. Gradient projection for sparse recon-

struction: Application to compressed sensing and other inverse problems. IEEE

Journal on Selected Topics in Signal Processing, 1(4), 2007.

[29] M. Figueiredo, R. Nowak, and S. Wright. Gradient Projection for Sparse Re-

construction: Application to Compressed Sensing and Other Inverse Problems.

Selected Topics in Signal Processing, IEEE Journal of, 1(4):586–597, 2007.

[30] M. Fortin and R. Glowinski. Augmented Lagrangian methods: applications to

the numerical solution of boundary-value problems. Elsevier, 2000.

[31] A. Frank and A. Asuncion. UCI machine learning repository. 2010.

[32] B. Ghaddar, J. Marecek, and M. Mevissen. Optimal power flow as a polynomial

optimization problem. arXiv preprint arXiv:1404.3626, 2014.

[33] R. Glowinski and P. Le Tallec. Augmented Lagrangian and operator-splitting

methods in nonlinear mechanics, volume 9. SIAM, 1989.

[34] D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearization methods

for minimizing the sum of two convex functions. Mathematical Programming,

141(1-2):349–382, 2013.

[35] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk. Fast alternating

direction optimization methods. SIAM Journal on Imaging Sciences, 7(3):1588–

1623, 2014.

174

[36] T. Goldstein and S. Osher. The split Bregman algorithm for l1 regularized

problems. UCLA CAM Report 08-29, 2008.

[37] L. Grippo and M. Sciandrone. On the convergence of the block nonlinear gauss–

seidel method under convex constraints. Operations Research Letters, 26(3):127–

136, 2000.

[38] E. Hale, W. Yin, and Y. Zhang. A fixed-point continuation method for l1-

regularized minimization with applications to compressed sensing. Technical

report, CAAM TR07-07, 2007.

[39] B. He, H. Yang, and S. Wang. Alternating Direction method with self-adaptive

penalty parameters for monotone variational inequalities. Journal of optimiza-

tion theory and applications, 106(2):337–356, 2000.

[40] M. Hong, Z. Luo, and M. Razaviyayn. Convergence analysis of alternating

direction method of multipliers for a family of nonconvex problems. Available

at ArXiv, 2014.

[41] B. Jiang, S. Ma, and S. Zhang. Alternating direction method of multipliers for

real and complex polynomial optimization models. Optimization, 63(6):883–898,

2014.

[42] H. Kaya and W. Lee. Demystifying risk parity. Neuberger Berman,, 2012.

[43] J. Lasserre. Global optimization with polynomials and the problem of moments.

SIAM Journal on Optimization, 11(3):796–817, 2001.

[44] J. Lavaei and S. Low. Zero duality gap in optimal power flow problem. Power

Systems, IEEE Transactions on, 27(1):92–107, 2012.

[45] D. Lorenz. Constructing test instances for Basis Pursuit Denoising. pages 1–5.

175

[46] R. Louca, P. Seiler, and E. Bitar. A rank minimization algorithm to enhance

semidefinite relaxations of optimal power flow. In Allerton, pages 1010–1020,

2013.

[47] Z. Luo and S. Zhang. A semidefinite relaxation scheme for multivariate quartic

polynomial optimization with quadratic constraints. SIAM Journal on Opti-

mization, 20(4):1716–1736, 2010.

[48] S. Maillard, T. Roncalli, and J. Tëıletche. The properties of equally weighted

risk contribution portfolios. The Journal of Portfolio Management, 36(4):60–70,

2010.

[49] M. Mevissen. Introduction to concepts and advances in polynomial optimization.

Technical report, Institute for Operations Research, ETH Zurich, 2007.

[50] B. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal

on Computing, 24:227–234, 1995.

[51] A. Nemirovski and D. Yudin. Informational complexity and efficient methods

for solution of convex extremal problems. J. Wiley & Sons, New York, 1983.

[52] Y. Nesterov. Introductory lectures on convex optimization. 87:xviii+236, 2004.

[53] J. Nie and M. Schweighofer. On the complexity of Putinar’s positivstellensatz.

Journal of Complexity, 23(1):135–150, 2007.

[54] P. Parrilo. Structured semidefinite programs and semialgebraic geometry methods

in robustness and optimization. PhD thesis, Citeseer, 2000.

[55] P. Parrilo. Semidefinite programming relaxations for semialgebraic problems.

Mathematical programming, 96(2):293–320, 2003.

176

[56] D. Peaceman and H. Rachford. The numerical solution of parabolic elliptic

differential equations. SIAM Journal on Applied Mathematics, 3:28–41, 1955.

[57] S. Prajna, A. Papachristodoulou, and P. Parrilo. Introducing SOSTOOLS: A

general purpose sum of squares programming solver. In Decision and Control,

2002, Proceedings of the 41st IEEE Conference on, volume 1, pages 741–746.

IEEE, 2002.

[58] M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana Uni-

versity Mathematics Journal, 42(3):969–984, 1993.

[59] B. Reznick. Some concrete aspects of Hilbert’s 17th problem. Contemporary

Mathematics, 253:251–272, 2000.

[60] K. Scheinberg, D. Goldfarb, and X. Bai. Fast first-order methods for composite

convex optimization with backtracking. Foundations of Computational Mathe-

matics, 14(3):389–417, 2014.

[61] K. Schmüdgen. The k-moment problem for compact semi-algebraic sets. Math-

ematische Annalen, 289(1):203–206, 1991.

[62] Y. Shen, Z. Wen, and Y. Zhang. Augmented Lagrangian alternating direction

method for matrix separation based on low-rank factorization. Optimization

Methods and Software, 29(2):239–263, 2014.

[63] F. Spinu. An algorithm for computing risk parity weights. Available online at:

http://ssrn.com/abstract=2297383 (accessed 18 October 2013)., 2013.

[64] S. Sra, S. Nowozin, and S. Wright. Optimization for machine learning. MIT

Press, 2012.

[65] M. Steinbach. Markowitz revisited: Mean-variance models in financial portfolio

analysis. SIAM review, 43(1):31–85, 2001.

177

[66] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal Royal

Statistical Society B, 58:267–288, 1996.

[67] P. Tseng. Further applications of a splitting algorithm to decomposition in

variational inequalities and convex programming. Mathematical Programming,

48:249–263, 1990.

[68] P. Tseng. Applications of a splitting algorithm to decomposition in convex

programming and variational inequalities. SIAM J. Control and Optimization,

29(1):119–138, 1991.

[69] E. van den Berg and M. Friedlander. SPGL1: A solver for large-scale sparse

reconstruction, June 2007.

[70] E. van den Berg, M. Friedlander, G. Hennenfent, F. Herrmann, R. Saab, and

O. Yilmaz. Sparco: A testing framework for sparse reconstruction. Technical

Report TR-2007-20, Dept. Computer Science, University of British Columbia,

Vancouver, Oct. 2007.

[71] Z. Wen, D. Goldfarb, and W. Yin. Alternating direction augmented Lagrangian

methods for semidefinite programming. Mathematical Programming Computa-

tion, 2(3-4):203–230, Sept. 2010.

[72] S. Wright and J. Nocedal. Numerical optimization, volume 2. Springer New

York, 1999.

[73] S. Wright, R. Nowak, and M. Figueiredo. Sparse reconstruction by separable

approximation. Acoustics, Speech and Signal Processing, 2008. ICASSP 2008.

IEEE International Conference on, pages 3373–3376, 2008.

178

[74] Y. Xu and W. Yin. A block coordinate descent method for multi-convex opti-

mization with applications to nonnegative tensor factorization and completion.

Technical report, DTIC Document, 2012.

[75] J. Yang and Y. Zhang. Alternating direction algorithms for l1 problems in

compressive sensing. preprint, 2009.

[76] S. You and Q. Peng. A non-convex alternating direction method of multipliers

heuristic for optimal power flow. In Smart Grid Communications (SmartGrid-

Comm), 2014 IEEE International Conference on, pages 788–793. IEEE, 2014.

[77] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 68(1):49–67, 2006.

[78] Y. Zhang. YALL1: Your algorithms for L1.

http://www.caam.rice.edu/˜optimization/L1/YALL1/, 2009.

179

Appendix A

Sample statistics in Chapter 6

In this section, we provide the sample statistics used in Section 4.6.2. We consider the

following common market indices to represent different asset classes: S&P 500, MSCI

World (Net), Russell 2500, Russell 2000 Growth, Russell 2000 Value, HFRI Equity

Hedged Index, MSCI Emerging Markets (Net), HFRI Emerging MKTS Total, HFRI

FoF (Conservative Index), BC Treasury 5-10 Yr, BC US Corporate High Yield Index,

JPMorgan GBI-EM Index, JPMorgan EMBI+ Index, S&P Global Natural Resources

- Energy Index, from Nov. 2002 to Aug. 2012.

Here we use the historical return and covariance matrix.

180

Table A.1: Asset classes and sample statistics.

Portfolio Indices Excess return Volatility

S&P 500 3.8528% 14.971%

MSCI World (Net) 6.4733% 16.374%

Russell 2500 10.0418% 19.1458%

Russell 2000 Growth 9.7307% 20.8973%

Russell 2000 Value 9.2627% 20.1313%

HFRI Equity Hedged 4.1882% 8.8111%

MSCI Emerging MKTS 17.4651% 24.2452%

HFRI Emerging MKTS 9.835% 12.1583%

HFRI FoF 1.0761% 4.4455%

BC Treasury 5-10 Yr 5.0464% 5.6112%

BC US Corporate High Yield 9.4121% 10.633%

JPMorgan GBI-EM 9.7298% 12.6448%

JPMorgan EMBI+ 10.8364% 9.0293%

S&P GNR - Energy 13.2877% 21.7562%

181

T
ab

le
A

.2
:

T
h
e

co
rr

el
at

io
n

m
at

ri
x

(1
4
×

14
)

of
as

se
t

cl
as

se
s.

P
or

tf
ol

io
In

d
ic

es
C

or
re

la
ti

on
m

at
ri

x

S
&

P
50

0
1

0
.9

7
2

0
.9

45
0.

90
8

0.
91

7
0.

85
0

0.
81

6
0.

75
5

0.
61

7
0.

0
31

0
.7

1
2

0.
6
60

0
.5

5
6

0.
6
96

M
S

C
I

W
o
rl

d
(N

et
)

1
0.

9
22

0.
88

7
0.

87
7

0.
91

3
0.

89
2

0.
85

0
0.

69
0

0
.0

7
6

0.
7
41

0
.7

3
7

0.
6
11

0
.7

7
6

R
u

ss
el

l
25

0
0

1
0.

98
3

0.
97

4
0.

86
7

0.
80

6
0.

74
0

0.
60

8
-0

.0
0
7

0.
7
19

0
.6

3
8

0.
5
38

0
.6

5
5

R
u

ss
el

l
20

0
0

G
1

0.
94

8
0.

86
3

0.
79

7
0.

72
6

0.
59

6
-0

.0
6
2

0.
6
81

0
.6

0
7

0.
4
90

0
.6

3
7

R
u

ss
el

l
20

0
0

V
1

0.
77

9
0.

73
1

0.
64

8
0.

50
0

-0
.0

1
7

0.
6
60

0.
6
20

0
.4

9
7

0.
5
89

H
F

R
I

E
q
u

it
y

H
ed

ge
d

1
0.

93
3

0.
94

3
0.

84
1

0.
0
01

0.
7
24

0
.6

7
3

0
.5

4
4

0.
8
14

M
S

C
I

E
m

.
M

K
T

S
1

0.
94

7
0.

71
7

0
.1

0
5

0.
7
05

0
.7

5
8

0.
6
37

0
.7

9
5

H
F

R
I

E
m

.
M

K
T

S
1

0.
84

2
0
.1

2
1

0
.7

0
4

0.
7
14

0
.6

23
0
.7

8
0

H
F

R
I

F
oF

1
0
.0

3
1

0
.6

4
4

0.
5
05

0
.4

5
7

0.
6
71

B
C

T
r.

5-
10

Y
r

1
0
.2

2
2

0.
3
26

0
.6

4
5

0.
0
01

U
S

C
or

p
.

H
ig

h
Y

ie
ld

1
0.

5
91

0
.7

2
8

0.
52

0

J
P

M
or

ga
n

G
B

I-
E

M
1

0
.7

2
3

0.
6
20

J
P

M
or

ga
n

E
M

B
I+

1
0
.4

3
5

S
&

P
G

N
R

-
E

n
er

g
y

1

182

Appendix B

SparOptLib: a library for sparse

solution recovery problem

Optimization problems with sparse or low-rank optimal solutions arise in a number of

practical applications. Most notably, compressed sensing and signal processing rely

on recovering sparse solutions to linear underdetermined systems [8, 16, 25, 28], and

thus belong to the domain of Sparse Solution Recovery problem (SSR). The central

idea for SSR is to obtain sparse approximate solutions rather than exact solutions

because the latter are usually computationally more prohibitive and practically less

robust. Although convex relaxations of these problems can be formulated so that

standard methods of linear programming (LP) and semi-definite programming (SDP)

can be applied, these are often not applicable in practice due to large-scale and dense

data.

We now discuss compressed sensing as an important example of this set of opti-

mization problems. The idea of compressed sensing is to recover a sparse signal from

183

a linear system. Consider the following system

Ax = b,

where A is an m× n matrix, b is the observed measurement vector of size m, and x

is the true solution. In many applications, m� n which means the system is under-

determined. Suppose, among the infinitely many solutions that satisfy the system,

we would like to find the sparsest one. Then, we have the following optimization

problem:

min ‖x‖0

s.t. Ax = b,
(B.1)

where ‖ · ‖0 denotes the zero-norm which is defined as the number of nonzero com-

ponents of a vector. It can be shown that this problem is NP-hard [50]. In practice,

instead of solving this combinatorial problem, a l1 minimization problem is used

instead as a convex relaxation

min ‖x‖1

s.t. Ax = b.
(B.2)

It can be shown that, under some assumptions, the optimal solution of the com-

binatorial problem (B.1) is given by the optimal solution of its convex relaxation

(B.2) with high probability [24] [17].

On the other hand, there is no need to find the exact x but an approximate one,

184

i.e. Ax ≈ b, or simply

Ax+ r = b,

where r is the noise vector. Hence, we aim to find such an optimization model

that: (i) the solution should be sparse and approximately satisfying the system of

equations; (ii) the problem should be relatively easy to solve. These days there are

three kinds of convex optimization problems that are used in compressed sensing

literature.

1. Basis-Pursuit DeNoising (BPDN)

min ‖x‖1

s.t. ‖Ax− b‖2 ≤ ε,
(B.3)

2. Lagrangian relaxation of the BPDN formulation (LAG, also called BPDN with

penalty)

min
1

2
‖Ax− b‖2

2 + ρ‖x‖1 , (B.4)

and

3. Least Absolute Shrinkage and Selection Operator (LASSO)

min ‖Ax− b‖2
2

s.t. ‖x‖1 ≤ σ,
(B.5)

where ε, ρ, σ are positive scalars.

With the sparse solution recovery problems becoming popular, there is an increas-

ing need for a universal testing environment for researchers working in this area to test

and compare their solvers. For the past decades, collections of test problems exist

185

in various areas of optimization, including NETLIB for linear programming prob-

lems, CUTEr for nonlinear optimization, SDPLIB for semi-definite programming,

and MIPLIB for mixed-integer linear programming problems. These collections have

become standard for testing algorithms, benchmarking and calibrating parameters

to improve algorithm robustness and convergence speed and for providing a wide

spectrum of problems in their respective areas. In turn, this has led to the develop-

ment of improved algorithms and has provided insight into problem structures that

can be leveraged for better algorithmic convergence.

Through SparOptLib, we aim to provide researchers with a similar collection of

problems and testing framework in the area of SSR. Currently, the library contains

over 300 instances drawn from a variety of applications and sources. The problems

reflect a wide range of difficulty and size and we hope they provide a complex enough

environment for testing the robustness of different solvers and solution approaches.

This chapter provides a background on the SSR problem, a short inventory of the

solver packages available to solve SSR, a detailed description of the library and a

user’s manual that we hope will enable researchers to benefit from SparOptLib.

Recently, there has been an explosion of interest in the special classes of opti-

mization problems mentioned in the previous chapter, mainly because of an increased

interest in compressed sensing, machine learning and the development of efficient al-

gorithms for these areas. These circumstances led to a very active research interest

in developing efficient algorithms for recovering sparse solutions, and a number of

software packages exist today.

Instead of a detailed review of the packages and the optimization methods they

applied, here we provide a short list with reference. Interested readers can refer to

their paper or website for details.

186

• IST (Iterative Shrinkage-Thresholding), by Daubechies, Defrise and De Mol

[21]

• FPC (Fixed-Point Continuation) and FPS AS, by Hale, Yin and Zhang [38]

• FISTA (Fast Iterative Shrinkage/Thresholding algorithm), by Beck and Teboulle

[7]

• NESTA (Nesterov’s Algorithm), by Bobin, Becker, and Candès [8]

• GPSR (Gradient Projection for Sparse Reconstruction), by Figueiredo, Nowak,

Wright [29]

• SpaRSA (Sparse Reconstruction by Separable Approximation), by Wright,

Nowak, and Figueiredo [73]

• FALM (Fast Alternating Linearization Methods), by Goldfarb, Ma and Schein-

berg [34]

• YALL1 (Your Algorithm for L1), by Zhang, Deng, Yang, and Yin. [78]

• SALSA and C-SALSA (Constrained/Split Augmented Lagrangian Shrinkage

Algorithm), by Afonso, Bioucas-Dias and Figueiredo [1]

• SPGL1 (Spectral Projected-gradient Algorithm), by Friedlander and van den

Berg [69]

B.1 Instance source and categories

The wide array of solvers available, the various formulations and relaxations that

they tackle, and the lack of a standardized reference problem set create issues in

assessing the relative difficulty of a problem and the solver performance, as well as

187

in improving the robustness of the algorithms. We created SparOptLib to provide

a standardized format for sparse solution recovery instances, which we found to be

compatible with most of the solvers we came across.

The instances in SparOptLib are available online and can be downloaded from

COR@L.

1

SparOptLib currently contains over 300 instances of varying size and difficulty.

These problems can be grouped according to their origin, into three categories.

The first category (30+ instances) is generated using the Sparco Toolbox (2007).

Sparco represents a collection of sparse signal recovery problems and an environment

to create new problems using the suite of linear operators provided. For each instance,

we created three sizes: a “small” instance, which was the original problem provided

by the toolbox; a scaled “medium”-sized version, which made each of the dimensions

of the problem five times bigger than in the “small” version; a “large” version,

which similarly increased each of the dimensions tenfold as opposed to its “small”

counterpart (that is, one hundred times larger for the data size). This procedure

allowed us to introduce size variability, which has been documented to significantly

impact solver performance. The naming convention kept the original Sparco ID of the

problem and appended the relative size as a one-letter suffix (for instance, “spaco1s”,

“sparco1m” and “sparco1l” represent three instances of different sizes of the same

problem, which has the Sparco ID 1). For readers interested in learning more about

Sparco and how an instance is generated, we refer to [70] for further details.

The second category of problems is obtained from the Sparse Exact and Approx-

1https://coral.ie.lehigh.edu/projects/SPAROPTLIB/wiki/SparseOptimizationLibrary.

188

imate Recovery (SPEAR) suite [45]. This project is a collaboration between the

Institute for Mathematical Optimization and the Institute for Analysis and Algebra

from Technische Universitt Braunschweig and it aims to develop a better understand-

ing of the conditions under which sparse solution recovery is possible. We re-cast

273 problems adapted from the L1-Test Set developed as part of the SPEAR project

in the standard format proposed and included in SparOptLib, contributing a very

large proportion of the library. For the readers interested in reading more about the

SPEAR project, please refer to the project website and the co-responding technical

report.

The third category comes from the contribution of A. Nemirovski. Originally,

this data set is designed for the following problem

min
x
‖Ax− b‖2

s.t. ‖x‖1 ≤ γ,
(B.6)

where A, b, x are defined similarly as above and has the following properties:

• A has the spectral norm not exceeding some L (in the data set, L is chosen to

be 1).

• R is chosen to be 1 when creating the data set.

• For the true sparse solution x∗, which is provided with the data so that Ax∗ =

b.

The primary purpose of this data set is to create problems on which CG converges

slowly, creating possible difficulties for other first order methods.

189

B.2 Problem format

All instances can be downloaded from the link given previously, in MATLAB data

format. Each instance is stored in a structure p with the following sub-fields:

• A: an m× n matrix, with m and n provided

• rhs: right hand side vector of observed measurements

• sol: true solution (usually provided by the authors of the problems)

• noise: noise level

• info: other information

Users can easily access the information in “p.sub-field-name”.

A quick note is made here about the problems generated using the Sparco Tool-

box. Sparco represents an environment for creating sparse signal reconstruction

problems using a suite of linear operators provided. In the current version, all prob-

lems that contain “sparco” in the file name have been created using the toolbox.

These problems store the information contained in ‘A’ as a function handle, rather

than a matrix. In order to recover the information in A and comply with solver input

setups, the user needs to download and install the Sparco Toolbox or the Spotbox

(a lightweight version of Sparco that consists only of the linear operators needed to

recover the matrix from the handle). The users can download the operator package

online from the Sparco website: http://www.cs.ubc.ca/labs/scl/sparco/.

190

B.3 Reference for solution accuracy

Through SparOptLib, we aim to provide both a test set to be used as a reference,

and a method to assess solution quality and solver performance. The difficulty in

the latter comes mainly from the wide array of approaches taken to solve the prob-

lem. Not only are there multiple possible relaxations to the original sparse solution

recovery problem, but there are also many solvers, each with a different approach

to solving varying relaxations of the problem. Thus, it becomes difficult to evaluate

whether one problem is more difficult than another, or to characterize circumstances

under which a particular solution approach is better than another one. We propose

a framework through which such evaluations can be more easily made.

Suppose we have the optimal solution for either (B.3), (B.4) or (B.5) denoted as

x∗. With a particular solver, x is the solution obtained. Moreover, we define two

positive scalars εx and εb to capture the accuracy of the solutions in the following

way:

‖x‖1 ≤ (1 + εx)‖x∗‖1 (B.7)

‖Ax− b‖2 ≤ ‖Ax∗ − b‖2 + εb‖b‖2 (B.8)

Then, a good solution means either εx or εb, or both, is reasonably small, depend-

ing on which objective function and what scalar we use. Intuitively, that means, we

want to obtain an approximate sparse solution and the infeasibility when solving the

original system of equations should be bounded by a small error (noise).

The procedure of our proposed method to compare algorithms can be described

as following. First, we choose a reference solver. In this library, we choose the

191

SPGL1 (the Spectral Projected Gradient Algorithm for L-1 minimization problem),

developed by M. Friedlander and E. van den Berg. The reason to choose SPGL1

is two-fold. On the one hand, numerous computational experiments have shown its

competitiveness. On the other hand, SPGL1 is designed mainly to solve BPDN and

can be easily embedded into our proposed method.

We use the reference solver to solve BPDN. As discussed previously, there is no

need to obtain an exact solution but an approximate one. Hence, we solve BPDN

given (B.8) to be the problem constraint, with εb chosen to be 10−8, 10−4, 10−2,

respectively. For each εb, the reference solver finds the corresponding xs, with which

we can compare the true solution x∗ (precomputed) and calculate a corresponding

εx based on (B.7). We allow some reasonably small relaxation. If the εx is less than

10−8, we assume that xs is close enough to x∗ and simply let εx = 10−8. Thus, we

see that, by the reference solver, the xs obtained is within an εx-accuracy of the true

solution, given a reasonable bound of feasibility. Since such xs is obtainable by a

competitive solver, it can be used as a benchmark for other solvers.

192

Biography

Xi Bai received B.Eng. from Huazhong University of Science and Technology in 2010.

In the same year he joined Lehigh University for the Ph.D. program. Presently, Xi’s

research is focused on developing efficient algorithms, in a variety of areas including

compressed sensing, machine learning, portfolio optimization, etc. In Jun. 2015, Xi

is joining Goldman Sachs Asset Management on the full time basis.

193

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Preliminaries on first-order methods for composite convex problems
	Introduction
	Simple gradient descent schemes
	Convergence and accelerated techniques
	Alternating direction methods for composite convex optimization problem

	Practical accelerated first-order algorithms for composite convex problems
	Introduction
	Fast first-order methods with backtracking
	A practical backtracking FISTA algorithm for compressed sensing and Lasso problems
	A practical backtracking FALM algorithm for compressed sensing and Lasso problems
	Computational results
	The Spear Examples
	Bdata problems
	Sparco problems
	Smoothed 2 norm minimization
	2 regularized logistic regression

	Conclusion

	Least-squares approach to risk parity in portfolio selection
	Introduction
	Risk parity problem
	Long-only risk parity via convex optimization
	Risk parity solutions over orthants
	Least-squares model with general bounds

	Local and global optima issues
	Extended least-squares models
	Minimum variance with risk parity
	Group risk parity

	Algorithms solving second order least-square problems
	Numerical results
	A comparison between strategies
	Strategic asset allocation
	US equity sector allocation
	Group risk parity portfolios based on the US large cap universe
	Long-only vs. long-short portfolios
	Efficiency of algorithms

	Conclusion

	Alternating direction schemes for minimizing a nonconvex objective that is not necessarily composite and its application in second-order least-squares
	Introduction
	Alternating direction schemes for minimizing a nonconvex objective that is not necessarily composite
	Notations and preliminaries
	Variable splitting and augmented Lagrangian based methods
	Alternating direction methods of multipliers
	Alternating linearization method
	 Practical ALM with backtracking and skipping
	 Connection between ALM and ADMM.

	The connection between A/PLM and Levenberg-Marquardt method.
	Relaxations and lower bounds
	 SOS relaxations
	 DSOS and SDSOS optimization: alternatives to SOS optimization

	Numerical results on risk parity portfolio selection problem
	 A comparison of local alternating direction algorithms.
	 Implementation of SOS optimization on risk parity optimization problem

	Conclusion

	Alternating direction methods for the optimal power flow problem
	Introduction
	The optimal power flow problem
	Notations and preliminaries
	Reformulation

	An alternating direction approach based on rank-one relaxation
	Outer loop: augmented Lagrangian method
	Alternating direction method of multipliers (ADMM)
	Practical issues
	An alternating linearization method to solve the subproblem

	Numerical results
	Conclusion

	Conclusion
	Bibliography
	Sample statistics in Chapter 6
	Testing data set for Chapter 3: SparOptLib
	 Instance source and categories
	 Problem format
	 Reference for solution accuracy

	Biography

