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Abstract

Decomposition algorithms such as Lagrangian relaxation and Dantzig-Wolfe decom-
position are well-known methods that can be used to generate bounds for mixed-integer
linear programming problems. Traditionally, these methods have been viewed as dis-
tinct from polyhedral methods, in which bounds are obtained by dynamically generating
valid inequalities to strengthen an initial linear programming relaxation. Recently, a
number of authors have proposed methods for integrating dynamic cut generation with
various decomposition methods to yield further improvement in computed bounds. In
this paper, we describe a framework within which most of these methods can be viewed
from a common theoretical perspective. We then discuss how the framework can be
extended to obtain a decomposition-based separation technique we call decompose and
cut. As a by-product, we describe how these methods can take advantage of the fact
that solutions with known structure, such as those to a given relaxation, can frequently
be separated much more easily than arbitrary real vectors.

1 Introduction

In this paper, we discuss methods for computing bounds on the value of an optimal solution
to a mixed-integer linear program (MILP). Computing such bounds is an essential element
of the branch and bound algorithm, which is the most effective and most commonly used
method for solving general MILPs. Bounds are generally computed by solving a bound-
ing subproblem, which is either a relaxation or a dual of the original problem. The most
commonly used bounding subproblem is the linear programming (LP) relaxation. The LP
relaxation is often too weak to be effective, but it can be strengthened by the addition
of dynamically generated valid inequalities. Alternatively, traditional decomposition tech-
niques, such as Dantzig-Wolfe decomposition [19] or Lagrangian relaxation [22, 14], can also
be used to obtain improved bounds.

Methods based on cut generation have traditionally been considered distinct from de-
composition methods, but several authors have suggested combining the two approaches
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to yield further improvements (these contributions are reviewed in Section 3). In this pa-
per, we present a framework that shows how these hybrid methods can be viewed from a
common theoretical perspective as generalizations of the cutting plane method. From this
viewpoint, we show how various methods from the literature are related, as well as discuss
a method called decompose and cut that follows a similar paradigm. One element common
to these methods is the ability to take advantage of the fact that the separation problem is
often much easier for solutions with combinatorial structure than for arbitrary real vectors.
This can simplify the implementation of these methods and allow more rapid development
than with traditional cutting plane implementations. We discuss the importance of this
and provide several examples of its usefulness.

The goal of this paper is not to provide a computational comparison. Such compar-
isons are necessarily problem-dependent and based largely on empirical evidence. Although
some general statements can be made, the lines between the various bounding techniques
presented here are blurry at best and many subtle variations are possible. Our goal is
to provide the reader with insight that may be useful in guiding the choice of method.
By illustrating the relationships between various techniques, we provide a methodological
framework within which it is easy to switch between variants by replacing certain algorith-
mic components. We are currently developing a software framework that provides just such
a capability. A more detailed treatment of this material is also provided in [56].

To simplify the exposition, we consider only pure integer linear programming problems
(ILPs) with bounded feasible regions, although the framework can be extended to more
general settings. For the remainder of the paper, we consider an ILP whose feasible set is
the integer vectors contained in the polyhedron Q = {x ∈ Rn | Ax ≥ b}, where A ∈ Qm×n

is the constraint matrix and b ∈ Qm is the right-hand-side vector. Let F = Q ∩ Zn be the
feasible set and let P be the convex hull of F .

We consider two problems associated with the polyhedron P. The optimization problem
for P is that of determining

zIP = min
x∈Zn
{c>x | Ax ≥ b} = min

x∈P
{c>x} = min

x∈F
{c>x} (1)

for a given cost vector c ∈ Qn, where zIP is set to infinity if F is empty. A related problem
is the separation problem for P. Given x ∈ Rn, the problem of separating x from P is
that of deciding whether x ∈ P and if not, determining a ∈ Rn and β ∈ R such that
a>y ≥ β ∀y ∈ P but a>x < β. A pair (a, β) ∈ Rn+1 such that a>y ≥ β ∀y ∈ P is a valid
inequality for P and is said to be violated by x ∈ Rn if a>x < β. In [30], it was shown that
the separation problem for P is polynomially equivalent to the optimization problem for P.

To apply the principle of decomposition, we consider the relaxation of (1) defined by

min
x∈Zn
{c>x | A′x ≥ b′}, = min

x∈P ′
{c>x} = min

x∈F ′
{c>x}, (2)

where F ⊂ F ′ = {x ∈ Zn | A′x ≥ b′} for some A′ ∈ Qm′×n, b′ ∈ Qm′
and P ′ is the convex

hull of F ′. As usual, we assume that there exists an effective algorithm for optimizing over
P ′. We are deliberately using the term effective here to denote an algorithm that has an
acceptable average-case running time, since this is the relevant measure of running time for
our purposes. Along with P ′ is associated a set of side constraints. Let [A′′, b′′] ∈ Qm′′×n
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be a set of additional inequalities needed to describe F , i.e., [A′′, b′′] is such that F = {x ∈
Zn | A′x ≥ b′, A′′x ≥ b′′}. We denote by Q′ the polyhedron described by the inequalities
[A′, b′] and by Q′′ the polyhedron described by the inequalities [A′′, b′′]. Hence, the initial
LP relaxation is the linear program defined by Q = Q′ ∩Q′′, and the LP bound is given by

zLP = min
x∈Rn
{c>x | A′x ≥ b′, A′′x ≥ b′′} = min

x∈Q
{c>x}. (3)

This is slightly more general than the traditional framework, in which [A′, b′] and [A′′, b′′]
are a partition of the rows of [A, b].

2 Traditional Decomposition Methods

The goal of the decomposition approach is to improve on the LP bound by taking advan-
tage of our ability to optimize over and/or separate from P ′. We briefly review the classical
bounding methods that take this approach in order to establish terminology and notation.

Lagrangian Relaxation. For a given vector of dual multipliers u ∈ Rm′′
+ , the Lagrangian

relaxation of (1) is given by

zLR(u) = min
s∈F ′
{(c> − u>A′′)s + u>b′′} (4)

It is easily shown that zLR(u) is a lower bound on zIP for any u ≥ 0. The problem

zLD = max
u∈Rm′′

+

{zLR(u)} (5)

of maximizing this bound over all choices of dual multipliers is a dual to (1) called the
Lagrangian dual (LD) and also provides the lower bound zLD, which we call the LD bound.
A vector of multipliers that yield the largest bound are called optimal (dual) multipliers.
For the remainder of the paper, let û be such a vector.

The Lagrangian dual can be solved by any of a number of subgradient-based optimiza-
tion procedures or by rewriting it as the equivalent linear program

zLD = max
α∈R,u∈Rm′′

+

{α + u>b′′ | α ≤ (c> − u>A′′)s ∀s ∈ F ′}, (6)

and solving it using a cutting plane algorithm. In any case, the main computational effort
is in evaluating zLR(u) for a given sequence of dual multipliers u. This is an optimization
problem over P ′, which we assumed could be solved effectively. This general approach is
described in more detail in [32].

Dantzig-Wolfe Decomposition. The approach of Dantzig-Wolfe decomposition is to
reformulate (1) by implicitly requiring the solution to be a member of F ′, while explicitly
enforcing the inequalities [A′′, b′′]. Relaxing the integrality constraints of this reformulation,
we obtain the linear program

zDW = min
λ∈RF′+

{c>(
∑

s∈F ′
sλs) | A′′(

∑

s∈F ′
sλs) ≥ b′′,

∑

s∈F ′
λs = 1}, (7)
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which we call the Dantzig-Wolfe LP (DWLP). Although the number of columns in this
linear program is |F ′|, it can be solved by dynamic column generation, where the column-
generation subproblem is again an optimization problem over P ′ equivalent to that of eval-
uating zLR(u) for a vector u arising as the dual multipliers of the constraints of (7).

It is easy to verify that the DWLP is the dual of (6), which immediately shows that
zDW = zLD (see [52] for a detailed treatment of this fact). Hence, zDW is a valid lower
bound on zIP that we call the DW bound. Note that if we let α̂ = zLR(û) − û>b′′, then
(û, α̂) is an optimal solution for the LP (6) and hence also an optimal dual solution to the
DWLP. An optimal primal solution to (7) is referred to as an optimal Dantzig-Wolfe (DW)
decomposition. For the remainder of the paper, let λ̂ be such a solution. If we combine the
members of F ′ using λ̂, to obtain

x̂DW =
∑

s∈F ′
sλ̂s, (8)

then we see that zDW = c>x̂DW . Since x̂DW must lie within P ′ ⊆ Q′ and also within Q′′,
this shows that zDW ≥ zLP . A general treatment of Dantzig-Wolfe decomposition can be
found in [45].

Cutting Plane Method. In the cutting plane method, inequalities describing P ′ (i.e.,
the facet-defining inequalities) are generated dynamically by separating the solutions to
a series of LP relaxations from P ′. In this way, the initial LP relaxation is iteratively
augmented to obtain the CP bound,

zCP = min
x∈Rn
{c>x | A′′x ≥ b′′, Dx ≥ d} = min

x∈P ′∩Q′′
{c>x}, (9)

where [D, d] are the facet-defining inequalities for P ′. We refer to this augmented linear
program as the cutting plane LP (CPLP) and any optimal solution to CPLP as an optimal
fractional solution. For the remainder of the paper, let x̂CP be such a solution. Note that
x̂DW , as defined in (8), is an optimal solution to this augmented linear program. Hence,
the CP bound is equal to both the DW bound and the LD bound. A general treatment of
the cutting plane method can be found in [50].

A Common Framework. The following well-known result of Geoffrion [26] relates the
three methods just described.

Theorem 1 zIP ≥ zLD = zDW = zCP ≥ zLP .

A graphical depiction of this common bound is shown in Figure 1. Theorem 1 shows that
(5), (7), and (9) represent three different formulations for the problem of computing this
bound. As such, the methods we have just described are really only distinguished by the
solution algorithms typically applied in each case, as well as by the auxiliary solution infor-
mation each formulation yields. More is said about algorithms for solving these bounding
subproblem in Section 3.4. For now, we focus on developing a common way of viewing these
methods.

As we have seen, the basis for each of the methods is that we are given a polyhedron P
over which we would like to optimize, along with two additional polyhedra, denoted here by
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P = conv({x ∈ Zn : Ax ≥ b})
P′ = conv({x ∈ Zn : A′x ≥ b′})

P′

P

Q′ = {x ∈ Rn : A′x ≥ b′}
Q′′ = {x ∈ Rn : A′′x ≥ b′′}

P′
Q′

Q′′

Q′

Q′′ Q′′

Q′ ∩ Q′′ (LP Bound) P′ ∩ Q′′ (LD/DW/CP Bound)

Figure 1: Illustration of the LP and LD/DW/CP bounds

Q′′ and P ′, each of which contain P. The polyhedron Q′′ typically has a small description
that can be represented explicitly, while the polyhedron P ′ has a much larger description and
is represented implicitly, i.e., portions of the description are generated dynamically using
our ability to effectively optimize/separate. To describe their roles in this framework, we call
P the original polyhedron, Q′′ the explicit polyhedron, and P ′ the implicit polyhedron. Note
that, although traditional decomposition methods insist that Q′′ have a small description,
the methods described in Section 3 allow portions of an outer description of Q′′ to also be
generated dynamically. In Section 4, we describe some applications in which this is the
case.

By the Weyl-Minkowski Theorem, every bounded rational polyhedron has two descriptions—
one as the intersection of half-spaces (the outer representation) and one as the convex hull
of its extreme points (the inner representation) [51]. The conceptual difference between the
formulations utilized by the three methods just reviewed is that Dantzig-Wolfe decomposi-
tion and Lagrangian relaxation utilize an inner representation of P ′, generated dynamically
by solving the corresponding optimization problem, whereas the cutting plane method relies
on an outer representation of P ′, generated dynamically by solving the separation problem
for P ′. For this reason, we call Dantzig-Wolfe decomposition and Lagrangian relaxation
inner methods, and the cutting plane method an outer method. In theory, we have the
same choice of representation for the explicit polyhedron—it is intriguing to ponder the
implications of this choice. Note that this framework encompasses methods not normally
thought of as decomposition methods. In particular, by defining the implicit polyhedron
to be a polyhedron defined by classes of inequalities for which there are effective separa-
tion algorithms, we can view cutting plane methods as just another type of decomposition
method. This viewpoint sheds new light on their relationship to traditional decomposition
methods.
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An Integrated Decomposition Method

Input: An instance of ILP.
Output: A lower bound on the optimal solution value for the instance.

1. Solve the bounding subproblem, which is one of

zCP = minx∈P ′{c>x | A′′x ≥ b′′},
zLD = max

u∈Rm′′
+

mins∈F ′{(c> − u>A′′)s + u>b′′}, or

zDW = min
λ∈RF′+

{c>(
∑

s∈F ′ sλs) | A′′(
∑

s∈F ′ sλs) ≥ b′′,
∑

s∈F ′ λs = 1},

to obtain a valid lower bound z.

2. Attempt to generate a set of improving inequalities [D̂, d̂] valid for P.

3. If valid inequalities were found in Step 2, form a new bounding subproblem
by setting [A′′, b′′]← [

A′′ b′′
D̂ d̂

]
. Then, go to Step 1.

4. If no valid inequalities were found in Step 2, then output z.

Figure 2: Basic outline of an integrated decomposition method

3 Integrated Decomposition Methods

One of the apparent advantages of outer methods over inner methods is the option of
adding heuristically generated inequalities valid for P to the cutting plane LP to improve
the bound discussed in Section 2. Such inequalities may “cut off” portions of P ′ to yield a
better outer approximation of P. This dynamic generation of additional valid inequalities in
outer methods can be thought of as a dynamic tightening of either the explicit or the implicit
polyhedron. Such a tightening procedure can also be incorporated into inner methods in
a straightforward way. Viewing these inequalities as dynamically tightening the explicit
polyhedron yields a generalization of the cutting plane method obtained by replacing the
cutting plane LP with either a Dantzig-Wolfe LP or a Lagrangian dual as the bounding
subproblem. We call this class of bounding procedures integrated decomposition methods
because they integrate inner and outer methods. The steps of this generalized method are
shown in Figure 2.

The important step in Figure 2 is Step 2, generating a set of improving inequalities,
i.e., inequalities valid for P that when added to the description of the explicit polyhedron
result in an increase in the computed bound. Putting aside the question of exactly how
Step 2 is to be accomplished, the approach is straightforward. Step 1 is performed as
in a traditional decomposition framework. Step 3 is accomplished by simply adding the
newly generated inequalities to the list [A′′, b′′] and reforming the appropriate bounding
subproblem. Note that it is also possible to develop an analog based on an interpretation of
the cutting plane method as a dynamic tightening of the implicit polyhedron [62]. In this
case, the implicit polyhedron associated with the subproblem to be solved in Step 1 may
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also change dynamically. We have not yet investigated this class of methods.
Although some forms of this general method have appeared in the literature, they have

received little attention thus far and naming conventions are not well-established. We
would like to suggest here a naming convention that emphasizes the close relationship of
these methods to each other. When the bounding subproblem is a Dantzig-Wolfe LP, we
call the resulting method price and cut. When employed in a branch and bound framework,
the overall technique is called branch, price, and cut. This method has been studied by
a number of authors [11, 12, 35, 60, 61] and is described in more detail in Section 3.1.
When the bounding subproblem is a Lagrangian dual, we call the method relax and cut.
When relax and cut is used as the bounding procedure in a branch and bound framework,
we call the overall method branch, relax, and cut. Variants of this method have also been
studied previously by several authors (see [42] for a survey) and is described in more detail
in Section 3.2. Finally, in Section 3.3, we describe a variant of the cutting plane method
that employs a decomposition-based separation procedure. We call this method decompose
and cut and embed it within a branch and bound framework to obtain the method branch,
decompose, and cut.

As we alluded to earlier, the distinction between what we call price and cut and what
we call relax and cut may not be that easy to make, since modern methods for solving the
subproblems in each case can be quite similar. The rough distinction we make between them
here, however, is in the amount of primal solution information produced as a by-product
of the solution process. When solving a Dantzig-Wolfe LP, we assume that an optimal
DW decomposition is produced exactly. When solving a Lagrangian dual, we assume only
approximate primal solution information, if any at all, is available. Solution methods for
these subproblems are discussed in more detail in Section 3.4.

As we have already mentioned, Step 2 is the crux of integrated decomposition methods.
In the context of the cutting plane method, this step is usually accomplished by applying
one of the many known techniques for separating x̂CP from P (see [1]). Violation of x̂CP

is a necessary condition for an inequality to be improving, and hence such an inequality is
likely to be effective. However, unless the inequality separates the entire optimal face F to
the cutting plane LP, it will not be improving. Because we want to refer to these well-known
results later in the paper, we state them formally as theorem and corollary without proof.
See [59] for a thorough treatment of the theory of linear programming that leads to this
result.

Theorem 2 Let F be the face of optimal solutions to an LP solved directly over P ′ ∩ Q′′
with objective function c. Then (a, β) ∈ Rn+1 is an improving inequality if and only if
a>x < β for all x ∈ F .

Corollary 1 If (a, β) ∈ Rn+1 is an improving inequality, then a>x̂CP < β.

Fortunately, even in the case when F is not separated in its entirety, the augmented cutting
plane LP must have a different optimal solution, which in turn may be used to generate
more potential improving inequalities. Since the condition of Theorem 2 is difficult to verify,
one typically terminates the bounding procedure when increases resulting from additional
inequalities become “too small.” In the next two sections, we examine how improving
inequalities can be generated when the bounding subproblem is either a Dantzig-Wolfe
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LP or a Lagrangian dual. We then return to the cutting plane method to discuss how
decomposition can be used directly to aid in solving the separation problem.

3.1 Price and Cut

Finding Improving Inequalities. Using the Dantzig-Wolfe LP as the bounding sub-
problem in Figure 2 results in a procedure that alternates between generating columns and
generating valid inequalities. Such concurrent generation of columns and valid inequalities
is difficult in general because the addition of valid inequalities can destroy the structure of
the column-generation subproblem (for a discussion of this, see [60]). Having solved the
Dantzig-Wolfe LP, however, one can easily recover an optimal solution to the cutting plane
LP using (8) and try to generate improving inequalities as in the cutting plane method. The
generation of valid inequalities thus takes place in the original space and does not destroy
the structure of the column-generation subproblem in the Dantzig-Wolfe LP. This approach
enables dynamic generation of valid inequalities, while still retaining the bound improve-
ment and other advantages yielded by Dantzig-Wolfe decomposition. A recent paper by
Arãgao and Uchoa discusses this technique in more detail [21].

Because the same valid inequalities are generated with this method as would be gener-
ated in the cutting plane method, these two dynamic methods achieve the same bound in
principle. Price and cut, however, produces additional primal information that we may be
able to use to our advantage. In particular, the optimal DW decomposition λ̂ provides a
decomposition of x̂DW into a convex combination of members of F ′. We refer to elements
of F ′ that have a positive weight in this combination as members of the decomposition.
The following theorem shows how such a decomposition can be used to derive an alternate
necessary condition for an inequality to be improving.

Theorem 3 If x ∈ Rn violates the inequality (a, β) ∈ R(n+1) and λ ∈ RF ′+ is such that∑
s∈F ′ λs = 1 and x =

∑
s∈F ′ sλs, then there must exist an s ∈ F ′ with λs > 0 such that s

also violates the inequality (a, β) .

Proof. Let x ∈ Rn and (a, β) ∈ R(n+1) be given such that a>x < β. Also, let λ ∈ RF ′+ be
given such that

∑
s∈F ′ λs = 1 and x =

∑
s∈F ′ sλs. Suppose that a>s ≥ β for all s ∈ F ′ with

λs > 0. Since
∑

s∈F ′ λs = 1, we have a>(
∑

s∈F ′ sλs) ≥ β. Hence, a>x = a>(
∑

s∈F ′ sλs) ≥
β, which is a contradiction.

In other words, an inequality can be improving only if it is violated by at least one member of
the decomposition. If I is the set of all improving inequalities, then the following corollary
is a direct consequence of Theorem 3.

Corollary 2 I ⊆ V = {(a, β) ∈ R(n+1) | a>s < β for some s ∈ F ′ such that λ̂s > 0}.
The importance of this result is that in many cases, it is easier to separate members of F ′
from P than to separate arbitrary real vectors. We call this approach structured separation.
There are a number of well-known polyhedra for which the problem of separating an arbi-
trary real vector is difficult, but the problem of separating a solution to a given relaxation is
easy. Some examples are discussed in Section 4. In Figure 3, we propose a new separation
procedure to be embedded in price and cut that takes advantage of this fact.

8



Separation using a Dantzig-Wolfe Decomposition

Input: A DW decomposition λ̂.
Output: A set of potentially improving inequalities for P.

1. Form the set D = {s ∈ F ′ | λ̂s > 0}.
2. For each s ∈ D, attempt to separate s from P to obtain a set [Ds, ds] of

violated inequalities.

3. Let [Dx, dx] be composed of the inequalities found in Step 2 that are also
violated by x̂DW .

4. Return [Dx, dx] as the set of potentially improving inequalities.

Figure 3: Separation using a Dantzig-Wolfe decomposition

The running time of the procedure in Figure 3 depends in part on the cardinality of the
decomposition. Carathéodory’s Theorem assures us that there exists a decomposition with
less than or equal to dim(P ′) + 1 members. Unfortunately, even if we limit our search to
a particular known class of inequalities, the number of such inequalities violated by each
member of D in Step 2 may be extremely large and these inequalities may not be violated
by x̂DW (such an inequality cannot be improving). Unless we enumerate every inequality in
the set V from Corollary 2, either implicitly or explicitly, the procedure does not guarantee
that an improving inequality will be found, even if one exists. In cases where it is possible
to examine the set V in polynomial time, the worst-case complexity of the entire procedure
is the same as that of optimizing over P ′. Obviously, it is thus unlikely that the set V can be
examined in polynomial time in situations in which the separation problem for the class in
question isNP-complete. In such cases, the procedure to select inequalities that are likely to
be violated by x̂DW in Step 2 is necessarily a problem-dependent heuristic. The effectiveness
of this heuristic can be improved in a number of ways, some of which are discussed in [57].
Further details will be provided in a companion paper on the computational aspects of these
methods.

Connections to Other Methods. By making connections to the cutting plane method,
we can gain further insight. Consider the set

S = {s ∈ F ′ | (c> − û>A′′)s = α̂}, (10)

where α̂ is again defined to be zLR(û)− û>b′′, so that (û, α̂) is an optimal dual solution to
the DWLP. Since S is comprised exactly of those members of F ′ corresponding to columns
of the Dantzig-Wolfe LP with reduced cost zero, complementary slackness guarantees that
the set S must contain all members of the decomposition. The following theorem follows
directly from this observation.

Theorem 4 conv(S) is a face of P ′ and contains x̂DW .
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Proof. We first show that conv(S) is a face of P ′. First, note that

(c> − û>A′′, α̂)

defines a valid inequality for P ′, since α̂ was defined to be zLR(û) − û>b′′, which is the
optimal value of a solution to the problem of minimizing over P ′ with objective function
c> − û>A′′. Thus, the set

G = {x ∈ P ′ | (c> − û>A′′)x = α̂}, (11)

is a face of P ′ that contains S. We claim that conv(S) = G. Since G is convex and contains
S, it also contains conv(S), so we just need to show that conv(S) contains G. We do so
by showing that the extreme points of G are members of S. By construction, all extreme
points of P ′ are members of F ′. Furthermore, the extreme points of G are also extreme
points of P ′ and therefore must be members of F ′. It follows that the extreme points of G
must be members of S. Hence, conv(S) = G and conv(S) is a face of P ′.

The fact that x̂DW ∈ conv(S) follows from the fact that x̂DW is a convex combination of
members of S.

An important consequence of this result is contained in the following corollary.

Corollary 3 If F is the face of optimal solutions to an LP solved over P ′∩Q′′ with objective
function c, then F ⊆ conv(S) ∩Q′′.
Proof. Let x ∈ F be given. Then x ∈ P ′ ∩Q′′ by definition and also

c>x = zCP = zLD = α̂ + û>b′′ = α̂ + û>A′′x, (12)

where the last equality in this chain is a consequence of complementary slackness. It follows
that (c> − û>A′′)x = α̂ and thus x ∈ G = conv(S) from the proof of Theorem 4 above.

Hence, the convex hull of the decomposition is a subset of conv(S) that contains x̂DW and
can be thought of as a surrogate for the face of optimal solutions to the cutting plane LP.
Combining this corollary with Theorem 2, we conclude that separation of S from P is a
sufficient condition for an inequality to be improving. Although this sufficient condition is
difficult to verify in practice, it does provide additional motivation for the method described
in Figure 3.

The convex hull of S is typically a proper face of P ′. It is possible, however, for x̂DW

to be an inner point of P ′.
Theorem 5 If x̂DW is an inner point of P ′, then conv(S) = P ′.
Proof. We prove the contrapositive. Suppose conv(S) is a proper face of P ′. Then there ex-
ists a facet-defining valid inequality (a, β) ∈ Rn+1 such that conv(S) ⊆ {x ∈ Rn | ax = β}.
By Theorem 4, x̂DW ∈ conv(S) and x̂DW therefore cannot satisfy the definition of an inner
point.
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(b) (c)(a)

P′ ∩ Q′′ ⊃ conv(S) ∩ Q′′ ⊃ F

Q′′

Q′

c>

P′

Q′′

Q′

P′
Q′′

Q′

P′

c>

c> − û>A′′c> = c> − û>A′′

conv(S) ŝ ∈ F′ : λ̂s > 0

ŝ1

ŝ0
x̂DW

ŝ0

x̂LP
x̂LP = x̂DW

x̂DW
x̂LP

ŝ2

ŝ0 ŝ1 ŝ1

x̂DW
x̂LP (solution to LP relaxation)

P′ ∩ Q′′ = conv(S) ∩ Q′′ conv(S) ∩ Q′′ = F

Figure 4: The relationship of P ′ ∩Q′′, conv(S), and the face F , for different cost vectors.

In this case, illustrated graphically in Figure 4(a), zDW = zLP and Dantzig-Wolfe decom-
position does not improve the bound. All columns of the Dantzig-Wolfe LP have reduced
cost zero and any member of F ′ can be made a member of the decomposition. A necessary
condition for an optimal fractional solution to be an inner point of P ′ is that the value of
the dual variable corresponding to the convexity constraint (i.e., α in (6)) in an optimal
dual solution to the Dantzig-Wolfe LP be zero. This condition indicates that the chosen
relaxation may be too weak.

As we discuss further in Section 3.2, the penalty term in the objective function of the
Lagrangian subproblem (4) perturbs the original objective function so that the face of P ′
it induces is conv(S). A second case of potential interest is when the face F of Corollary 3
is equal to conv(S) ∩ Q′′, illustrated graphically in Figure 4(b). This occurs when the face
of P ′ induced by the original objective function vector c is equal to conv(S) and hence the
penalty term is zero. This condition can be detected by examining the objective function
values of the members of the decomposition. If they are all identical, any member of the
decomposition that is contained in Q′′ (if one exists) must be optimal for the original ILP,
since it is feasible and has objective function value equal to zLP . In this case, all constraints
of the Dantzig-Wolfe LP other than the convexity constraint must have dual value zero,
since removing them does not change the optimal solution value. The more typical case, in
which F is a proper subset of conv(S) ∩ Q′′ and the penalty term is nonzero, is shown in
Figure 4(c).

3.2 Relax and Cut

Finding Improving Inequalities. When the bounding subproblem is the Lagrangian
dual, it is more difficult to obtain the primal solution information readily available to
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us in both the cutting plane method and price and cut. The amount of primal solution
information depends on the algorithm used to solve the Lagrangian dual. With methods
such as the volume algorithm [9], it is possible to obtain an approximate primal solution.
For the sake of discussion, however, we assume in what follows that no primal solution
information is available. In such a case, we can attempt to separate ŝ = argmin zLR(û)
from P, where û is the vector of optimal dual multipliers defined earlier. Since ŝ is a
member of F ′, we are again taking advantage of our ability to separate members of F ′ from
P effectively. If successful, we immediately “dualize” this new constraint by adding it to
[A′′, b′′], as described in Section 3. This has the effect of introducing a new dual multiplier
and slightly perturbing the Lagrangian objective function.

As with both the cutting plane and price and cut methods, the difficulty with relax and
cut is that the valid inequalities generated by separating ŝ from P may not be improving,
as Guignard first observed in [31]. Furthermore, we cannot verify the condition of Corollary
1, which is the best available necessary condition for an inequality to be improving. To
deepen our understanding of the potential effectiveness of the valid inequalities generated
during relax and cut, we further examine the relationship between ŝ and x̂DW .

Connections to Other Methods. By considering again the reformulation of the La-
grangian dual as the linear program (6), we observe that each constraint binding at an
optimal solution corresponds to an alternative optimal solution to the Lagrangian subprob-
lem with multipliers û. The binding constraints of (6) correspond to variables with reduced
cost zero in the Dantzig-Wolfe LP (7), so it follows immediately that the set S from (10) is
also the set of all alternative optimal solutions to zLR(û).

Because x̂DW is both an optimal solution to an LP solved over P ′ ∩ Q′′ with objective
function c and is contained in conv(S), it also follows that

c>x̂DW = c>x̂DW + û>(b′′ −A′′x̂DW ) = (c> − û>A′′)x̂DW + û>b′′.

In other words, the penalty term in the objective function of the Lagrangian subproblem (4)
serves to rotate the original objective function so that it becomes parallel to the face conv(S),
while the constant term û>b′′ ensures that x̂DW has the same cost with both the original
and the Lagrangian objective function. This is illustrated in Figure 4(c).

One conclusion that can be drawn from these observations is that solving the Dantzig-
Wolfe LP produces a set of alternative optimal solutions to the Lagrangian subproblem
with multipliers û, at least one of which must be violated by a given improving inequality.
This yields a verifiable necessary condition for a generated inequality to be improving.
Relax and cut, in its most straightforward incarnation, produces one member of this set. In
this case, even if improving inequalities exist, it is possible that none of them are violated
by the member of S so produced, especially if it has a small weight in the optimal DW
decomposition λ̂. Note, however, that by keeping track of the solutions to the Lagrangian
subproblem that are produced while solving the Lagrangian dual, one can approximate the
optimal DW decomposition. This is the approach taken by the volume algorithm [9] and
other subgradient-based methods. As in price and cut, when x̂DW is an inner point of P ′, the
decomposition does not improve the bound and all members of F ′ are alternative optimal
solutions to the Lagrangian subproblem. This situation is depicted in Figure 4(a). In this
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case, separating an optimal solution to zLR(û) from P is unlikely to yield an improving
inequality.

3.3 Decompose and Cut

The use of an optimal DW decomposition to aid in separation is easy to extend to a
traditional branch and cut framework using a technique we call decompose and cut, originally
proposed in [55] and further developed in [36] and [57]. Consider the optimal fractional
solution x̂CP obtained directly by solving the cutting plane LP and suppose that given
s ∈ F ′, we can determine effectively whether s ∈ F and if not, generate a valid inequality
(a, β) violated by s. By first decomposing x̂CP (i.e., expressing x̂CP as a convex combination
of members of F ′) and then separating each member of this decomposition from P in a
fashion analogous to that described in Figure 3, we may be able to separate x̂CP from the
polyhedron P.

The difficult step is finding the decomposition of x̂CP . This can be accomplished by
solving a linear program whose columns are the members of F ′, as described in Figure 5.
This linear program is reminiscent of a Dantzig-Wolfe LP and in fact can be solved using
an analogous column-generation scheme, as described in Figure 6. This scheme can be
seen as inverting the method described in Section 3.1, since it begins with the fractional
solution x̂CP and tries to compute a decomposition, instead of the other way around. By
the equivalence of optimization and separation, we conclude that the worst-case complexity
of finding a decomposition of x̂CP is polynomially equivalent to that of optimizing over P ′.

Once the decomposition is found, it can be used as in price and cut to locate a violated
inequality using the methodology discussed earlier. This procedure is shown in Figure 5.
In contrast to price and cut, however, it is possible that x̂CP 6∈ P ′. This could occur, for
instance, if exact separation methods for P ′ are too expensive to apply consistently. In this
case, it is obviously not possible to find a decomposition in Step 2. The proof of infeasibility
for the linear program (13), however, provides an inequality separating x̂CP from P ′ at no
additional expense. Hence, even if we fail to find a decomposition, we still find an inequality
valid for P and violated by x̂CP . This idea was originally suggested in [55] and was further
developed in [36]. A similar concept was also discovered and developed independently by
Applegate et al. [3].

Applying decompose and cut in every iteration as the sole means of separation is the-
oretically equivalent to price and cut. In practice, however, the decomposition is only
computed when needed, i.e., when less expensive separation heuristics fail to separate the
optimal fractional solution. This could give decompose and cut an edge in terms of com-
putational efficiency. In other respects, the computations performed in each method are
similar.

3.4 Implementation and Extensions

In practice, there are many variations on the general theme described here. The details
surrounding implementation of these methods will be covered in a separate paper, but we
would like to give the reader a taste for the issues involved and for the existing methodology.
An important aspect of the implementation of these methods is the algorithm used for
solving the subproblem in Step 1 of the algorithm in Figure 2. Three general categories
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Separation in Decompose and Cut

Input: x̂ ∈ Rn

Output: A valid inequality for P violated by x̂, if one is found.

1. Apply standard separation techniques to separate x̂. If one of these returns a
violated inequality, then STOP and output the violated inequality.

2. Otherwise, solve the linear program

max
λ∈RF′+

{0>λ |
∑

s∈F ′
sλs = x̂,

∑

s∈F ′
λs = 1}, (13)

as in Figure 6.

3. The result of Step 2 is either (1) a valid inequality (a, β) for P that is violated
by x̂, or (2) a subset D of members of F ′ participating in a convex combination
of x̂. In the first case, go to Step 4. In the second case, STOP and output the
violated inequality.

4. Attempt to separate each member of D from P. For each inequality violated
by a member of D, check whether it is also violated by x̂. If an inequality
violated by x̂ is encountered, STOP and output it.

Figure 5: Separation in the decompose and cut method

Column Generation in Decompose and Cut

Input: x̂ ∈ Rn

Output: Either (1) a valid inequality for P violated by x̂; or (2) a subset D of
members of F ′ participating in a convex combination of x̂.

2.0 Generate an initial subset G of F ′.
2.1 Solve (13), replacing F ′ by G. If this linear program is feasible, then the

elements of F ′ corresponding to the nonzero components of λ̂, the current
solution, comprise the set D, so STOP.

2.2 Otherwise, let (a, β) be a valid inequality for conv(G) violated by x̂. Solve the
optimization problem over P ′ with cost vector a and let s be the resulting
solution. If the optimal value is less than β, then add s to G and go to 2.1.
Otherwise, (a, β) is an inequality valid for P ′ ⊇ P and violated by x̂, so STOP.

Figure 6: Column generation for the decompose and cut method
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of methods for solving such subproblems are simplex methods, interior point methods,
and subgradient methods. Simplex methods provide accurate primal solution information,
but updates to the dual solution each iteration are relatively expensive. In their most
straightforward form, they also tend to converge slowly when used to solve a Dantzig-Wolfe
LP by column generation because of the fact that they produce basic dual solutions, which
can change substantially from one iteration to the next. This problem can be addressed by
implementing one of a number of stabilization methods that prevent the dual solution from
changing “too much” from one iteration to the next (for a survey, see [39]). In their most
straightforward form, subgradient methods do not produce primal solution information.
However, it is possible to extract approximate primal solutions from variants of subgradient
such as the volume algorithm [9]. Subgradient methods also have convergence issues without
some form of stabilization. A recent class of algorithms that has proven effective in this
regard is bundle methods [18]. Interior point methods may provide a middle ground by
providing accurate primal solution information and more stable dual solutions [58, 28].
In addition, hybrid methods that alternate between simplex and subgradient methods for
updating the dual solution have also shown promise [10, 33].

An even more general framework containing the methods described here can be obtained
by viewing them as alternating between a master problem that updates solution information
and a procedure for using that solution information to generate an improved approximation
of P by solving either a pricing or a cutting subproblem. In this generalized framework, we
do not insist on solving the subproblem in Step 1 of the algorithm in Figure 2 to optimality
before generating cuts, but rather allow the method to alternate freely between the pricing
and cutting subproblems [17, 29, 42]. The software framework we are developing will allow
essentially any sequence of solution updates, pricing, and cutting by any of the methods
discussed here. This leads to a wide range of possibilities, very few of which have been
investigated in the literature so far. For a treatment of this more general viewpoint, see
[56].

4 Applications

In this section, we illustrate the concepts presented so far with three examples. For each
example, we discuss the key elements needed to apply the framework: (1) the original ILP
formulation, (2) the explicit and implicit polyhedra, and (3) known classes of valid inequal-
ities that can be used to dynamically tighten the explicit polyhedron by using structured
separation techniques. The well-known template paradigm for separation, so named by Ap-
plegate et al. [3], is the standard approach for generating violated valid inequalities when
solving MILPs. This paradigm operates on the precept that it is sometimes possible to
effectively solve the separation problem for a given class of inequalities valid for the poly-
hedron P, though the general separation problem for P is difficult. Our framework extends
this paradigm by considering classes of valid inequalities for which the separation of an ar-
bitrary real vector is difficult but for which separation of solutions to a specified relaxation
can be accomplished effectively. In addition to the three examples presented here, there are
a number of common ILPs with classes of valid inequalities and relaxations that fit into this
framework, such as the Generalized Assignment Problem [53], the Edge-Weighted Clique
Problem [34], the Traveling Salesman Problem [5], the Knapsack Constrained Circuit Prob-
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lem [38], the Rectangular Partition Problem [16], the Linear Ordering Problem [15], and the
Capacitated Minimum Spanning Tree Problem [24]. Note that we slightly abuse notation
in what follows by recycling the notation for the sets P, F , and F ′ in each section.

4.1 Vehicle Routing Problem

We first consider the Vehicle Routing Problem (VRP) introduced by Dantzig and Ramser
[20]. In this NP-hard optimization problem, a fleet of k vehicles with uniform capacity C
must service known customer demands for a single commodity from a common depot at
minimum cost. Let V = {1, . . . , |V |} index the set of customers and let the depot have
index 0. Associated with each customer i ∈ V is a demand di. The cost of travel from
location i to location j is denoted by cij for i, j ∈ V ∪ {0}. We assume that cij = cji > 0 if
i 6= j and cii = 0.

By constructing an associated complete undirected graph G with vertex set N = V ∪{0}
and edge set E = N × N , we can formulate the VRP as an integer program. A route is
an ordered subset R = (i1, i2, . . . , im) of V with associated edge set ER = {{ij , ij+1} | j ∈
0, . . . , m}, where i0 = im+1 = 0. A feasible solution is then any subset of E that is the union
of the edge sets of k disjoint routes Ri, i ∈ [1..k], each satisfying the capacity restriction,
i.e.,

∑
j∈Ri

dj ≤ C ∀i ∈ [1..k]. Each route corresponds to a set of customers serviced by
one of the k vehicles. To simplify the presentation, we define some additional notation. Let
δ(S) = {{i, j} ∈ E | i ∈ S, j /∈ S}, E(S : T ) = {{i, j} | i ∈ S, j ∈ T}, E(S) = E(S : S) and
x(F ) =

∑
e∈F xe.

By associating a variable with each edge in the graph, we obtain the following formula-
tion of this ILP [37]:

min
∑

e∈E

cexe

x(δ({0})) = 2k (14)

x(δ({v})) = 2 ∀v ∈ V, (15)

x(δ(S)) ≥ 2b(S) ∀S ⊆ V, |S| > 1, (16)

xe ∈ {0, 1} ∀e ∈ E(V ), (17)

xe ∈ {0, 1, 2} ∀e ∈ δ(0). (18)

Here, b(S) represents a lower bound on the number of vehicles required to service the set
of customers S. Inequalities (14) ensure that there are exactly k vehicles, each departing
from and returning to the depot, while inequalities (15) require that each customer must be
serviced by exactly one vehicle. Inequalities (16), known as the generalized subtour elim-
ination constraints (GSECs) can be viewed as a generalization of the subtour elimination
constraints from the Traveling Salesman Problem (TSP) and enforce connectivity of the
solution, as well as ensuring that no route has total demand exceeding capacity C. For ease
of computation, we can define b(S) =

⌈(∑
i∈S di

)
/C

⌉
, a trivial lower bound on the number

of vehicles required to service the set of customers S.
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Returning to our earlier notation and setup, the set of feasible solutions to the VRP is

F = {x ∈ RE | x satisfies (14)− (18)},
and P = conv(F) is then the VRP polytope. Many classes of valid inequalities for the VRP
polytope have been reported in the literature (see [49] for a survey). Significant effort has
been devoted to developing efficient algorithms for separating an arbitrary fractional point
using these classes of inequalities (see [43] for recent results).

For dynamic tightening of the explicit polyhedron, we concentrate here on the separa-
tion of GSECs. The separation problem for GSECs is NP-complete (see [4]), even when
b(S) is taken to be

⌈(∑
i∈S di

)
/C

⌉
, as above. In [43], Lysgaard et al. review standard

heuristic procedures for separating arbitrary fractional solutions from the GSEC polyhe-
dron (the polyhedron described by all GSECs). Although GSECs are part of the formulation
presented above, there are exponentially many of them, so they must either be generated
dynamically or included as part of the description of the implicit polyhedron. We discuss
three alternatives for the implicit polyhedron: the Perfect b-Matching polytope, the Degree-
constrained k-Tree polytope, and the Multiple Traveling Salesman polytope. For each of
these alternatives, solutions to the relaxation can be easily separated from the GSEC poly-
hedron.

Perfect b-Matching Problem. With respect to the graph G, the Perfect b-Matching
Problem is to find a minimum weight subgraph of G such that x(δ(v)) = bv ∀v ∈ V for
some b ∈ ZN

+ . By dropping the GSECs from the VRP formulation, we obtain an instance of
the Perfect b-Matching Problem with associated implicit polyhedron P ′ = conv(F ′), where

F ′ = {x ∈ RE | x satisfies (14), (15), (17), (18)}.
In [48], Müller-Hannemann and Schwartz present several efficient polynomial algorithms
for solving the Perfect b-Matching Problem. Note that in this case, the explicit polyhedron
needed to completely describe the VRP polyhedron includes the GSECs (16). In practice,
however, we start with the explicit polyhedron Q′′ comprised of a small set of GSECs and
generate the others dynamically, as described earlier.

In [47], Miller uses the b-matching relaxation to solve the VRP by branch, relax, and
cut. He suggests separating members of F ′ from the GSEC polytope as follows. Consider a
member s of F ′ and its support graph Gs (a b-matching). If Gs is disconnected, then each
component immediately induces a violated GSEC. On the other hand, if Gs is connected, we
first remove the edges incident with the depot vertex and find the connected components,
which comprise the routes described earlier. To identify a violated GSEC, we compute the
total demand of each route, checking whether it exceeds capacity. If not, the solution is
feasible for the original ILP and does not violate any GSECs. If so, the set S of customers on
any route whose total demand exceeds capacity induces a violated GSEC. This separation
routine runs in O(n) time and can be used in any of the integrated decomposition methods
previously described. Figure 7 gives an optimal fractional solution (a) to an LP relaxation
of the VRP expressed as a convex combination of two b-matchings (b) and (c). In this
example, the capacity C = 35 and by inspection we find a violated GSEC in the second
b-matching (c) with S equal to the indicated component. This inequality is also violated
by the optimal fractional solution, since x̂(δ(S)) = 3.0 < 4.0 = 2b(S).
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Minimum Degree-constrained k-Tree Problem. A k-tree is defined as a spanning
subgraph of G that has |V | + k edges (recall that G has |V | + 1 vertices). A degree-
constrained k-tree (k-DCT), as defined by Fisher in [23], is a k-tree with degree 2k at node
0. The Minimum k-DCT Problem is that of finding a minimum cost k-DCT, where the
cost of a k-DCT is the sum of the costs on the edges present in the k-DCT. Fisher [23]
introduced this relaxation of the VRP as part of a Lagrangian relaxation-based algorithm
for solving the VRP.

The k-DCT polyhedron is obtained by first adding the redundant constraint

x(E) = |V |+ k, (19)

which holds for any x ∈ P, then deleting the degree constraints (15), and relaxing the
capacity to C =

∑
i∈S di. Relaxing the capacity gives b(S) = 1 for all S ⊆ V , and effectively

replaces (16) with ∑

e∈δ(S)

xe ≥ 2, ∀S ⊆ V, |S| > 1. (20)

The implicit polyhedron is then defined to be P ′ = conv(F ′), where

F ′ = {x ∈ RE | x satisfies (14), (17), (19), (20)}.
The explicit polyhedron is then initially described by the constraints (15). In [63], Wei
and Yu give an algorithm for solving the Minimum k-DCT Problem with running time
O(|V |2 log |V |). In [46], Martinhon et al. study the use of the k-DCT relaxation for the
VRP in the context of branch, relax and cut. Again, consider separating a member s of F ′
from the polyhedron defined by all GSECs. It is easy to see that for GSECs, an algorithm
identical to that described above can be applied. Figure 7 gives the optimal fractional
solution (a) expressed as a convex combination of four k-DCTs (d)–(g). Removing the
depot edges, and checking each component’s demand, we easily identify the violated GSEC
indicated in (g).

Multiple Traveling Salesman Problem. The Multiple Traveling Salesman Problem
(k-TSP) is an uncapacitated version of the VRP obtained by adding the degree constraints
to the k-DCT polyhedron. The implicit polyhedron is then defined as P ′ = conv(F ′), where

F ′ = {x ∈ RE | x satisfies (14), (15), (17), (18), (20)}.
Although the k-TSP is an NP-hard optimization problem, small instances can be solved
effectively by transformation into an equivalent TSP obtained by adjoining to the graph
k − 1 additional copies of vertex 0 and its incident edges. In this case, we again start
with the explicit polyhedron comprised of a small set of GSECs and generate the others
dynamically. In [57], Ralphs et al. report on an implementation of branch, decompose and
cut using the k-TSP as a relaxation.

4.2 Three-Index Assignment Problem

The Three-Index Assignment Problem (3AP) is that of finding a minimum-weight partition
of the vertices of a complete tri-partite graph Kn,n,n into cliques of size three. Let I, J and
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Figure 7: Example of a decomposition into b-Matchings and k-DCTs
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K be the three vertex sets defining the tri-partite graph, with |I| = |J | = |K| = n, and let
H = I × J ×K be the set of all cliques of size three. By associating a variable with each
member of H, 3AP can be formulated as the following binary integer program:

min
∑

(i,j,k)∈H

cijkxijk

∑

(j,k)∈J×K

xijk = 1, ∀i ∈ I, (21)

∑

(i,k)∈I×K

xijk = 1, ∀j ∈ J, (22)

∑

(i,j)∈I×J

xijk = 1, ∀k ∈ K, (23)

xijk ∈ {0, 1} , ∀(i, j, k) ∈ H. (24)

A number of applications of 3AP, which is known to be NP-hard [25], can be found in the
literature (see Piersjalla [18,19]). The set of feasible solutions to 3AP is

F = {x ∈ RH | x satisfies (21)− (24)},

and P = conv(F) is then the 3AP polytope.
In [7], Balas and Saltzman study the polyhedral structure of the 3AP polytope and

introduce several classes of facet-inducing inequalities. Let u, v ∈ H and define |u ∩ v|
to be the number of coordinates for which the vectors u and v have the same value. Let
C(u) = {w ∈ H | |u∩w| = 2} and C(u, v) = {w ∈ H | |u∩w| = 1, |w∩v| = 2}. We consider
two classes of facet-inducing inequalities for P. For u ∈ H and any x ∈ P, we have

xu +
∑

w∈C(u)

xw ≤ 1, (25)

yielding a class of inequalities whose members are referred to by the label Q1(u), as in [7].
Similarly, for u, v ∈ H with |u ∩ v = 0| and any x ∈ P, we have

xu +
∑

w∈C(u,v)

xw ≤ 1, (26)

yielding a class of inequalities whose members are referred to by the label P1(u, v), also as
in [7]. In [6], Balas and Qi describe algorithms that solve the separation problem for the
polyhedra defined by the inequalities in these two classes in O(n3) time.

Balas and Saltzman consider the use of the classical Assignment Problem (AP) as a
relaxation of 3AP in an early implementation of branch, relax, and cut [8]. Following their
lead, we define the implicit polyhedron to be P ′ = conv(F ′), where

F ′ = {x ∈ RH | x satisfies (22)− (24)}.
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Figure 8: Example of a decomposition into assignments.

The explicit polyhedron is then initially described by the constraints (21). The AP can
be solved in O(n5/2 log(nC)) time, where C = maxw∈H cw, by the cost-scaling algorithm
[2]. Consider separating a member s of F ′ from the polyhedron defined by Q1(u) for all
u ∈ H. Let L(s) be the set of n triplets corresponding to the nonzero components of s
(the assignment from J to K). It is easy to see that if there exist u, v ∈ L(s) such that
u = (i0, j0, k0) and v = (i0, j1, k1), i.e., the assignment overcovers the set I, then both
Q1(i0, j0, k1) and Q1(i0, j1, k0) are violated by s. Figure 8 shows the decomposition of an
optimal fractional solution x̂ (a) into a convex combination of assignments (b-d). The pair of
triplets (0, 3, 1) and (0, 0, 3) satisfies the condition just discussed and identifies two violated
valid inequalities, Q1(0, 3, 3) and Q1(0, 0, 1) that are violated by the second assignment,
shown in (c). The latter is also violated by x̂ and is illustrated in (e). This separation
routine runs in O(|V |) time.

Now consider separating a member s of F ′ from the polyhedron defined by P1(u, v) for
all u, v ∈ H. As above, for any pair of assignments that correspond to nonzero components
of s and have the form (i0, j0, k0), (i0, j1, k1), we know s violates P1((i0, j0, k0), (i, j1, k1)),
∀i 6= i0 and P1((i0, j1, k1), (i, j0, k0)), ∀i 6= i0. In Figure 8, the second assignment (c) violates
P1((0, 0, 3), (1, 3, 1)). This inequality is also violated by x̂ and is illustrated in (f). Once
again, this separation routine runs in O(n) time.
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4.3 Steiner Tree Problem

Let G = (V,E) be a complete undirected graph with vertex set V = {1, ..., |V |}, edge set
E, and a positive weight ce associated with each edge e ∈ E. Let T ⊆ V define the set
of terminals. The Steiner Tree Problem (STP), which is NP-hard, is that of finding a
subgraph that spans T (called a Steiner tree) and has minimum edge cost. In [13], Beasley
formulated the STP as a side constrained Minimum Spanning Tree Problem (MSTP) as
follows. Let r ∈ T be a given terminal and consider an artificial vertex 0. Construct the
augmented graph Ḡ = (V̄ , Ē) where V̄ = V ∪ {0} and Ē = E ∪ {{i, 0} | i ∈ (V \ T ) ∪ {r}}.
Let ci0 = 0 for all i ∈ (V \ T ) ∪ {r}. The STP is then equivalent to finding a minimum
spanning tree (MST) in Ḡ subject to the additional restriction that any vertex i ∈ (V \ T )
incident to an edge {i, 0} ∈ Ē must have degree one.

By associating a binary variable xe with each edge e ∈ Ē, indicating whether or not the
edge is selected, we can formulate the STP as the following integer program:

min
∑

e∈E

cexe

x(Ē) = |V̄ | − 1, (27)

x(E(S)) ≤ |S| − 1, ∀S ⊆ V̄ , (28)

xi0 + xe ≤ 1, ∀e ∈ δ(i), i ∈ (V \ T ), (29)

xe ∈ {0, 1} , ∀e ∈ Ē, (30)

Inequalities (27) and (28) ensure that the solution forms a spanning tree on Ḡ. Inequalities
(28) are subtour elimination constraints (similar to those used in the TSP). Inequalities
(29) are the side constraints that ensure the solution can be converted to a Steiner tree by
dropping the edges in Ē \E.

The members of
F = {x ∈ RĒ | x satisfies (27)− (30)}

then correspond to feasible solutions of the STP and we call P = conv(F) the STP polytope.
We consider two classes of valid inequalities for the STP polytope that are lifted versions
of the subtour elimination constraints (SECs). For any x ∈ P, we have

x(E(S)) + x(E(S \ T : {0})) ≤ |S| − 1 ∀S ⊆ V, S ∩ T 6= ∅, and (31)

x(E(S)) + x(E(S \ {v} : {0})) ≤ |S| − 1 ∀S ⊆ V, S ∩ T = ∅, v ∈ S. (32)

The class of valid inequalities (31) were independently introduced by Goemans [27], Lucena
[40], and Margot, Prodon, and Liebling [44], for another extended formulation of STP. The
inequalities (32) were introduced in [27, 44]. The separation problem for inequalities (31)
and (32) can be solved in O(|V |4) time through a series of max-flow computations.

In [41], Lucena considers the use of MSTP as a relaxation of STP in the context of a
branch, relax, and cut algorithm. Inequalities (29) describe the explicit polyhderon, while
the implicit polyhedron is defined to be P ′ = conv(F ′), where

F ′ = {x ∈ RĒ | x satisfies (27), (28), (30)}.
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Figure 9: Example of a decomposition into minimum spanning trees.

The MSTP can be solved in O(|E| log |V |) time using Prim’s algorithm [54]. Consider
the separation of a member of s ∈ F ′ from the polyhedron defined by the lifted subtour
inequalities (31) and (32). In order to identify a violated inequality of the form (31) or
(32) we remove the artificial vertex 0 and find the connected components on the resulting
subgraph. Any component of size greater than 1 that does not contain r and does contain
a terminal defines a violated SEC (31). In addition, if the component does not contain any
terminals, then each vertex in the component that was not connected to the artificial vertex
defines a violated SEC (32).

Figure 9 shows an optimal fractional solution (a) to an LP relaxation of the STP ex-
pressed as a convex combination of two spanning trees (b) and (c). In this figure, the
artificial vertex is black, the terminals are gray and r = 3. By removing the artificial
vertex, we easily find a violated SEC by considering the second spanning tree (c) with S
equal to the marked component. This inequality is also violated by the optimal fractional
solution, since x̂(E(S)) + x̂(E(S \ T : {0})) = 3.5 > 3 = |S| − 1. It should also be noted
that the first spanning tree (b), in this case, is in fact feasible for the original problem.

5 Conclusions and Future Work

In this paper, we presented a framework for integrating dynamic cut generation (outer
methods) with traditional decomposition methods (inner methods). We have also discussed
a paradigm for the generation of improving inequalities based on decomposition and the
separation of solutions to a relaxation, a problem that is often much easier than that of
separating arbitrary real vectors. Viewing the cutting plane method, Lagrangian relaxation,
and Dantzig-Wolfe decomposition in a common algorithmic framework can yield new insight
into all three methods. The next step in this research is to complete a computational study
that will aid practitioners in making more informed choices between the many possible
variants we have discussed. As part of this study, we are implementing a generic framework
that will allow users to test these methods simply by providing a relaxation, a solver for
that relaxation, and separation routines for solutions to the relaxation. Such a framework
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will enable access to a wide range of alternatives for computing bounds using decomposition
and cut generation.
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