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The Problem of the Day

Mixed Integer Nonlinear Program (MINLP)
minimize  f(z,v)
@,y

subject to  ¢(x,y) <0
x € X, yeY integer

f,c smooth (convex) functions
X,Y polyhedral sets, e.g. Y ={y € [0,1]" | Ay < b}
y € Y integer = hard problem

f, ¢ not convex = very hard problem
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Why the MI?

e We can use 0-1 (binary) variables for a variety of purposes
e Modeling yes/no decisions

Enforcing disjunctions

Enforcing logical conditions

Modeling fixed costs

Modeling piecewise linear functions

o If the variable is associated with a physical entity that is
indivisible, then it must be integer
1. Number of aircraft carriers to to produce. Gomory's Initial
Motivation
2. Yearly number of trees to harvest in Norrland
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Why the N?

An anecdote: July, 1948. A young and
frightened George Dantzig, presents his
newfangled “linear programming” to a
meeting of the Econometric Society of
Wisconsin, attended by distinguished
scientists like Hotelling, Koopmans, and
Von Neumann. Following the lecture,
Hotelling? pronounced to the audience:

The world is indeed
nonlinear

e Physical Processes
and Properties
e Equilibrium
e Enthalpy

But we all know the world is * Abstract Measures

nonlinear! e Economies of

Scale

%in Dantzig's words “a huge whale of a ¢ Co.v_arlance N
man” o Utility of decisions
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A Popular MINLP Method

Dantzig's Two-Phase Method for MINLP

1. Convince the user that he or she does not wish to solve a
mixed integer nonlinear programming problem at all!

2. Otherwise, solve the continuous relaxation (N LP) and round
off the minimizer to the nearest integer.

e Sometimes a continuous approximation to the discrete
(integer) decision is accurate enough for practical purposes.

e Yearly tree harvest in Norrland

e For 0 — 1 problems, or those in which the |y| is “small”, the
continuous approximation to the discrete decision is not
accurate enough for practical purposes.

e Conclusion: MINLP methods must be studied!
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Example: Core Reload Operation (Quist, A.J., 2000)

D fresh bundle . 2 year old bundle
. 1 year old bundle . 3 year old bundle

e max. reactor efficiency after reload
subject to diffusion PDE & safety

e diffusion PDE ~ nonlinear equation
= integer & nonlinear model

e avoid reactor becoming overheated
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AMPL Model of Core Reload Operation

Exactly one bundle per node:

L M
Y wam=1  Viel

=1 m=1

AMPL model:

var x {I,L,M} binary ;

Bundle {i in I}: sum{l in L, m in M} x[i,1,m] =1 ;
e Multiple Choice: One of the most common uses of IP

e Full AMPL model c-reload.mod at
www.mcs.anl.gov/ " leyffer/MacMINLP/
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Example: Core Reload Operation (Quist, A.J., 2000)

D fresh bundle . 2 year old bundle
. 1 year old bundle . 3 year old bundle

e look for cycles for moving bundles: ‘
eg. 4 -6 —- 8 — 10 N
i.e. bundle moved from 4 to 6 ...

e model with binary Tilm € {0, 1} 1[2]3]4]5]6]
7| 8] 9|10
Titm = 1 | [ 1] 12]13]

< node i has bundle [ of cycle m
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Gas Transmission Problem (De wolf and Smeers, 2000)

The Netherlands L Belglum haS no gasl

e All natural gas is
imported from Norway,
Holland, or Algeria.

e Supply gas to all demand
points in a network in a
minimum cost fashion.

e Gas is pumped through
the network with a series
of compressors

e There are constraints on
1997 MAGELLAN Googrprics: 7 4 the pressure of the gas

within the pipe
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Pressure Loss is Nonlinear

e Assume horizontal pipes and
steady state flows

e Pressure loss p across a pipe
is related to the flow rate f
as

1 .
pzzn - piut = G S|gn(f)f2

e V: “Friction Factor”
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Gas Transmission Model

min E Cij

JEN;
subject to
> fi— > fi = s  VieN
Jl(i.5)eA Jl(i)eA

sign(fij) £ = Vis(w} —p) = 0 W(i,j) € 4,
sign(fi) /5 — Vii(0? —p5) > 0 V(i,j) € Aq
si € [s;, 8] Vie N
fij > 0 V(i,j)GAa
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Gas Transmission: Problem Input

e Network (IV,A). A=A4,UA,
e A,: active arcs have compressor. Flow rate can increase on arc
e A,: passive arcs simply conserve flow rate

e N, C N: set of supply nodes
e ¢i,1 € Ng: Purchase cost of gas
® s;,5;: Lower and upper bounds on gas “supply” at node i
* p.,D; Lower and upper bounds on gas pressure at node
e s5;,7 € N: supply at node «.

e 5, > 0 = gas added to the network at node ¢

e s5; < 0= gas removed from the network at node 7 to meet
demand

fij, (4,7) € A: flow along arc (4, j)
e f(i,j) > 0= gas flows i — j
e f(i,7) < 0= gas flows j — i
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Your First Modeling Trick

e Don't include nonlinearities or nonconvexities unless necessary!

e Replace pz2 — pi

sign(fi;)f5 — Vij(pi —p;) = 0 V(i,j) € A
f2 - V,i(pi — py) 0 V(i,j) € Aa

Pi [\/B_Zv \/Z_Tz] Vie N

m IV

e This trick only works because

1. p? terms appear only in the bound constraints
2. Also fij >0 V(Z,]) €A,

e This model is nonconvex: sign(fij)ffj is a nonconvex function

Leyffer & Linderoth MINLP



Motivation Gas Transmission
Examples Portfolio Management
Tricks Batch Processing

Dealing with sign(-): The NLP Way

Use auxiliary binary variables to indicate direction of flow
Let |f2J| < F V('l,j) S Ap

R {1 Jij =0 fij = —F(1 — z;)
Zzij =

Note that

0 fi; <0  fij < Fzy

sign(fij) = 222‘3' —1

Write constraint as

(2zij = 1)f5 — Wij(pi — pj) = 0.
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Dealing with sign(-): The MIP Way

e Wonderful MIP Modeling reference is Williams (1993)
e If you put it all together you get...

fij < FZZ'J‘
e 2;; € {0,1}: Indicator if flow fij = —Fuyij
is positive 2z2~j Lyij z }w .
e y;; € {0,1}: Indicator if iﬂé+ Zij = +Vii(pi — pj)
flow is negative i +mzi; > m+Vi(pi — pj)
Dhlyy S L Vile - )
G+l = 1+ Vi(p; — pi)
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Dealing with sign(-): The MIP Way
Model

) o<Vl —pi) L { o < Vii(pi — pi)
Ji >0 ;&{ 15 = Vij(pi — pj) fi<0= f?; > Vij(pj — pi)

m<fE—VWpi—p) <M 1< f2—V(p;—p)<L

Example

fii >0 = zij =1= [ <V(p; — pj)

fij>0;»zij:1;»ffjgw(pi—pj)
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Special Ordered Sets

e Sven thinks the NLP way is better
o Jeff thinks the MIP way is better
o Neither way is how it is done in De Wolf and Smeers (2000).

e Heuristic for finding a good starting solution, then a local
optimization approach based on a piecewise-linear simplex
method

e Another (similar) approach involves approximating the
nonlinear function by piecewise linear segments, but searching
for the globally optimal solution: Special Ordered Sets of
Type 2

e If the “multidimensional” nonlinearity cannot be removed,
resort to Special Ordered Sets of Type 3
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Portfolio Management

N: Universe of asset to purchase
e z,: Amount of asset 7 to hold

e B: Budget
min < u(z) | le =B
zer!l’ iEN
e Markowitz: u(x) ©f _aTx+ AT Qx

o «: Expected returns
e (): Variance-covariance matrix of expected returns
e \: Risk aversion parameter
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Even More Models

Min Holdings: (x; = 0) V (z; > m)
e Model implication: z; >0=z; > m
e, >0=y;,=1=z,>2m
e z; < By,,xz; >my; Vi e N
Round Lots: x; € {kL;,k=1,2,...}
o v; —2z;L;=0,2, € Z, Vie N
Vector h of initial holdings

Transactions: t; = |x; — h;
Turnover: ) . .yt <A
Transaction Costs: ZieN c;t; in objective

Market Impact: >,y 7it? in objective
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More Realistic Models

e b e RINl of “benchmark” holdings
e Benchmark Tracking: u(z) aef (z —b)TQ(x —b)

e Constraint on E[Return]: aTz > r
e Limit Names: [ie N @ z; > 0| < K
e Use binary indicator variables to model the implication
z;>0=y =1
e Implication modeled with variable upper bounds:

z; < By; Yi€N
D ien¥i =K
Leyffer & Linderoth MINLP
Motivation Gas Transmission
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Tricks Batch Processing
Making “Plays”

e Suppose that the stocks are partitioned into sectors
S1CN,SSCN,...Sx CN
e The Fund Manager wants to invest all money into one sector
“olay”
o ZieSk z; > 0= ZjeN\Sk z; =0
e Modeling Choices:
o Aggregated:

Z.TZSBZ]C Z Ij—f—szSB
1€Sk JEN\Sk
e Disaggregated:
v, <wuz; YieN T+ ujz <uy Vi i€ Sy, & Sk

Which is better?: Part Ill has the answer
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Multiproduct Batch Plants (Kocis and
Grossmann, 1988)

M Batch Processing Stages
e N: Different Products
H: Horizon Time

;. Required quantity of product
ij: Processing time product ¢ stage j

o o
& O

e S “Size Factor” product ¢ stage j
e B;: Batch size of product i € N

e Vj: Stage j size: V; > S;;B; Vi, j

e N;: Number of machines at stage j

e C;: Longest stage time for product i: C; > t;;/N; Vi, j

Leyffer & Linderoth MINLP
MlsifEiiom Variable Transformation
Examples MIQP

Modeling Trick #2

e Horizon Time and Objective Function Nonconvex. :-(

e Sometimes variable transformations work!
v; = |n(Vj),nj = In(Nj),bi = In(BZ-),cZ- =In Cz

min g ogeNﬁﬂjVj

JEM

s.t. v; — |n(5’”)bz > 0 Vie N,Vje M
Ci +n; > |n(7’ij) Vie N,Vje M
Z Qieci_Bi S H
iEN
(Transformed) Bound Constraints on Vj,C;, B;
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Multiproduct Batch Plants

min Y NV

JjeEM
s.t.
Vj—SZ'jBZ' > 0 V’iEN,VjEM
CZ'NJ' > tij ViEN,VjEM
S <o
— B;
1eEN
Bound Constraints on Vj;, C;, B;, N;
N, € Z VjeM
Leyffer & Linderoth MINLP
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Tricks

How to Handle the Integrality?

e But what to do about the integrality?

1<N;<N;, VjeMN;€Z VjeM
e nj €{0,In(2),In(3),......}
v — 1 n; takes value In(k)
71 0 Otherwise
K
nj—» In(k)Yy; = 0  VjeM
k=1
K
YV =1 VjeM
k=1

e This model is available at http://www-unix.mcs.anl.gov/
“leyffer/macminlp/problems/batch.mod
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Variable Transformation

MIQP

MIQP: Modeling Tricks

In 0-1 quadratic programming, we can always make quadratic
forms convex.

Key: If y € {0,1}, then y = 32, so add a “large enough”
constant to the diagonal, and subtract it from the linear term:

y € {0,1}" consider any quadratic

a(y) = v"Qu+gTy
= yIWy+cly

where W=Q+ A andc=g— Xe (e=(1,...,1))
If A\ >(smallest eigenvalue of @), then W = 0.

Leyffer & Linderoth MINLP
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Classical Solution Methods
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Variable Transformation

A Small Smattering of Other Applications

e Chemical Engineering Applications:

process synthesis (Kocis and Grossmann, 1988)

batch plant design (Grossmann and Sargent, 1979)

cyclic scheduling (Jain, V. and Grossmann, |.E., 1998)

design of distillation columns (Viswanathan and Grossmann,

1993)

e pump configuration optimization (Westerlund, T., Pettersson,
F. and Grossmann, |.E., 1994)

e Forestry/Paper

e production (Westerlund, T., Isaksson, J. and Harjunkoski, I.,
1995)

e trimloss minimization (Harjunkoski, I., Westerlund, T., Porn,
R. and Skrifvars, H., 1998)

e Topology Optimization (Sigmund, 2001)
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Classical Solution Methods for MINLP

1. Classical Branch-and-Bound

2. Outer Approximation, Benders Decomposition et al.

3. Hybrid Methods

e LP/NLP Based Branch-and-Bound
e Integrating SQP with Branch-and-Bound
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Branch-and-Bound

Solve relaxed NLP (0 < y < 1 continuous relaxation)
... solution value provides lower bound

integer feasible

e Branch on y; non-integral P
e Solve NLPs & branch until 5
1. Node infeasible ... @ " etc.
2. Node integer feasible ... [ .
dominated
= get upper bound (U) by upper bound

3. Lower bound > U ... Q

infeasible

Search until no unexplored nodes on tree

Leyffer & Linderoth MINLP
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Convergence

Variable & Node Selection

Variable Selection for Branch-and-Bound

Assume y; € {0,1} for simplicity ...
(Z,9) fractional solution to parent node; f = f(Z, %)

1. user defined priorities
... branch on most important variable first

2. maximal fractional branching
mienx{min(l — Ui, i)}

... find §; closest to % = largest change in problem
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Variable & Node Selection

Convergence of Branch-and-Bound

y*=2.4 “X\\ c(X)=0

y*
y<2 y>3 e J

All NLP problems solved globally & finite number of NLPs on tree
= Branch-and-Bound converges
~ complete enumeration at worst
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Variable & Node Selection

Variable Selection for Branch-and-Bound

Assume y; € {0,1} for simplicity ...
(Z,9) fractional solution to parent node; f = f(Z,9)

3. pseudo-cost branching

estimates e, e; of change in f(z,y) after branching

max {min(f—l— e (1 — ), F+ 6:@2)}

(2
... find y;, whose expected change of objective is largest

. estimate ej, e; by keeping track of

g
ej:u and e; =

1= Ui
where f:r/_ solution value after branching
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Variable & Node Selection

Variable Selection for Branch-and-Bound

Assume y; € {0, 1} for simplicity ...
(Z,9) fractional solution to parent node; f = f(Z, %)
4. strong branching: solve all NLP child nodes:
minimize  f(z,y)
A o

i =\ subjectto c¢(x,y) <0
reX,yeY, vy, =1/0

choose branching variable as
mzax{min( )}

... find y; that changes objective the most

Leyffer & Linderoth MINLP
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Convergence

Variable & Node Selection

Node Selection for Branch-and-Bound

Which node n on tree 7 should be solved next?
1. depth-first search
select deepest node in tree
e minimizes number of NLP nodes stored
e exploit warm-starts (MILP/MIQP only)
2. best lower bound
choose node with least value of parent node f,,)
e minimizes number of NLPs solved

Leyffer & Linderoth MINLP
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Variable Selection for Branch-and-Bound
Assume y; € {0, 1} for simplicity ...
(Z,9) fractional solution to parent node; f = f(Z,9)

5. MIQP strong branching: (Fletcher and Leyffer, 1998)
parametric solution of QPs ... much cheaper than re-solve

X

x’ solution of QP relaxation
<— step of the dual ASM

e step of dual active set method v -
e factorization of KKT matrix / f=-25556
e ~ multiple KKT solves N B

generalizes old MILP ideas

i
\

Leyffer & Linderoth MINLP
Branch-and-Bound Definition
Outer Approximation Convergence

Hybrid Methods

Variable & Node Selection

Node Selection for Branch-and-Bound

Which node 1 on tree 7 should be solved next?

3. best estimate
choose node leading to best expected integer solution

mi?_ To(n) + Z min {e;r(l — i), ei_yi}

ne .
iwy;fractional

where
® fp(n) = value of parent node

. ej/f = pseudo-costs
summing pseudo-cost estimates for all integers in subtree
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Benders Decomposition

Outer Approximation (Duran and Grossmann, 1986)

Motivation: avoid solving huge number of NLPs
e Exploit MILP/NLP solvers: decompose integer/nonlinear part

Key idea: reformulate MINLP as MILP (implicit)

e Solve alternating sequence of MILP & NLP
MILP

NLP subproblem y; fixed:

f(xayj) l

subject to ¢(z,y;) <0 :
re X NLP(yi)

minimize
T

NLP(y;)

Main Assumption: f, ¢ are convex

Leyffer & Linderoth MINLP
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Convergence

Benders Decomposition

Outer Approximation (Duran and Grossmann, 1986)

(My): lower bound (underestimate convex f, ¢)
NLP(y;): upper bound U (fixed y;)

NLP gives
| NLP(Y) subproblem < linearization

Y !
’ MILP master program ‘ ?,/g\l,‘vp ]}nds

MILP infeasible?

STOP

= stop, if lower bound > upper bound

Leyffer & Linderoth MINLP
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Outer Approximation (Duran and Grossmann, 1986)

n

f(x)
e let (z;,y;) solve NLP(y;) X

e linearize f, ¢ about (z;,y;) =: 2,
e new objective variable n > f(x,y)
o MINLP (P) = MILP (M)

mirgim;ze i

z=(z,y),n

(M) subject to n > f; + ij];T(z —zj) Vy; €Y
0>c¢j+Vej(z—2) Vy €Y
x € X,y €Y integer

SNAG: need all y; € Y linearizations

Leyffer & Linderoth MINLP
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Convergence
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Convergence of Outer Approximation

Lemma: Each y; € Y generated at most once.

Proof: Assume y; € Y generated again at iteration j > i
= 3 % such that (&, y;) feasible in (M;):

n> fi+ Vol (@ — z;)
0> ¢+ Vel (2 — x)

... because y; —y; =0

Now sum with (1, A;) optimal multipliers of NLP(;)

= 0> fi+ M+ (Vafi+ V)T (2 — ;)

... KKT conditions: V. f; + V,c\i =0 & )\;fpci =0

= 1 > f; contradicts n < U < f; upper bound

= each y; € Y generated at most once U
Refs: (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994)
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Benders Decomposition

Convergence of Outer Approximation

(%),
1. each y; € Y generated at most once

& |Y| < oo = finite termination

2. convexity = outer approximation

= convergence to global min

Convexity important!!!

Leyffer & Linderoth MINLP
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Outer Approximation & Benders Decomposition

Valid inequality from OA master; z = (z,y):
N> fi+ M+ (Vi +Veh)' (2 — z)
use first order conditions of NLP(y;) ...
Vofi+Vacidj =0 & A¢;=0
... to eliminate z components from valid inequality in y

= 0> fi+ (Vyf; + VyeiN)T (v — ;)
e 0> fi+ ) v-y)

where ; =V, f; + V,c;\; multiplier of y = y; in NLP(y;)

Leyffer & Linderoth MINLP
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Outer Approximation & Benders Decomposition

Take OA master ... z:= (z,y) ... wlog X =R"

mirzim;ze n

z= m’y ”r’

(M) subject to n > fj + VfI(2—2;) Vy, €Y
0>¢j+Vej(2—2) Vy €Y
y €Y integer

Vj: sum 0 > ¢;j... weighted with multiliers \; of NLP(y;)

= n=>fi+ )\?Cj + (ij + VCj)\j)T (z — Zj) Vy; €Y

. is a valid inequality.
References: (Geoffrion, 1972)
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meergemﬁe
Benders Decomposition

Outer Approximation & Benders Decomposition

= remove x from master problem ... Benders master problem

minimize 7
Ysn
(MB) § subject to 1> f; + (1) (y—y;) Vy; €Y

y €Y integer

where £1; multiplier of y = y; in NLP(y;)

e (Mp) has less constraints & variables (no x!)
e (Mp) almost ILP (except for 1)
e (Mp) weaker than OA (from derivation)

Leyffer & Linderoth MINLP
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Extended Cutting Plane Method

Replace NLP(y;) solve in OA by
linearization about solution of (1)

get cutting plane for violated constraint
= no NLP(y;) solves ...

... Kelley's cutting plane method instead
= slow nonlinear convergence:

> 1 evaluation per y

f(x)

References: (Westerlund, T. and Pettersson, F., 1995)
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LP/NLP Based Branch-and-Bound

Integrating SQP and Branch-and-Bound

LP/NLP Based Branch-and-Bound
AIM: avoid re-solving MILP master (M)

e Consider MILP branch-and-bound

e interrupt MILP, when y; found
= solve NLP(y;) get ;

e linearize f, ¢ about (z;,y;)
= add linearization to tree

e continue MILP tree-search

. until lower bound > upper bound

Leyffer & Linderoth MINLP
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Disadvantages of Outer Approximation

10)=(y-18)°

e MILP tree-search can be bottle-neck

e potentially large number of iterations
minimize  (y — 5% )?
subject to  y € {0, o, ...1}

Second order master (MIQP): (Fletcher and Leyffer, 1994):
e add Hessian term to MILP (M;) becomes MIQP:

1
minimize 7+ E(Z — )T W(z — 2) subject to...

Leyffer & Linderoth MINLP
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LP/NLP Based Branch-and-Bound

Integrating SQP and Branch-and-Bound

LP/NLP Based Branch-and-Bound

e need access to MILP solver ... call back
o exploit good MILP (branch-cut-price) solver
o (Akrotirianakis et al., 2001) use Gomory cuts in tree-search

e no commercial implementation of this idea

e preliminary results: order of magnitude faster than OA
o same number of NLPs, but only one MILP

e similar ideas for Benders & Extended Cutting Plane methods

References: (Quesada and Grossmann, 1992)
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LP/NLP Based Branch-and-Bound

Integrating SQP and Branch-and-Bound

Integrating SQP & Branch-and-Bound

AIM: Avoid solving NLP node to convergence.

Sequential Quadratic Programming (SQP)
— solve sequence (QFy) at every node

fro+Vfld+ 3d"Hyd

(QP) subject to ¢ + Vc;fd <0
rp+d, € X
Yy +dy €Y.

minimize
d

Early branching:
After QP step choose non-integral yf“, branch & continue SQP
References: (Borchers and Mitchell, 1994; Leyffer, 2001)
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Branch-and-Bound
Outer Approximation
Hybrid Methods

LP/NLP Based Branch-and-Bound
Integrating SQP and Branch-and-Bound

Comparison of Classical MINLP Techniques

Summary of numerical experience

1. Quadratic OA master: usually fewer iteration
MIQP harder to solve

2. NLP branch-and-bound faster than OA
... depends on MIP solver

3. LP/NLP-based-BB order of magnitude faster than OA
... also faster than B&B

4. Integrated SQP-B&B up to 3x faster than B&B
~ number of QPs per node

5. ECP works well, if function/gradient evals expensive
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Branch-and-Bound
Outer Approximation
Hybrid Methods

LP/NLP Based Branch-and-Bound

Integrating SQP and Branch-and-Bound

Integrating SQP & Branch-and-Bound

SNAG: (QPy) not lower bound

= no fathoming from upper bound
minimize fk—{—Vf,?d%— %dTHko o) =y + ¥
d 0\
subject to ¢, + Vel d <0 fy) = In(1+y)
mk+d$€{( .
Yr + dy cY.

Remedy: Exploit OA underestimating property (Leyffer, 2001):
e add objective cut f + Vfld <U — € to (QP%)

e fathom node, if (QPy) inconsistent
= converge for convex MINLP

NB: (QPy) inconsistent and trust-region active = do not fathom

Leyffer & Linderoth MINLP
Formulations
Inequalities
Dealing with Nonconvexity

Part Il

Modern Developments in MINLP
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Modern Methods for MINLP

Importance of Relaxations

1. Formulations

o Relaxations
e Good formulations: big M’s and disaggregation

2. Cutting Planes

e Cuts from relaxations and special structures
e Cuts from integrality

3. Handling Nonconvexity

e Envelopes
e Methods

Leyffer & Linderoth MINLP
Formulations Importance of Relaxations
Inequalities Big M
Dealing with Nonconvexity Aggregation

A Pure Integer Program

2(S) = min{cl'z : z € S},

S={xeZ Az <b}

S = {(r1,22) € Zi 1 6x1 + 20 < 15,
5x1 + 8xy < 20,29 < 2}
= {(07 O)a (0’ 1)7 (07 2)’ (17 0)7
(1,1),(1,2),(2,0)}
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Formulations
Inequalities
Dealing with Nonconvexity

Importance of Relaxations

Relaxations

o 2(9) € min,es f()

o 2(T) Y minger f(2)

Independent of f,S,T":
2(T) < 2(S)

If 2% = arg minger f(2)
And z7 € S, then

o x = argmingcg f(z)

Leyffer & Linderoth MINLP
Formulations Importance of Relaxations
Inequalities Big M
Dealing with Nonconvexity Aggregation

How to Solve Integer Programs?

e Relaxations!
e T'DS=2(T)<z2(9)
e People commonly use the linear programming relaxation:

2(LP(S)) = min{c'z : 2 € LP(S)}
LP(S) ={x e R} : Az < b}

o If LP(S) = conv(S), we are done.

e Minimum of any linear function over any
convex set occurs on the boundary

e We need only know conv(SS) in the direction of c.
e The “closer” LP(S) is to conv(S) the better.

Leyffer & Linderoth MINLP
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Inequalities Big M
Dealing with Nonconvexity :

Small M’'s Good. Big M's Baaaaaaaaaaaaaaaaaad!

e Sometimes, we can get a better relaxation (make LP(S5) a
closer approximation to conv(.S)) through a different tighter
formulation

e Let's look at the geometry
P={zeRy,z€{0,1} :z < Mz,x <u}
LP(P)={xecR4,z2€[0,1]: 2 < Mz,x <u}

conv(P)={z € R4,z €{0,1} : z < uz}

Leyffer & Linderoth MINLP
Formulations Importance of Relaxations
Inequalities Big M
Dealing with Nonconvexity Aggregation

LP Versus Conv

LP(P)={xe€R4,2€[0,1] ;2 < Mz,z <u}

conv(P)={z e Ry,2z€0,1] : x < uz}

e KEY: If M = u, LP(P) = conv(P)
e Small M's good. Big M's baaaaaaaad.

Leyffer & Linderoth MINLP

Formulations
Inequalities
Dealing with Nonconvexity

Importance of Relaxations

P={zeRy,z€{0,1} :x < Mz,x <u}

Leyffer & Linderoth MINLP
Formulations

Inequalities Big M
Dealing with Nonconvexity Aggregation

Importance of Relaxations

UFL: Uncapacitated Facility Location

e Facilities: I
min Z fijrj + Z Z JiiYij

e Customers: J

jedJ i€l jeJ

Zyij =1 Yiel

JEN

Sy < My Vi€ (1)
el
ORy;; < z; Viel, jeJ (2)

© O O

e Which formulation is to be preferred?
e [ = J = 40. Costs random.

e Formulation 1. 53,121 seconds, optimal solution.
e Formulation 2. 2 seconds, optimal solution.
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Valid Inequalities

e Sometimes we can get a better formulation by dynamically
improving it.

e An inequality 77z < mq is a valid inequality for S if
7l <myVzes

o Alternatively: max,es{n’z} < mo

e Thm: (Hahn-Banach). Let
S C R"™ be a closed, convex set,

and let £ ¢ S. Then there exists FTN
=7
m € R™ such that 0
712 > max{rlz}
xeS
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Formulations

Preliminaries
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Dealing with Nonconvexity Disjunctive Inequalities

It's Actually Important!

e We want to approximate the convex hull of integer solutions,
but without a linear objective function, the solution to the
relaxation might occur in the interior.

e No Separating Hyperplane! :-(

min(y — 1/2) + (v — 1/2)? e
s.t. y1 € {0,1},42 € {0,1} e
5 5 I\ \ (gl\a :g2 ) ,) |
N> (y1—1/2)"+ (2 = 1/2) O B
i AL S
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Disjunctive Inequalities

Nonlinear Branch-and-Cut

Consider MINLP
minimize  flz + fgy
.y
subject to  ¢(z,y) <0
ye{0,1}, 0<x<U

¢ Note the Linear objective
e This is WLOG:

min f(z,y) & min n st. n > f(z,y)

Leyffer & Linderoth MINLP
Formulations
Inequalities MILP Inequalities Applied to MINLP

Dealing with Nonconvexity Disjunctive Inequalities

Preliminaries

Valid Inequalities From Relaxations

e |dea: Inequalities valid for a relaxation are valid for original *
e Generating valid inequalities for a relaxation is often easier.

z
* S e Separation Problem over T:
S Given 2, T find (7, m) such
g T th;t '3 > 7,
' i <mpVe €T
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Simple Relaxations

e |dea: Consider one row relaxations

o If P={x€{0,1}" | Az < b}, then for any row 4,
P, ={z €{0,1}" | alx < b;} is a relaxation of P.

e If the intersection of the relaxations is a good approximation
to the true problem, then the inequalities will be quite useful.

e Crowder et al. (1983) is the seminal paper that shows this to
be true for IP.

e MINLP: Single (linear) row relaxations are also valid = same
inequalities can also be used

Leyffer & Linderoth MINLP
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Example

K ={z € {0, 1}7 | 1121 + 622 + 623 + 524 + 525 + b2 + 7 < 19}
LP(K) = {z €[0,1]" | 11214+622+623+524+5x5+4x6+27 < 19}

e (1,1,1/3,0,0,0,0) € LP(K)
e CHOPPED OFF BY z1 + 2z + 23 <2
e (0,0,1,1,1,3/4,0) € LP(K)
e CHOPPED OFF BY 23+ x4 + a5 + 26 < 3

Leyffer & Linderoth MINLP
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Knapsack Covers

K={xec{0,1}" | a2 < b}

Aset C C N isacoverif 3, .na; >b

A cover C'is a minimal cover if C'\ j is not a cover Vj € C

e If C C N is a cover, then the cover inequality
d x; <) -1
jec
is a valid inequality for S

e Sometimes (minimal) cover inequalities are facets of conv(K)

Leyffer & Linderoth MINLP
Formulations Preliminaries
Inequalities MILP Inequalities Applied to MINLP
Dealing with Nonconvexity Disjunctive Inequalities

Other Substructures
e Single node flow: (Padberg et al., 1985)

S={aeRM ye{0,1}M| S u; <baj<uy;VieN
JEN
e Knapsack with single continuous variable: (Marchand and
Wolsey, 1999)

S = $€R+,y€{0,l}‘N|| Zajyj§b+$
JEN
e Set Packing: (Borndorfer and Weismantel, 2000)
s={ye {01} ay<e}
A e {0, 1}MXINT ¢ = (1,1,..., 1)
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The Chvatal-Gomory Procedure Extension to MINLP (Cezik and Iyengar, 2005)

o A general procedure for generating valid inequalities for

: e This simple idea also extends to mixed 0-1 conic programming
Integer programs

e Let the columns of A € R™*™ be denoted by {aj,az,...a,} minimize 7z
o S={yeZ}| Ay <b}. 2= (x,y)

1. Choose nonnegative multipliers u € R subject to Az =k b

2. ul Ay <u'bis a valid inequality (3¢ v u”a;y; < u’b). ye{0,1}?, 0<ax<U

3. 2 jen |luTa;|y; < u'b (Since y > 0).

4. 3 ienluTajly; < [u'd] is valid for S since |ua;]y; is an

integer e IC: Homogeneous, self-dual, proper, convex cone

e Simply Amazing: This simple procedure suffices to generate crrpye(zr—y)ek

every valid inequality for an integer program
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Formulations Preliminaries Formulations Preliminaries
Inequalities MILP Inequalities Applied to MINLP Inequalities MILP Inequalities Applied to MINLP
Dealing with Nonconvexity Disjunctive Inequalities Dealing with Nonconvexity Disjunctive Inequalities

Gomory On Cones (Cezik and lyengar, 2005) Mixed Integer Rounding—MIR
o LP: K =R"
e SOCP: K4 = {(w0,Z) | zo > ||Z||} Almost everything comes from considering the following very
o SDP: K, = {z = vec(X) | X = X7, X p.s.d} simple set, and observation.
e Dual Cone: ]C*déf{u | UTZZOVZEIC} ° X:{(x,y)ERXZ|y§b+w} ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

f=0b—|b]: fractional

e Extension is clear from the following equivalence: _
e NLP People are silly and use f
Az s b o uT Az > uTb Vu e 0 for the objective function
e LP (X ) b y <= floor(b) + x/(1-f)
e conv(X)
e Many classes of nonlinear o y< |bl+ -1 2isa valid T
T 7 oor(b)
inequalities can be e Go to other SIAM Short J= L J 1-f
. inequality for X

represented as Course to find out about

Semidefinite Programming
Az ~K, bor Az =y, b
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Extension of MIR
Xo =< (z7,27,y) € ]Ri x 7N \ Zajyj +at <b+a~
JEN
e The inequality

5 (1o + =) gy < g+ 2

JEN

is valid for X»

def def

o fj = a;—la;], ()" = max(t,0)

e X5 is a one-row relaxation of a general mixed integer program
e Continuous variables aggregated into two: o™, 2~

Leyffer & Linderoth MINLP

Formulations
Inequalities MILP Inequalities Applied to MINLP
Dealing with Nonconvexity Disjunctive Inequalities

Preliminaries

Gomory Mixed Integer Cut is a MIR Inequality

e Consider the set
X = {(x+,x,yo,y) € Ri X 7 X ZLNI | yo + Zajyj +at -z :b}
JEN
which is essentially the row of an LP tableau

e Relax the equality to an inequality and apply MIR
e Gomory Mixed Integer Cut:

Zf]ijrm +— +Z

JEN; JEN,

Leyffer & Linderoth MINLP
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Disjunctive Inequalities

It's So Easy, Even | Can Do It

Proof:
c Ny={jeN|f<f}
° N2 =N \ Nl
e Let

P ={(z,y) e R2 x zN |
S lajlyi+ > Talyy <b+zm+ ) (1- f)ys)

JEN1 JEN2 JEN?

1. Show X, C P

2. Show simple (2-variable) MIR inequality is valid for P (with an
appropriate variable substitution).

3. Collect the terms

Leyffer & Linderoth MINLP
Formulations Preliminaries
Inequalities MILP Inequalities Applied to MINLP

Dealing with Nonconvexity Disjunctive Inequalities

Using Gomory Cuts in MINLP (Akrotirianakis et al., 2001)

e LP/NLP Based Branch-and-Bound solves MILP instances:
minimize 7
2= ()
subject to n > f; + Vi (z - zj) Vy; € Yk
0>c¢j+ chl(z —zj) Vy;eY*F
x € X, yeY integer

Create Gomory mixed integer cuts from

N> fi+ V(- 2)
0 > ¢ +Vel(2—2)

Akrotirianakis et al. (2001) shows modest improvements
Research Question: Other cut classes?
Research Question: Exploit “outer approximation” property?
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Disjunctive Cuts for MINLP (Stubbs and Mehrotra, 1999) Disjunctive Cuts: Example

Extension of Disjunctive Cuts for MILP: (Balas, 1979; Balas et al.,
1993)

Continuous relaxation (z aef (z,v))

minimize {z | (z — 1/2)* + (y —3/4)* <1,-2 <z <2,y € {0,1}}
Y
. Cdéf{z|c(z)§0, 0<y<1,0<z<U}

def tr A : .
e C= conv({z € C | ye{0,1}*}) :/ Given Z with §; & {0,1} find separating
0/1 def h |
« CTE (e Oy =0/1) yperplane
o ! minimize ||z — 2|
et Z = Aoug + A1uq J J = z
let M;(C) = { Mo+ =1, X, A\ >0 subject to 2 € P;(C)
0 1
UOECJ,IHEC] '————---------y->
= P;(C) := projection of M;(C) onto z \
= P;j(C) = conv(CNy; € {0,1}) and P1.,(C) =C £=(2,9)
Leyffer & Linderoth MINLP Leyffer & Linderoth MINLP
Formulations Preliminaries Formulations Preliminaries
Inequalities MILP Inequalities Applied to MINLP Inequalities MILP Inequalities Applied to MINLP
Dealing with Nonconvexity Disjunctive Inequalities Dealing with Nonconvexity Disjunctive Inequalities
Disjunctive Cuts Example What to do? (Stubbs and Mehrotra, 1999)

*

def . ~
2" = argmin||z — 2||

Look at the perspective of ¢(z)

P(c(2), p) = pe(Z/ 1)

s.t. Mupg +M\ur = =z
—0.16 PtA =1 0.66 e Think of Z = uz
( 0 ) Suo < ( 1 ) e Perspective gives a convex reformulation of M;(C): /\/lj(C"’)v
— where
) ( 00.47 ) <u < ( 1.;17 )
) Ao, A1 > 0 . pei(z/p) <0
s C={(2p)| 0<pu<1
s (aon O0<z<plU, 0<y<p
£=(2,9)
NONCONVEX e ¢(0/0) =0 = convex representation
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Disjunctive Cuts Example Example, cont.

pl(z/p—1/2? + (y/p—3/4 -1 <0 C?={(zm) |y; =0} Cf ={(zp) | yj = p}
—2p<x<2u

0<y<p

H 0<u<1

8

o Take vp < poug v1 < p1u1
min ||z — Z||

Solution to example:

st. vp+v1 = z* —0.401

fo + p v )~ \ 0.780
(vo, 110)
(U17 Ml)
Mo, t1

e separating hyperplane: 7 (z — 2), where ¢ € 9||z — 2|

|
SN

SLmS.O

2

vV m m
o

Leyffer & Linderoth MINLP Leyffer & Linderoth MINLP
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Inequalities MILP Inequalities Applied to MINLP Inequalities MILP Inequalities Applied to MINLP
Dealing with Nonconvexity Disjunctive Inequalities Dealing with Nonconvexity Disjunctive Inequalities

Example, Cont. Nonlinear Branch-and-Cut (Stubbs and Mehrotra, 1999)

e Can do this at all nodes of the branch-and-bound tree
e Generalize disjunctive approach from MILP

20* +0.5 e solve one convex NLP per cut
Y= < 2y* — 0.75 > * Generalizes Sherali and Adams (1990) and Lovasz and

Schrijver (1991)
0.198x 4 0.061y > —0.032

e tighten cuts by adding semi-definite constraint

e Stubbs and Mehrohtra (2002) also show how to generate
convex quadratic inequalities, but computational results are
not that promising

2=(2,9)
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Disjunctive Inequalities

Generalized Disjunctive Programming (Raman and
Grossmann, 1994; Lee and Grossmann, 2000)
Consider disjunctive NLP

( minirpize Sfi + f(x)
| Y, -Y;
subject to ci(z) <0 |V | Bix=0 |Viel
fi =" fi=0
0<z<U QY)=true, Y € {true, false}?

\

convex hull representation ...

T = vi1 + vio, Ait+ Ao =1
Airci(vir/Ai1) <0, Bivio =0
0 <wy < \yU, 0< N\ <1, fi = iy
Leyffer & Linderoth MINLP
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Dealing with Nonconvexity

Dealing with Nonconvexities

A e Functional nonconvexity
causes serious problems.

e Branch and bound must
have true lower bound
(global solution)

e Underestimate nonconvex
functions. Solve relaxation.
) Provides lower bound.

\j

e |If relaxation is not exact,
then branch

Leyffer & Linderoth MINLP
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Disjunctive Inequalities

Disjunctive Programming: Example

Y1
x%—i—x%él

Y,
_(1‘1—4)2+(£L'2—1)2§1_

big-M

convex hull// \
| |

Y3 1 \ |
V. \ y
(:L’l — 2)2 + (IQ — 4)2 <1 f/ A 4
- @
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Dealing with Nonconvexity

Dealing with Nonconvex Constraints

e If nonconvexity in
constraints, may need to
overestimate and
underestimate the function
to get a convex region
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Dealing with Nonconvexity

Envelopes

f:Q2—-R

e Convex Envelope (vexq(f)):
Pointwise supremum of
convex underestimators of f
over €.

e Concave Envelope
(cavq(f)): Pointwise
infimum of concave
overestimators of f over Q.

Leyffer & Linderoth MINLP
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Bilinear Terms

The convex and concave envelopes of the bilinear function xy over
a rectangular region

Rdéf (x,y)ERz | ly <z < uy, lyfyﬁuy}
are given by the expressions

vexxyp(z,y) = max{lyz + lpy — lply, uyr + ugy — uguy}
cavxyp(z,y) = min{uyx + Ly — lyuy, lyx + upy — ugly}

Leyffer & Linderoth MINLP
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Bilinear Terms

Branch-and-Bound Global Optimization Methods

e Under/Overestimate “simple” parts of (Factorable) Functions
individually

e Bilinear Terms
e Trilinear Terms
e Fractional Terms
e Univariate convex/concave terms
e General nonconvex functions f(z) can be underestimated over
a region [l,u] "overpowering” the function with a quadratic
function that is < 0 on the region of interest

L(x) = f(z) + Z ai(li — xi)(wi — ;)
=1

Refs: (McCormick, 1976; Adjiman et al., 1998; Tawarmalani and
Sahinidis, 2002)

Leyffer & Linderoth MINLP
Difficulties

Formulations
Inequalities Envelopes
Dealing with Nonconvexity Bilinear Terms

Worth 1000 Words?
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Disaggregation Tawarmalani et al. (2002)
Consider convex problem with bilinear objective
minimize  w Y ;" ¢y
W, L1 se.y Ty
subject to (w,z) € P Polyhedron
O0<w<v 0<z<u

Formulation #1
Formulation #2

min z
st. (w,z) € P -
0 < - mmz;zi
i

n n —
(Z Ciui)w—FU(Z CiTi) st. (w,x) € P
=1 i=1

n
C;iU;W + VG X
—U(Zciui) < 0 —veiu; < 0 Vi
=1
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Part IV

Implementation and Software

Leyffer & Linderoth MINLP

Formulations Difficulties
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Bilinear Terms

Summary

MINLP: Good relaxations are important

Relaxations can be improved

e Statically: Better formulation/preprocessing
e Dynamically: Cutting planes

e Nonconvex MINLP:

e Methods exist, again based on relaxations

Tight relaxations is an active area of research

Lots of empirical questions remain

Leyffer & Linderoth MINLP
Special Ordered Sets
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Implementation & Software Issues

Implementation and Software for MINLP

1. Special Ordered Sets
2. Parallel BB and Grid Computing

3. Implementation & Software Issues
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Special Ordered Sets of Type 1

Special Ordered Sets of Type 2
Special Ordered Sets of Type 3

Special Ordered Sets of Type 1

SOS1: Y  A\; =1 & at most one ); is nonzero

Example 1: d € {d,...,d,} discrete diameters
& d=7Y) Nd;and {\1,...,)\,} is SOS1
= dZZ)\ZdZ and Z)\Z =1and \; € {0,1}

...d is convex combination with coefficients \;

Example 2: nonlinear function ¢(y) of single integer

S y=> i and c=> c(i)\; and {A\1,...,\,} is SOS1

References: (Beale, 1979; Nemhauser, G.L. and Wolsey, L.A.,
1988; Williams, 1993) ...
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Special Ordered Sets of Type 2
Special Ordered Sets of Type 3

Special Ordered Sets of Type 2

SOS2: Y™ \; =1 & at most two adjacent \; nonzero

Example: Approximation of nonlinear function z = z(x)

4 2(x) e breakpoints 21 < ... <

e function values z; = z(x;)

piece-wise linear

T =Y NT

z2=> Nz
{A1,...,Ap} is SOS2

X
—t—t—t

...convex combination of two breakpoints ...
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Special Ordered Sets of Type 1

Special Ordered Sets of Type 2
Special Ordered Sets of Type 3

Special Ordered Sets of Type 1

SOS1: > A\, =1 & at most one \; is nonzero

Branching on SOS1

1. reference row a; < ... < qy
e.g. diameters

2. fractionality: a := > a;\;

3. findt: ay <a<apr Q
4. branch: {A\ij1,...,0,} =0
or {A,...,\} =0 a<a
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Special Ordered Sets of Type 1

Special Ordered Sets of Type 2
Special Ordered Sets of Type 3

Special Ordered Sets of Type 2

SOS2: Y A\; =1 & at most two adjacent \; nonzero

Branching on SOS2

1. reference row a1 < ... < a,
€.g. a; = x;

2. fractionality: a := > a;\;

3. findt: ar <a<ap1

4. branch: {\ij1,...,A,} =0 O

or {A,..., N1} x<a, X>a
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Parallel BB and Grid Computing

Implementation & Software Issues Special Ordered Sets of Type 3

Special Ordered Sets of Type 3

Example: Approximation of 2D function u = g(v, w)

Triangularization of [vr, vy| X [wr,, wy] domain
LLvypy=uvn<...<vp =y

wrp =w1 < ... <w =wy w

2
3. function u;; := g(v;, w;)
4

Aij weight of vertex (i, j)

® V= Z )\Z'j’Uz'
o w =) Aijw;
o u =) Aijuij v

122)\1‘]' is SOS3 ...
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Special Ordered Sets Special Ordered Sets of Type 1
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Branching on SOS3

A violates set condition

Special Ordered Sets of Type 2
Special Ordered Sets of Type 3

w
e compute centers: T
0= Z )\ijvi &
W = Z )\Z'jwi @ .
e find s,t such that B
vg <0< Vs41 & v

ws < W < Wsy1

e branch on v or w

vertical branching: Z)‘ij = 1 horizontal

d aj=1

L R
=1 ) Nn=1
T

B
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branching:

Special Ordered Sets Spe 0 g I

Special Ordered Sets of Type 2

Parallel BB and Grid Computing

Implementation & Software Issues Special Ordered Sets of Type 3

Special Ordered Sets of Type 3

SOS3: > \ij =1 & set condition holds

1. v =) \jv; ... convex combinations
2. w= Z )\ijwj

3. u= Z )\ijuij

{A11,..., Ak} satisfies set condition

& Jtrangle A {(5,5) : \ij >0} C A d
violates set condn
i.e. nonzeros in single triangle A
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Branching on SOS3

Special Ordered Sets of Type 1

Special Ordered Sets of Type 2
Special Ordered Sets of Type 3

Example: gas network from first lecture ...

e pressure loss p across pipe is related to flow rate f as

Py — Do = VT SigN(F) 2 pin = \/ P2y + V- sign(f) 2

where VU: “Friction Factor”

e nonconvex equation u = g(v, w)
...assume pressures needed elsewhere

e (Martin et al., 2005) use SOS3 model
... study polyhedral properties
... solve medium sized problem
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Parallel Branch-and-Bound

meta-computing platforms:

e set of distributed heterogeneous computers, e.g.
o pool of workstations
o group of supercomputers or anything

e low quality with respect to bandwidth, latency, availability

e low cost: it's free!ll ... huge amount of resources

. use Condor to "build” MetaComputer
... high-throughput computing
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Parallel Branch-and-Bound

First Strategy: 1 worker = 1 NLP
= grain-size too small
... NLPs solve in seconds

New Strategy:
1 worker = 1 subtree (MINLP)
. “streamers” running down tree Worker 1 Worker2  Worker 3

Important: workers remove “small tasks”
... before returning tree to master

Leyffer & Linderoth MINLP
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Parallel Branch-and-Bound

Master Worker Paradigm (MWwdriver)
Object oriented C++ library on top of Condor-PVM

Master

Condor-PVM
Universe

GLOBAL
DATA

Task Pool

Condor-Workers

Fault tolerance via master check-pointing
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Parallel Branch-and-Bound

Trimloss optimization with 56 general integers
= solve 96,408 MINLPs on 62.7 workers
= 600,518,018 NLPs

Wall clock time = 15.5 hours
Cumulative worker CPU time = 752.7 hours ~ 31 days

work-time 752.7

fficiency := -
efficiency work X job-time 62.7 x 15.5

=80.5

... proportion of time workers were busy
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Parallel Branch-and-Bound: Results

number of workers lower & upper bounds

100 18
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5 10 15 [1} 5 10 15
elapsed time [h] elapsed time [h]

numizer of problems on stack «10°  number of NLPs per task
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Detecting Infeasibility

Choice of NLP Solver
MINLP Software

Feasibility Cuts for OA et al.

Y = {§} singleton & c¢(c, 1) convex

(2,9) solves F(§) with ||ct(2,9)|| >0
= valid cut to eliminate ¢ given by

02c+:%,“+“T(x_ﬂf)
(2,9)+4 D

where 4 € 9||ct(Z, §)]| subdifferential

Polyhedral norms: 4 = VEA where
1. loonorm: DN =1, and 0 < \; L & < &t
2. ftnorm: 0< \; <1 L —¢

... A multipliers of equivalent smooth NLP ...easy exercise
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Detecting Infeasibility
Choice of NLP Solver

MINLP Software

Detecting Infeasibility

NLP node inconsistent (BB, OA, GBD)
= NLP solver must prove infeasibility
= solve feasibility problem: restoration

le* (@, y)l
subjectto z € X, y € Vv

minimize
z,y

where ¢t (z,y) = max(c(x,y),0) and || || any norm

If 3 solution (£, 9) such that ||cT(2,9)]| > 0
= no feasible point (if convex) in neighborhood (if nonconvex)
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Detecting Infeasibility

Choice of NLP Solver
MINLP Software

Geometry of Feasibility Cuts

'Y
feasibility cuts

y=1

y = 3 infeasible
solution to feasibility problem
feasibility cuts for OA
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Detecting Infeasibility
Choice of NLP Solver

MINLP Software

Infeasibility in Branch-and-Bound

FilterSQP restoration phase
e satisfiable constraints: J := {j : ¢;(Z,7) < 0}
e violated constraints J* (complement of .J)
minimize Z cj(z,y)
jeJ+
subject to  ¢j(x,y) <0
reX, yey

VijedJ

o filter SQP algorithm on ||c}|| and ||CL||
= 2nd order convergence

e adaptively change J

e similar to /1-norm, but \; £ 1
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Choice of NLP Solver

MINLP branch-and-bound
e (Z,7) solution to parent node
e new bound: y; > |7;| added to parent NLP

Detecting Infeasibility

Choice of NLP Solver
MINLP Software

Snag: Ve(z,y), V2L etc. change ...
o factorized KKT system at (z*,y*) to find step (d.,d,)
e NLP solution:
(2.9) = @ y") = (2 + ady,y* + ady)
but KKT system at ("1, y**1) never factorized
...SQP methods take 2-3 iterations (good active set)
Outer Approximation et al.

no good warm start (y changes too much)
= interior-point methods or SQP can be used
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Choice of NLP Solver

Detecting Infeasibility

Choice of NLP Solver

MINLP Software

MILP/MIQP branch-and-bound
e (Z,9) solution to parent node
e new bound: y; > |7;| added to parent LP/QP

= dual active set method; (%, ) dual feasible
= fast re-optimization (MIQP 2-3 pivots!)

MILP exploit factorization of constraint basis
= no re-factorization, just updates
... also works for MIQP (KKT matrix factorization)

= interior-point methods not competitive
. how to check \; > 0 for SOS branching 777
. how to warm-start IPMs 777
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Software for MINLP

Detecting Infeasibility

Choice of NLP Solver
MINLP Software

Outer Approximation: DICOPT++

Branch-and-Bound Solvers: SBB & MINLP

Global MINLP: BARON & MINOPT

Online Tools: MINLP World, MacMINLP & NEOS

Leyffer & Linderoth MINLP



Special Ordered Sets Detec Infeasibility
Parallel BB and Grid Computing Choice of NLP Solver
Implementation & Software Issues

MINLP Software

Outer Approximation: DICOPT++

Outer approximation with equality relaxation & penalty
Reference: (Kocis and Grossmann, 1989)
Features:

e GAMS interface

e NLP solvers: CONOPT, MINQOS, SNOPT
e MILP solvers: CPLEX, OSL2

e solve root NLP, or NLP(3°) initially

e relax linearizations of nonlinear equalities:
Ai multiplier of ¢;(2) =0 ...

N N N >0 if )\1 >0
(9= 20 i g

e heuristic stopping rule: STOP if NLP(y’) gets worse

AIMMS has version of outer approximation
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MINLPBB: (Leyffer, 1998)

Detecting Infeasibility

Choice of NLP Solver
MINLP Software

Features:
e AMPL branch-and-bound solver
e variable types: integer, binary, SOS1

variable selection: integrality, priorities

node selection: depth-first & best bound after infeasible node

NLP solver: filterSQP = feasibility restoration
CUTEr interface available
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Detecting Infeasibility
Choice of NLP Solver

MINLP Software

SBB: (Bussieck and Drud, 2000)

Features:
e GAMS branch-and-bound solver
e variable types: integer, binary, SOS1, SOS2, semi-integer
e variable selection: integrality, pseudo-costs
e node selection: depth-first, best bound, best estimate

e multiple NLP solvers: CONOPT, MINQOS, SNOPT
= multiple solves if NLP fails

Comparison to DICOPT (OA):
e DICOPT better, if combinatorial part dominates
e SBB better, if difficult nonlinearities
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Global MINLP Solvers

Detecting Infeasibility

Choice of NLP Solver
MINLP Software

a-BB & MINOPT: (Schweiger and Floudas, 1998)
e problem classes: MINLP, DAE, optimal control, etc
e multiple solvers: OA, GBD, MINOS, CPLEX
e own modeling language
BARON: (Sahinidis, 2000)
e global optimization from underestimators & branching
e range reduction important

e classes of underestimators & factorable NLP
exception: cannot handle sin(x), cos(x)

e CPLEX, MINOS, SNOPT, OSL

e mixed integer semi-definite optimization: SDPA
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MINI:P Software

Online Tools

Model Libraries

e MINLP World www.gamsworld.org/minlp/
scalar GAMS models ... difficult to read

e GAMS library www.gams.com/modlib/modlib.htm

e MacMINLP www.mcs.anl.gov/ leyffer/macminlp/
AMPL models

NEQOS Server
e MINLP solvers: SBB (GAMS), MINLPBB (AMPL)
e MIQP solvers: FORTMP, XPRESS

MINLP

Detecting Infeasibility

Leyffer & Linderoth
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Choice of NLP Solver
MINLP Software

Conclusions

MINLP rich modeling paradigm
o most popular solver on NEOS

Algorithms for MINLP:
o Branch-and-bound (branch-and-cut)
o Outer approximation et al.

“MINLP solvers lag 15 years behind MIP solvers”

=> many research opportunities!!!
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ing Infeasibility
Choice of NLP Solver

MINLP Software

COIN-OR

http://www.coin-or.org

COmputational INfrastructure for Operations Research
A library of (interoperable) software tools for optimization

A development platform for open source projects in the OR
community

Possibly Relevant Modules:

OSI: Open Solver Interface

CGL: Cut Generation Library

CLP: Coin Linear Programming Toolkit

CBC: Coin Branch and Cut

IPOPT: Interior Point OPTimizer for NLP

NLPAPI: NonLinear Programming API
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