A Practical Guide to

New Math

MINLP Short Course Overview

- 1. Introduction, Applications, and Formulations
- 2. Classical Solution Methods
- 3. Modern Developments in MINLP
- 4. Implementation and Software

Part I

Introduction, Applications, and Formulations

Motivation What Examples How Tricks Why?

The Problem of the Day

Mixed Integer Nonlinear Program (MINLP)

$$\begin{cases} \begin{array}{ll} \underset{x,y}{\text{minimize}} & f(x, y) \\ \text{subject to} & c(x, y) \leq 0 \\ & x \in X, \ y \in Y \text{ integer} \end{cases} \end{cases}$$

- *f*, *c* smooth (convex) functions
- X, Y polyhedral sets, e.g. $Y = \{y \in [0, 1]^p \mid Ay \le b\}$
- $y \in Y$ integer \Rightarrow hard problem
- $f, c \text{ not convex} \Rightarrow \text{very hard problem}$

Why the N?

An anecdote: July, 1948. A young and frightened George Dantzig, presents his newfangled "linear programming" to a meeting of the Econometric Society of Wisconsin, attended by distinguished scientists like Hotelling, Koopmans, and Von Neumann. Following the lecture, Hotelling^a pronounced to the audience:

Motivation

Examples

What

But we all know the world is nonlinear!

"in Dantzig's words "a huge whale of a man"

The world is indeed nonlinear

- Physical Processes and Properties
 - Equilibrium
 - Enthalpy
- Abstract Measures
 - Economies of Scale
 - Covariance
 - Utility of decisions

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Motivation	What	Motivation	What
Examples		Examples	How
Tricks		Tricks	Why?

Why the MI?

- We can use 0-1 (binary) variables for a variety of purposes
 - Modeling yes/no decisions
 - Enforcing disjunctions
 - Enforcing logical conditions
 - Modeling fixed costs
 - Modeling piecewise linear functions
- If the variable is associated with a physical entity that is indivisible, then it must be integer
 - 1. Number of aircraft carriers to to produce. Gomory's Initial Motivation
 - 2. Yearly number of trees to harvest in Norrland

A Popular MINLP Method

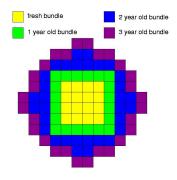
Dantzig's Two-Phase Method for MINLP ${\scriptstyle \mathsf{Adapted}}$ by Leyffer and Linderoth

- 1. Convince the user that he or she does not wish to solve a mixed integer nonlinear programming problem at all!
- 2. Otherwise, solve the continuous relaxation (NLP) and round off the minimizer to the nearest integer.
- Sometimes a continuous approximation to the discrete (integer) decision is accurate enough for practical purposes.
 - Yearly tree harvest in Norrland
- For 0 − 1 problems, or those in which the |y| is "small", the continuous approximation to the discrete decision is not accurate enough for practical purposes.
- Conclusion: MINLP methods must be studied!

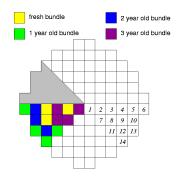
Example: Core Reload Operation (Quist, A.J., 2000)

Example: Core Reload Operation (Quist, A.J., 2000)

- max. reactor efficiency after reload subject to diffusion PDE & safety
- diffusion PDE ≃ nonlinear equation
 ⇒ integer & nonlinear model
- avoid reactor becoming overheated



- look for cycles for moving bundles: e.g. $4 \rightarrow 6 \rightarrow 8 \rightarrow 10$ i.e. bundle moved from 4 to 6 ...
- model with binary $x_{ilm} \in \{0, 1\}$ $x_{ilm} = 1$ \Leftrightarrow node *i* has bundle *l* of cycle *m*



Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Motivation	What	Motivation	Gas Transmission
Examples	How	Examples	Portfolio Management
Tricks	Why?	Tricks	Batch Processing

AMPL Model of Core Reload Operation

Exactly one bundle per node:

$$\sum_{l=1}^{L} \sum_{m=1}^{M} x_{ilm} = 1 \qquad \forall i \in I$$

AMPL model:

var x {I,L,M} binary ;
Bundle {i in I}: sum{l in L, m in M} x[i,l,m] = 1 ;

- Multiple Choice: One of the most common uses of IP
- Full AMPL model c-reload.mod at www.mcs.anl.gov/~leyffer/MacMINLP/

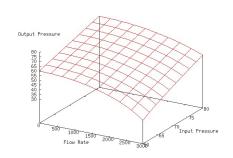
Gas Transmission Problem (De Wolf and Smeers, 2000)

- Belgium has no gas!
- All natural gas is imported from Norway, Holland, or Algeria.
- Supply gas to all demand points in a network in a minimum cost fashion.
- Gas is pumped through the network with a series of compressors
- There are constraints on the pressure of the gas within the pipe

Motivation	Gas Transmission
Examples	Portfolio Management
Tricks	

Activation Gas Transmission Examples Portfolio Managem Tricks Batch Processing

Pressure Loss is Nonlinear



- Assume horizontal pipes and steady state flows
- Pressure loss p across a pipe is related to the flow rate f as

$$p_{in}^2 - p_{out}^2 = \frac{1}{\Psi} \operatorname{sign}(f) f^2$$

Ψ: "Friction Factor"

Gas Transmission: Problem Input

- Network (N, A). $A = A_p \cup A_a$
 - A_a : active arcs have compressor. Flow rate can increase on arc
 - A_p : passive arcs simply conserve flow rate
- $N_s \subseteq N$: set of supply nodes
- $c_i, i \in N_s$: Purchase cost of gas
- $\underline{s}_i, \overline{s}_i$: Lower and upper bounds on gas "supply" at node i
- $\underline{p}_i, \overline{p}_i:$ Lower and upper bounds on gas pressure at node i
- $s_i, i \in N$: supply at node i.
 - $s_i > 0 \Rightarrow$ gas added to the network at node i
 - $s_i < \mathbf{0} \Rightarrow \mathbf{gas}$ removed from the network at node i to meet demand
- $f_{ij}, (i, j) \in A$: flow along arc (i, j)
 - $f(i,j) > 0 \Rightarrow$ gas flows $i \rightarrow j$
 - $f(i,j) < 0 \Rightarrow$ gas flows $j \rightarrow i$

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Examples	Gas Transmission Portfolio Management Batch Processing	Examples	Gas Transmission Portfolio Management Batch Processing

Gas Transmission Model

$$\min\sum_{j\in N_s}c_js_j$$

subject to

$$\sum_{\substack{j|(i,j)\in A}} f_{ij} - \sum_{\substack{j|(j,i)\in A}} f_{ji} = s_i \quad \forall i \in N$$

$$\operatorname{sign}(f_{ij})f_{ij}^2 - \Psi_{ij}(p_i^2 - p_j^2) = 0 \quad \forall (i,j) \in A_p$$

$$\operatorname{sign}(f_{ij})f_{ij}^2 - \Psi_{ij}(p_i^2 - p_j^2) \geq 0 \quad \forall (i,j) \in A_a$$

$$s_i \in [\underline{s}_i, \overline{s}_i] \quad \forall i \in N$$

$$p_i \in [\underline{p}_i, \overline{p}_i] \quad \forall i \in N$$

$$f_{ij} \geq 0 \quad \forall (i,j) \in A_a$$

Your First Modeling Trick

- Don't include nonlinearities or nonconvexities unless necessary!
- Replace $p_i^2 \leftarrow \rho_i$

$$sign(f_{ij})f_{ij}^{2} - \Psi_{ij}(\rho_{i} - \rho_{j}) = 0 \quad \forall (i, j) \in A_{p}$$

$$f_{ij}^{2} - \Psi_{ij}(\rho_{i} - \rho_{j}) \geq 0 \quad \forall (i, j) \in A_{a}$$

$$\rho_{i} \in [\sqrt{\underline{p}_{i}}, \sqrt{\overline{p}_{i}}] \quad \forall i \in N$$

- This trick only works because
 - 1. p_i^2 terms appear only in the bound constraints 2. Also $f_{ij} \ge 0 \ \forall (i,j) \in A_a$
- This model is nonconvex: $sign(f_{ij})f_{ij}^2$ is a nonconvex function

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP

Dealing with sign(\cdot): The NLP Way

- Use auxiliary binary variables to indicate direction of flow
- Let $|f_{ij}| \leq F \ \forall (i,j) \in A_p$

$$z_{ij} = \left\{egin{array}{ccc} 1 & f_{ij} \geq 0 & f_{ij} \geq -F(1-z_{ij}) \ 0 & f_{ij} \leq 0 & f_{ij} \leq F z_{ij} \end{array}
ight.$$

• Note that

$$\operatorname{sign}(f_{ij}) = 2z_{ij} - 1$$

• Write constraint as

$$(2z_{ij}-1)f_{ij}^2-\Psi_{ij}(\rho_i-\rho_j)=0$$

Dealing with sign(\cdot): The MIP Way

Model

$$f_{ij} > 0 \Rightarrow \begin{cases} f_{ij}^2 \le \Psi_{ij}(\rho_i - \rho_j) \\ f_{ij}^2 \ge \Psi_{ij}(\rho_i - \rho_j) \end{cases} \quad f_{ij} < 0 \Rightarrow \begin{cases} f_{ij}^2 \le \Psi_{ij}(\rho_j - \rho_i) \\ f_{ij}^2 \ge \Psi_{ij}(\rho_j - \rho_i) \end{cases}$$

$$m \leq f_{ij}^2 - \Psi(
ho_i -
ho_j) \leq M$$
 $l \leq f_{ij}^2 - \Psi(
ho_j -
ho_i) \leq L$

Example

$$egin{aligned} f_{ij} > 0 &\Rightarrow z_{ij} = 1 \Rightarrow f_{ij}^2 \leq \Psi(
ho_i -
ho_j) \ f_{ij} > 0 &\Rightarrow z_{ij} = 1 \Rightarrow f_{ij}^2 \leq \Psi(
ho_i -
ho_j) \ f_{ij} > 0 \Rightarrow z_{ij} = 1 \Rightarrow f_{ij}^2 \leq \Psi(
ho_i -
ho_j) \end{aligned}$$

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Motivation	Gas Transmission	Motivation	Gas Transmission
Examples	Portfolio Management	Examples	Portfolio Management
Tricks		Tricks	Batch Processing

Dealing with sign(\cdot): The MIP Way

- Wonderful MIP Modeling reference is Williams (1993)
- If you put it all together you get...
- z_{ij} ∈ {0,1}: Indicator if flow is positive
- $y_{ij} \in \{0,1\}$: Indicator if flow is negative

$$\begin{array}{rcl} f_{ij} &\leq F z_{ij} \\ f_{ij} &\geq -F y_{ij} \\ z_{ij} + y_{ij} &= 1 \\ f_{ij}^2 + M z_{ij} &\leq M + \Psi_{ij}(\rho_i - \rho_j) \\ f_{ij}^2 + m z_{ij} &\geq m + \Psi_{ij}(\rho_i - \rho_j) \\ f_{ij}^2 + L y_{ij} &\leq L + \Psi_{ij}(\rho_j - \rho_i) \\ f_{ij}^2 + l y_{ij} &\geq l + \Psi_{ij}(\rho_j - \rho_i) \end{array}$$

Special Ordered Sets

- Sven thinks the NLP way is better
- Jeff thinks the MIP way is better
- Neither way is how it is done in De Wolf and Smeers (2000).
- Heuristic for finding a good starting solution, then a local optimization approach based on a piecewise-linear simplex method
- Another (similar) approach involves approximating the nonlinear function by piecewise linear segments, but searching for the globally optimal solution: Special Ordered Sets of Type 2
- If the "multidimensional" nonlinearity cannot be removed, resort to Special Ordered Sets of Type 3

Portfolio Management

- N: Universe of asset to purchase
- x_i : Amount of asset i to hold
- B: Budget

$$\min_{x \in \mathbb{R}^{|N|}_+} \left\{ u(x) \mid \sum_{i \in N} x_i = B \right\}$$

Examples

Portfolio Management

- Markowitz: $u(x) \stackrel{\text{def}}{=} -\alpha^T x + \lambda x^T Q x$
 - α : Expected returns
 - Q: Variance-covariance matrix of expected returns
 - λ : Risk aversion parameter

- $b \in \mathbb{R}^{|N|}$ of "benchmark" holdings
- Benchmark Tracking: $u(x) \stackrel{\text{def}}{=} (x-b)^T Q(x-b)$

Examples

- Constraint on $\mathbb{E}[\mathsf{Return}]$: $\alpha^T x \ge r$
- Limit Names: $|i \in N : x_i > 0| \le K$
 - Use binary indicator variables to model the implication $x_i > \mathbf{0} \Rightarrow y_i = \mathbf{1}$
 - Implication modeled with variable upper bounds:

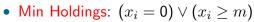
 $x_i \le By_i \qquad \forall i \in N$

Portfolio Management

• $\sum_{i \in N} y_i \le K$

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
			Gas Transmission
	Portfolio Management		Portfolio Management
Tricks	Batch Processing	Tricks	Batch Processing

Even More Models



- Model implication: $x_i > 0 \Rightarrow x_i \ge m$
- $x_i > 0 \Rightarrow y_i = 1 \Rightarrow x_i \ge m$
- $x_i \leq By_i, x_i \geq my_i \ \forall i \in N$
- Round Lots: $x_i \in \{kL_i, k = 1, 2, ...\}$
 - $x_i z_i L_i = 0, z_i \in \mathbb{Z}_+ \ \forall i \in N$
- Vector h of initial holdings
- Transactions: $t_i = |x_i h_i|$
- Turnover: $\sum_{i \in N} t_i \leq \Delta$
- Transaction Costs: $\sum_{i \in N} c_i t_i$ in objective
- Market Impact: $\sum_{i \in N} \gamma_i t_i^2$ in objective

Making "Plays"

- Suppose that the stocks are partitioned into sectors $S_1 \subseteq N, S_2 \subseteq N, \ldots S_K \subseteq N$
- The Fund Manager wants to invest all money into one sector "play"

$$\sum_{i \in S_k} x_i > \mathbf{0} \Rightarrow \sum_{j \in N \setminus S_k} x_j = \mathbf{0}$$

- Modeling Choices:
- Aggregated:

$$\sum_{i \in S_k} x_i \le Bz_k \quad \sum_{j \in N \setminus S_k} x_j + Bz_k \le B$$

• Disaggregated:

 $x_i \le u_i z_i \quad \forall i \in N \qquad x_j + u_j z_i \le u_j \; \forall j \mid i \in S_k, j \notin S_k$

Which is better?: Part III has the answer

Motivation Gas Transmission Examples Portfolio Management Tricks Batch Processing

Multipro

s.t.

$$\begin{array}{rcl} V_j - S_{ij}B_i & \geq & \mathsf{0} & \forall i \in N, \forall j \in M \\ C_i N_j & \geq & t_{ij} & \forall i \in N, \forall j \in M \\ & \displaystyle \sum_{i \in N} \frac{Q_i}{B_i}C_i & \leq & H \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

• C_i : Longest stage time for product i : $C_i \ge t_{ij}/N_j \; \forall i,j$			
Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Motivation Examples Tricks	Variable Transformation MIQP	Motivation Examples Tricks	Variable Transformation MIQP

Modeling Trick #2

Grossmann, 1988)

- Horizon Time and Objective Function Nonconvex. :-(
- Sometimes variable transformations work!

$$v_j = \ln(V_j), n_j = \ln(N_j), b_i = \ln(B_i), c_i = \ln C_i$$

Portfolio Management Batch Processing

Examples

Multiproduct Batch Plants (Kocis and

• *M*: Batch Processing Stages

Q_i: Required quantity of product i
t_{ij}: Processing time product i stage j
S_{ij}: "Size Factor" product i stage j

B_i: Batch size of product i ∈ N
V_j: Stage j size: V_j ≥ S_{ij}B_i ∀i, j

• N_i: Number of machines at stage j

N: Different Products
H: Horizon Time

$$\min\sum_{j\in M} \alpha_j e^{N_j + \beta_j V_j}$$

s.t.
$$v_j - \ln(S_{ij})b_i \ge 0 \quad \forall i \in N, \forall j \in M$$

 $c_i + n_j \ge \ln(\tau_{ij}) \quad \forall i \in N, \forall j \in M$
 $\sum_{i \in N} Q_i e^{C_i - B_i} \le H$
Transformed) Bound Constraints on V_j, C_i, B_i

How to Handle the Integrality?

• But what to do about the integrality?

$$1 \le N_j \le \overline{N}_j \qquad \forall j \in M, N_j \in \mathbb{Z} \qquad \forall j \in M$$

• $n_j \in \{0, \ln(2), \ln(3), \dots\}$ $\int 1 n_j \text{ takes value } \ln(k)$

$$Y_{kj} = \begin{cases} 1 & n_j \text{ takes value in}(k) \\ 0 & \text{Otherwise} \end{cases}$$

$$n_j - \sum_{k=1}^K \ln(k) Y_{kj} = 0 \quad \forall j \in M$$
 $\sum_{k=1}^K Y_{kj} = 1 \quad \forall j \in M$

 This model is available at http://www-unix.mcs.anl.gov/ ~leyffer/macminlp/problems/batch.mod

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
---------------------	-------	---------------------	-------

MIQP: Modeling Tricks

• In 0-1 quadratic programming, we can always make quadratic forms convex.

MIQP

Examples

Tricks

- Key: If y ∈ {0,1}, then y = y², so add a "large enough" constant to the diagonal, and subtract it from the linear term:
- $y \in \{0,1\}^n$ consider any quadratic

$$q(y) = y^T Q y + g^T y$$

= $y^T W y + c^T y$

where $W = Q + \lambda I$ and $c = g - \lambda e$ (e = (1, ..., 1))

• If $\lambda \geq$ (smallest eigenvalue of Q), then $W \succeq 0$.

A Small Smattering of Other Applications

- Chemical Engineering Applications:
 - process synthesis (Kocis and Grossmann, 1988)
 - batch plant design (Grossmann and Sargent, 1979)
 - cyclic scheduling (Jain, V. and Grossmann, I.E., 1998)
 - design of distillation columns (Viswanathan and Grossmann, 1993)

MIQP

- pump configuration optimization (Westerlund, T., Pettersson, F. and Grossmann, I.E., 1994)
- Forestry/Paper
 - production (Westerlund, T., Isaksson, J. and Harjunkoski, I., 1995)
 - trimloss minimization (Harjunkoski, I., Westerlund, T., Pörn, R. and Skrifvars, H., 1998)
- Topology Optimization (Sigmund, 2001)

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Branch-and-Bound		Branch-and-Bound	
Outer Approximation		Outer Approximation	
Hybrid Methods		Hybrid Methods	

Classical Solution Methods for MINLP

Part II

Classical Solution Methods

- 1. Classical Branch-and-Bound
- 2. Outer Approximation, Benders Decomposition et al.
- 3. Hybrid Methods
 - LP/NLP Based Branch-and-Bound
 - Integrating SQP with Branch-and-Bound

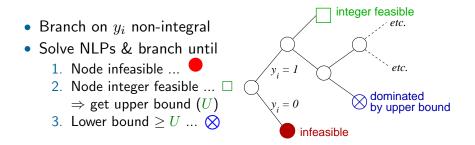
Branch-and-Bound

Solve relaxed NLP ($0 \le y \le 1$ continuous relaxation) ... solution value provides lower bound

Branch-and-Bound

Hybrid Method

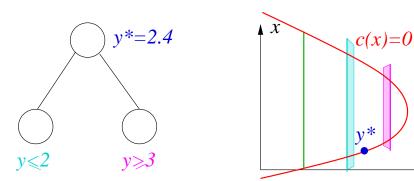
Outer Approximation



Definition

Search until no unexplored nodes on tree

Convergence of Branch-and-Bound



All NLP problems solved globally & finite number of NLPs on tree \Rightarrow Branch-and-Bound converges \simeq complete enumeration at worst

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Branch-and-Bound Outer Approximation Hybrid Methods		Branch-and-Bound Outer Approximation Hybrid Methods	

Variable Selection for Branch-and-Bound

Assume $y_i \in \{0, 1\}$ for simplicity ... (\hat{x}, \hat{y}) fractional solution to parent node; $\hat{f} = f(\hat{x}, \hat{y})$

- 1. user defined priorities
 - ... branch on most important variable first
- 2. maximal fractional branching

$$\max_{i} \{\min(1-\hat{y}_i, \hat{y}_i)\}$$

... find \hat{y}_i closest to $\frac{1}{2} \Rightarrow$ largest change in problem

Variable Selection for Branch-and-Bound

Assume $y_i \in \{0, 1\}$ for simplicity ... (\hat{x}, \hat{y}) fractional solution to parent node; $\hat{f} = f(\hat{x}, \hat{y})$

3. pseudo-cost branching estimates e_i^+ , e_i^- of change in f(x, y) after branching

$$\max_i \left\{ \min(\hat{f} + e_i^+(1 - \hat{y}_i), \hat{f} + e_i^- \hat{y}_i) \right\}$$

... find y_i , whose expected change of objective is largest ... estimate e_i^+ , e_i^- by keeping track of

$$e_i^+ = rac{f_i^+ - \hat{f}}{1 - \hat{y}_i} \;\; {
m and} \;\; e_i^- = rac{f_i^- - \hat{f}}{\hat{y}_i}$$

where $f_i^{+/-}$ solution value after branching

Variable Selection for Branch-and-Bound

Assume $y_i \in \{0, 1\}$ for simplicity ... (\hat{x}, \hat{y}) fractional solution to parent node; $\hat{f} = f(\hat{x}, \hat{y})$

4. strong branching: solve all NLP child nodes:

$$f_i^{+/-} \leftarrow \begin{cases} \underset{x,y}{\text{minimize}} & f(x,y) \\ \text{subject to} & c(x,y) \leq 0 \\ & x \in X, \ y \in Y, \ y_i = 1/0 \end{cases}$$

choose branching variable as

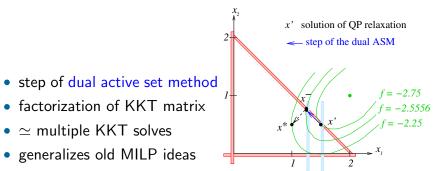
$$\max_{i} \left\{ \min(f_i^+, f_i^-) \right\}$$

 \dots find y_i that changes objective the most

Variable Selection for Branch-and-Bound

Assume $y_i \in \{0, 1\}$ for simplicity ... (\hat{x}, \hat{y}) fractional solution to parent node; $\hat{f} = f(\hat{x}, \hat{y})$

5. **MIQP strong branching**: (Fletcher and Leyffer, 1998) parametric solution of QPs ... much cheaper than re-solve



Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Branch-and-Bound Outer Approximation		Branch-and-Bound Outer Approximation	
	Variable & Node Selection		Variable & Node Selection

Node Selection for Branch-and-Bound

Which node n on tree \mathcal{T} should be solved next?

1. depth-first search

select deepest node in tree

- minimizes number of NLP nodes stored
- exploit warm-starts (MILP/MIQP only)

2. best lower bound

choose node with least value of parent node $f_{p(n)}$

• minimizes number of NLPs solved

Node Selection for Branch-and-Bound

Which node n on tree \mathcal{T} should be solved next?

3. best estimate

choose node leading to best expected integer solution

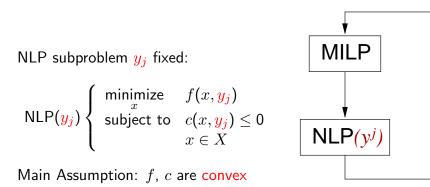
$$\min_{n \in \mathcal{T}} \left\{ f_{p(n)} + \sum_{i: y_i \text{fractional}} \min \left\{ e_i^+ (1 - y_i), e_i^- y_i \right\} \right\}$$

where

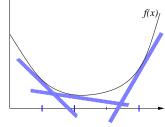
f_{p(n)} = value of parent node
 e_i^{+/-} = pseudo-costs

summing pseudo-cost estimates for all integers in subtree

Solve alternating sequence of MILP & NLP



• new objective variable $\eta > f(x, y)$ • MINLP $(P) \equiv MILP (M)$



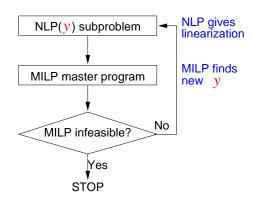
ſ	minimize $z=(x,y),\eta$	η	
(M)	subject to	$\eta \ge f_j + \nabla f_j^T (z - z_j)$	$\forall y_j \in Y$
, ,		$0 \ge c_j + abla c_j^T (z - z_j)$	$\forall y_j \in Y$
l		$x \in X, \ y \in Y$ integer	

SNAG: need all $y_i \in Y$ linearizations

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Branch-and-Bound Outer Approximation Hybrid Methods		Branch-and-Bound Outer Approximation Hybrid Methods	

Outer Approximation (Duran and Grossmann, 1986)

 (M_k) : lower bound (underestimate convex f, c) $NLP(y_i)$: upper bound U (fixed y_i)



 \Rightarrow stop, if lower bound > upper bound

Convergence of Outer Approximation

Lemma: Each $y_i \in Y$ generated at most once.

Proof: Assume $y_i \in Y$ generated again at iteration j > i $\Rightarrow \exists \hat{x} \text{ such that } (\hat{x}, y_i) \text{ feasible in } (M_i):$

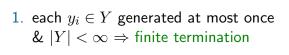
> $\eta > f_i + \nabla_x f_i^T (\hat{x} - x_i)$ $0 > c_i + \nabla_x c_i^T (\hat{x} - x_i)$

... because $y_i - y_i = 0$ Now sum with $(1, \lambda_i)$ optimal multipliers of NLP (y_i) $\Rightarrow \eta \ge f_i + \lambda_i^T c_i + (\nabla_x f_i + \nabla_x c_i \lambda_i)^T (\hat{x} - x_i)$... KKT conditions: $\nabla_x f_i + \nabla_x c_i \lambda_i = 0 \& \lambda_i^T c_i = 0$ $\Rightarrow \eta \geq f_i$ contradicts $\eta < U \leq f_i$ upper bound \Rightarrow each $y_i \in Y$ generated at most once **Refs**: (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994)

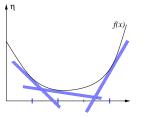
Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP

Outer Approximation & Benders Decomposition

Convergence of Outer Approximation



- 2. convexity \Rightarrow outer approximation
- \Rightarrow convergence to global min



Take OA master ... z := (x, y) ... wlog $X = \mathbb{R}^n$

 $(M) \begin{cases} \begin{array}{ll} \underset{z=(x,y),\eta}{\text{minimize}} & \eta \\ \text{subject to} & \eta \ge f_j + \nabla f_j^T (z-z_j) & \forall y_j \in Y \\ & 0 \ge c_j + \nabla c_j^T (z-z_j) & \forall y_j \in Y \\ & y \in Y \text{ integer} \end{cases} \end{cases}$

 $\forall j : \text{ sum } 0 \geq c_j ... \text{ weighted with multiliers } \lambda_j \text{ of } \mathsf{NLP}(y_j)$

 $\Rightarrow \quad \eta \ge f_j + \lambda_j^T c_j + (\nabla f_j + \nabla c_j \lambda_j)^T (z - z_j) \qquad \forall y_j \in Y$

... is a valid inequality. **References**: (Geoffrion, 1972)

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Branch-and-Bound Outer Approximation Hybrid Methods		Branch-and-Bound Outer Approximation Hybrid Methods	

Outer Approximation & Benders Decomposition

Valid inequality from OA master; z = (x, y):

$$\eta \geq f_j + \lambda_j^T c_j + (\nabla f_j + \nabla c_j \lambda_j)^T (z - z_j)$$

use first order conditions of $NLP(y_j)$...

$$abla_x f_j +
abla_x c_j \lambda_j = 0$$
 & $\lambda_j^T c_j = 0$

 \dots to eliminate x components from valid inequality in y

$$\Rightarrow \quad \eta \ge f_j + (\nabla_y f_j + \nabla_y c_j \lambda_j)^T (y - y_j) \Leftrightarrow \quad \eta \ge f_j + (\mu_j)^T (y - y_j)$$

where $\mu_j =
abla_y f_j +
abla_y c_j \lambda_j$ multiplier of $y = y_j$ in $\mathsf{NLP}(y_j)$

Outer Approximation & Benders Decomposition

 \Rightarrow remove x from master problem ... Benders master problem

$$(M_B) \begin{cases} \underset{y,\eta}{\text{minimize}} & \eta \\ \text{subject to} & \eta \ge f_j + (\mu_j)^T (y - y_j) \quad \forall y_j \in Y \\ & y \in Y \text{ integer} \end{cases}$$

where μ_j multiplier of $y = y_j$ in NLP (y_j)

- (M_B) has less constraints & variables (no x!)
- (M_B) almost ILP (except for η)
- (M_B) weaker than OA (from derivation)

Branch-and-Bound Definition Outer Approximation Convergence Hybrid Methods Benders Decomposition

Extended Cutting Plane Method

Replace NLP(y_i) solve in OA by linearization about solution of (M_j) get cutting plane for violated constraint \Rightarrow no NLP(y_j) solves Kelley's cutting plane method instead \Rightarrow slow nonlinear convergence:

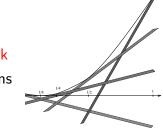
> 1 evaluation per y

References: (Westerlund, T. and Pettersson, F., 1995)

Disadvantages of Outer Approximation

• potentially large number of iterations

 $\begin{array}{ll} \text{minimize} & (y-\frac{1}{2^n})^2\\ \text{subject to} & y\in\{0,\frac{1}{2^n},\dots1\} \end{array}$



f(y) = (y - 1/8)

Second order master (MIQP): (Fletcher and Leyffer, 1994): • add Hessian term to MILP (M_i) becomes MIQP:

minimize $\eta + \frac{1}{2}(z-z_i)^T W(z-z_i)$ subject to...

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	
Branch-and-Bound Outer Approximation Hybrid Methods	LP/NLP Based Branch-and-Bound Integrating SQP and Branch-and-Bound	Branch-and-Bound Outer Approximation Hybrid Methods	LP/NLP Based Branch-and-Bound Integrating SQP and Branch-and-Bound

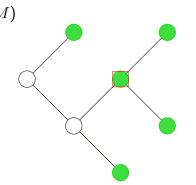
 $f(x)_l$

LP/NLP Based Branch-and-Bound

AIM: avoid re-solving MILP master (M)

- Consider MILP branch-and-bound
- interrupt MILP, when y_j found \Rightarrow solve NLP (y_j) get x_j
- linearize f, c about (x_j, y_j)
 ⇒ add linearization to tree
- continue MILP tree-search

... until lower bound \geq upper bound



LP/NLP Based Branch-and-Bound

- need access to MILP solver ... call back
 exploit good MILP (branch-cut-price) solver
 (Akrotirianakis et al., 2001) use Gomory cuts in tree-search
- no commercial implementation of this idea
- preliminary results: order of magnitude faster than OA
 same number of NLPs, but only one MILP
- similar ideas for Benders & Extended Cutting Plane methods

References: (Quesada and Grossmann, 1992)

Integrating SQP & Branch-and-Bound

Outer Approximation

Hybrid Methods

AIM: Avoid solving NLP node to convergence.

Sequential Quadratic Programming (SQP) \rightarrow solve sequence (QP_k) at every node

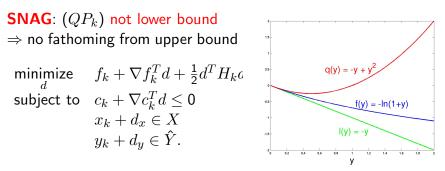
$$(QP_k) \begin{cases} \begin{array}{ll} \underset{d}{\text{minimize}} & f_k + \nabla f_k^T d + \frac{1}{2} d^T H_k d \\ \text{subject to} & c_k + \nabla c_k^T d \leq 0 \\ & x_k + d_x \in X \\ & y_k + d_y \in \hat{Y}. \end{array} \end{cases}$$

Integrating SQP and Branch-and-Bound

Early branching:

After QP step choose non-integral y_i^{k+1} , branch & continue SQP **References**: (Borchers and Mitchell, 1994; Leyffer, 2001)

Integrating SQP & Branch-and-Bound



Remedy: Exploit OA underestimating property (Leyffer, 2001):

- add objective cut $f_k +
 abla f_k^T d \leq U \epsilon$ to (QP_k)
- fathom node, if (QP_k) inconsistent
 - \Rightarrow converge for *convex* MINLP

NB: (QP_k) inconsistent and trust-region active \Rightarrow do not fathom

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Branch-and-Bound Outer Approximation Hybrid Methods	LP/NLP Based Branch-and-Bound Integrating SQP and Branch-and-Bound	Formulations Inequalities Dealing with Nonconvexity	

Comparison of Classical MINLP Techniques

Summary of numerical experience

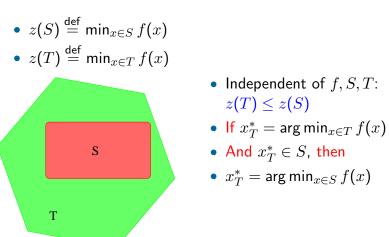
- 1. Quadratic OA master: usually fewer iteration MIQP harder to solve
- 2. NLP branch-and-bound faster than OA ... depends on MIP solver
- 3. LP/NLP-based-BB order of magnitude faster than OA \ldots also faster than B&B
- 4. Integrated SQP-B&B up to 3× faster than B&B \simeq number of QPs per node
- 5. ECP works well, if function/gradient evals expensive

Part III

Modern Developments in MINLP

Formulations Inequalities Dealing with Nonconvexity		Formulations Inequalities Dealing with Nonconvexity	
Modern Methods for MIN	LP	Relaxations	

- 1. Formulations
 - Relaxations
 - Good formulations: big $M^\prime s$ and disaggregation
- 2. Cutting Planes
 - Cuts from relaxations and special structures
 - Cuts from integrality
- 3. Handling Nonconvexity
 - Envelopes
 - Methods



Leyffer & LinderothMINLPFormulationsImportance of RelaxationsInequalitiesBig MDealing with NonconvexityAggregation	Leyffer & Linderoth MINLP Formulations Importance of Relaxations Inequalities Big M Dealing with Nonconvexity Aggregation
A Pure Integer Program	How to Solve Integer Programs?
$z(S) = \min\{c^T x : x \in S\}, \qquad S = \{x \in \mathbb{Z}^n_+ : Ax \le b\}$	 Relaxations! T ⊇ S ⇒ z(T) ≤ z(S) People commonly use the linear programming relaxation: z(LP(S)) = min{c^Tx : x ∈ LP(S)} LP(S) = {x ∈ ℝⁿ₊ : Ax ≤ b}
$S = \{(x_1, x_2) \in \mathbb{Z}_+^2 : 6x_1 + x_2 \le 15, \\ 5x_1 + 8x_2 \le 20, x_2 \le 2\} \\ = \{(0, 0), (0, 1), (0, 2), (1, 0), \\ (1, 1), (1, 2), (2, 0)\}$	 If LP(S) = conv(S), we are done. Minimum of any linear function over any convex set occurs on the boundary We need only know conv(S) in the direction of c. The "closer" LP(S) is to conv(S) the better.

- Sometimes, we can get a better relaxation (make LP(S) a closer approximation to conv(S)) through a different tighter formulation
- Let's look at the geometry

$$P = \{x \in \mathbb{R}_+, z \in \{0, 1\} : x \le Mz, x \le u\}$$
$$LP(P) = \{x \in \mathbb{R}_+, z \in [0, 1] : x \le Mz, x \le u\}$$
$$\operatorname{conv}(P) = \{x \in \mathbb{R}_+, z \in \{0, 1\} : x \le uz\}$$

Μ u х 1 0 Z

Formulations

Inequalities

Big M

$$P = \{x \in \mathbb{R}_+, z \in \{\mathbf{0}, \mathbf{1}\} : x \le Mz, x \le u\}$$

LP Versus Conv $ \int LP(P) = \{x \in \mathbb{R}_+, z \in [0,1] : x \le Mz, x \le u\} $ $ LP(P) = \{x \in \mathbb{R}_+, z \in [0,1] : x \le Mz, x \le u\} $ $ LP(P) = \{x \in \mathbb{R}_+, z \in [0,1] : x \le Mz, x \le u\} $ $ \int LP(P) = \{x \in \mathbb{R}_+, z \in [0,1] : x \le uz\} $ $ \int LP(P) = \{x \in \mathbb{R}_+, z \in [0,1] : x$	Leyffer & Linderoth Formulations Inequalities Dealing with Nonconvexity	MINLP Importance of Relaxations Big M Aggregation		& Linderoth MINLP Formulations Importance of Relaxations Inequalities Big M Nonconvexity Aggregation
Leyffer & Linderoth MINLP Leyffer & Linderoth MINLP	LP(P) $LP(P)$ $Conv(P)$ $KEY: If M = u, LP(P) = c$ $Small M's good. Big M's base$	$) = \{x \in \mathbb{R}_+, z \in [0, 1] : x \le uz\}$ onv (P) aaaaaaaad.	 Facilities: <i>I</i> Customers: <i>J</i> Unit of the second se	$\min \sum_{j \in J} f_j x_j + \sum_{i \in I} \sum_{j \in J} f_{ij} y_{ij}$ $\sum_{\substack{j \in N \\ j \in N}} y_{ij} = 1 \forall i \in I$ $\sum_{\substack{i \in I \\ OR }} y_{ij} \leq I x_j \forall j \in J (1)$ $\sum_{\substack{i \in I \\ OR }} y_{ij} \leq x_j \forall i \in I, \ j \in J (2)$ is to be preferred? random. 53,121 seconds, optimal solution. 2 seconds, optimal solution.

P

Valid Inequalities

- Sometimes we can get a better formulation by dynamically improving it.
- An inequality $\pi^T x \leq \pi_0$ is a valid inequality for S if $\pi^T x \leq \pi_0 \ \forall x \in S$

Inequalities

• Alternatively: $\max_{x \in S} \{\pi^T x\} \le \pi_0$

Dealing with Nonco

• Thm: (Hahn-Banach). Let $S \subset \mathbb{R}^n$ be a closed, convex set, and let $\hat{x} \notin S$. Then there exists $\pi \in \mathbb{R}^n$ such that

 $\pi^T \hat{x} > \max_{x \in S} \{\pi^T x\}$

Nonlinear Branch-and-Cut

Consider MINLP

 $\begin{array}{ll} \underset{x,y}{\text{minimize}} & f_x^T x + f_y^T y \\ \text{subject to} & c(x,y) \leq 0 \\ & y \in \{0,1\}^p, \ 0 \leq x \leq U \end{array}$

- Note the Linear objective
- This is WLOG:

min f(x,y) \Leftrightarrow min η s.t. $\eta \ge f(x,y)$

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
	Preliminaries MILP Inequalities Applied to MINLP Disjunctive Inequalities	Formulations Inequalities Dealing with Nonconvexity	MILP Inequalities Applied to MINLP

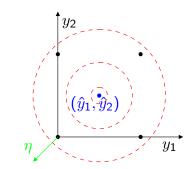
It's Actually Important!

- We want to approximate the convex hull of integer solutions, but without a linear objective function, the solution to the relaxation might occur in the interior.
- No Separating Hyperplane! :-(

$$\min(y_1 - 1/2)^2 + (y_2 - 1/2)^2$$

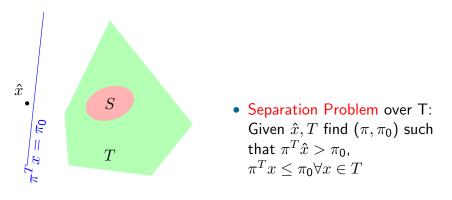
s.t. $y_1 \in \{0, 1\}, y_2 \in \{0, 1\}$

 $\eta > (y_1 - 1/2)^2 + (y_2 - 1/2)^2$



Valid Inequalities From Relaxations

- Idea: Inequalities valid for a relaxation are valid for original 🦻
- Generating valid inequalities for a relaxation is often easier.



Simple Relaxations

Idea: Consider one row relaxations

Dealing with Nonconvexit

• If $P = \{x \in \{0,1\}^n \mid Ax \le b\}$, then for any row i, $P_i = \{x \in \{0,1\}^n \mid a_i^T x \le b_i\}$ is a relaxation of P.

Inequalities

• If the intersection of the relaxations is a good approximation to the true problem, then the inequalities will be quite useful.

MILP Inequalities Applied to MINLP

- Crowder et al. (1983) is the seminal paper that shows this to be true for IP.
- MINLP: Single (linear) row relaxations are also valid ⇒ same inequalities can also be used

Knapsack Covers

$$K = \{ x \in \{0, 1\}^n \mid a^T x \le b \}$$

MILP Inequalities Applied to MINLP

Inequalities

• A set $C \subseteq N$ is a cover if $\sum_{j \in C} a_j > b$

Dealing with Nonconvexi

- A cover C is a minimal cover if $C\setminus j$ is not a cover $\forall j\in C$
- If $C \subseteq N$ is a cover, then the *cover inequality*

$$\sum_{j \in C} x_j \le |C| - 1$$

is a valid inequality for \boldsymbol{S}

- Sometimes (minimal) cover inequalities are facets of conv(K)
- Levffer & Linderoth MINLP Levffer & Linderoth MINLP Formulations Inequalities MILP Inequalities Applied to MINLP Inequalities MILP Inequalities Applied to MINLP Dealing with Nonconvexity Dealing with Nonconvexity Other Substructures Example • Single node flow: (Padberg et al., 1985) $S = \left\{ x \in \mathbb{R}^{|N|}_{+}, y \in \{0,1\}^{|N|} \mid \sum_{j \in N} x_j \le b, x_j \le u_j y_j \ \forall \ j \in N \right\}$ $K = \{x \in \{0,1\}^7 \mid 11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_7 < 19\}$ • Knapsack with single continuous variable: (Marchand and $LP(K) = \{x \in [0,1]^7 \mid 11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_7 < 19\}$ Wolsey, 1999) • $(1, 1, 1/3, 0, 0, 0, 0) \in LP(K)$
 - CHOPPED OFF BY $x_1 + x_2 + x_3 \leq 2$
 - $(0, 0, 1, 1, 1, 3/4, 0) \in LP(K)$
 - CHOPPED OFF BY $x_3 + x_4 + x_5 + x_6 \leq 3$

$$S = \left\{ x \in \mathbb{R}_+, y \in \{0,1\}^{|N|} \mid \sum_{j \in N} a_j y_j \le b + x \right\}$$

• Set Packing: (Borndörfer and Weismantel, 2000)

$$S = \left\{ y \in \{0,1\}^{|N|} \mid Ay \le e
ight\}$$
 $A \in \{0,1\}^{|M| imes |N|}, e = (1,1,\dots,1)^T$

Leyffer & Linderoth MINL

Preliminaries MILP Inequalities Applied to MINLP Disjunctive Inequalities

The Chvátal-Gomory Procedure

• A general procedure for generating valid inequalities for integer programs

Inequalities

- Let the columns of $A \in \mathbb{R}^{m imes n}$ be denoted by $\{a_1, a_2, \ldots a_n\}$
- $S = \{y \in \mathbb{Z}^n_+ \mid Ay \le b\}.$
 - 1. Choose nonnegative multipliers $u \in \mathbb{R}^m_+$
 - 2. $u^T A y \leq u^T b$ is a valid inequality $(\sum_{j \in N}^{+} u^T a_j y_j \leq u^T b)$.
 - 3. $\sum_{j \in N} \lfloor u_{-}^{T} a_j \rfloor y_j \leq u^{T} b$ (Since $y \geq 0$).
 - 4. $\sum_{j \in N} \lfloor u^T a_j \rfloor y_j \leq \lfloor u^T b \rfloor$ is valid for S since $\lfloor u^T a_j \rfloor y_j$ is an integer
- Simply Amazing: This simple procedure suffices to generate every valid inequality for an integer program

Extension to MINLP (Çezik and Iyengar, 2005)

• This simple idea also extends to mixed 0-1 conic programming

 $\begin{array}{ll} \underset{z \stackrel{\text{def}}{=} (x,y)}{\text{subject to}} & f^T z \\ y \in \{ \mathbf{0}, 1 \}^p, \ \mathbf{0} \leq x \leq U \end{array}$

- \mathcal{K} : Homogeneous, self-dual, proper, convex cone
- $x \succeq_{\mathcal{K}} y \Leftrightarrow (x y) \in \mathcal{K}$

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Formulations Inequalities Dealing with Nonconvexity	MILP Inequalities Applied to MINLP	Formulations Inequalities Dealing with Nonconvexity	MILP Inequalities Applied to MINLP

Gomory On Cones (Çezik and Iyengar, 2005)

- LP: $\mathcal{K}_l = \mathbb{R}^n_+$
- SOCP: $\mathcal{K}_q = \{(x_0, \bar{x}) \mid x_0 \ge \|\bar{x}\|\}$
- SDP: $\mathcal{K}_s = \{x = \operatorname{vec}(X) \mid X = X^T, X \text{ p.s.d}\}$
- Dual Cone: $\mathcal{K}^* \stackrel{\mathsf{def}}{=} \{ u \mid u^T z \ge \mathbf{0} \ \forall z \in \mathcal{K} \}$
- Extension is clear from the following equivalence:

Leyffer & Linderoth

$$Az \succeq_{\mathcal{K}} b \quad \Leftrightarrow \quad u^T Az \ge u^T b \ \forall u \succeq_{\mathcal{K}^*} \mathbf{C}$$

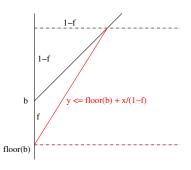
MINLP

- Many classes of nonlinear inequalities can be represented as
 - $Ax \succeq_{\mathcal{K}_q} b \text{ or } Ax \succeq_{\mathcal{K}_s} b$
- Go to other SIAM Short Course to find out about Semidefinite Programming

Mixed Integer Rounding-MIR

Almost everything comes from considering the following very simple set, and observation.

- $X = \{(x, y) \in \mathbb{R} \times \mathbb{Z} \mid y \le b + x\}$
- $f = b \lfloor b \rfloor$: fractional
 - NLP People are silly and use *f* for the objective function
- LP(X)
- $\operatorname{conv}(X)$
- $y \leq \lfloor b \rfloor + \frac{1}{1-f}x$ is a valid inequality for X



Extension of MIR

$$X_{2} = \left\{ (x^{+}, x^{-}, y) \in \mathbb{R}^{2}_{+} \times \mathbb{Z}^{|N|} \mid \sum_{j \in N} a_{j} y_{j} + x^{+} \leq b + x^{-} \right\}$$

• The inequality

$$\sum_{j \in N} \left(\lfloor (a_j) \rfloor + \frac{(f_j - f)^+}{1 - f} \right) y_j \le \lfloor b \rfloor + \frac{x^-}{1 - f}$$

is valid for X_2

- $f_j \stackrel{\text{def}}{=} a_j \lfloor a_j \rfloor, \ (t)^+ \stackrel{\text{def}}{=} \max(t, 0)$
- X_2 is a one-row relaxation of a general *mixed* integer program
 - Continuous variables aggregated into two: $\boldsymbol{x}^+, \boldsymbol{x}^-$

Inequalities

Proof:

- $N_1 = \{j \in N \mid f_j \leq f\}$
- $N_2 = N \setminus N_1$
- Let

$$P = \{(x,y) \in \mathbb{R}^2_+ imes \mathbb{Z}^{|N|} \mid \ \sum_{j \in N_1} \lfloor a_j
floor y_j + \sum_{j \in N_2} \lceil a_j
floor y_y \le b + x^- + \sum_{j \in N_2} (1-f_j) y_j \}$$

MILP Inequalities Applied to MINLP

- 1. Show $X_2 \subseteq P$
- 2. Show simple (2-variable) MIR inequality is valid for P (with an appropriate variable substitution).
- 3. Collect the terms

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
	Preliminaries MILP Inequalities Applied to MINLP Disjunctive Inequalities	Formulations Inequalities Dealing with Nonconvexity	MILP Inequalities Applied to MINLP

Gomory Mixed Integer Cut is a MIR Inequality

• Consider the set

$$X^{=} = \left\{ (x^{+}, x^{-}, y_{0}, y) \in \mathbb{R}^{2}_{+} \times \mathbb{Z} \times \mathbb{Z}^{|N|}_{+} \mid y_{0} + \sum_{j \in N} a_{j} y_{j} + x^{+} - x^{-} = b \right\}$$

which is essentially the row of an LP tableau

- Relax the equality to an inequality and apply MIR
- Gomory Mixed Integer Cut:

$$\sum_{j \in N_1} f_j y_j + x^+ + \frac{f}{1 - f} x^- + \sum_{j \in N_2} (f_j - \frac{f_j - f}{1 - f}) y_j \ge f_j$$

Using Gomory Cuts in MINLP (Akrotirianakis et al., 2001)

• LP/NLP Based Branch-and-Bound solves MILP instances:

 $\begin{cases} \begin{array}{ll} \underset{z \stackrel{\text{def}}{=} (x,y), \eta}{\text{subject to}} & \eta \geq f_j + \nabla f_j^T (z - z_j) & \forall y_j \in Y^k \\ & 0 \geq c_j + \nabla c_j^T (z - z_j) & \forall y_j \in Y^k \\ & x \in X, \ y \in Y \text{ integer} \end{cases} \end{cases}$

• Create Gomory mixed integer cuts from

$$egin{array}{rcl} \eta &\geq & f_j +
abla f_j^T(z-z_j) \ 0 &\geq & c_j +
abla c_j^T(z-z_j) \end{array}$$

- Akrotirianakis et al. (2001) shows modest improvements
- Research Question: Other cut classes?
- Research Question: Exploit "outer approximation" property?

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP

Disjunctive Cuts for MINLP (Stubbs and Mehrotra, 1999)

Inequalities

Dealing with Nonconvexity

Extension of Disjunctive Cuts for MILP: (Balas, 1979; Balas et al., 1993)

Continuous relaxation
$$(z \stackrel{\text{def}}{=} (x, y))$$

• $C \stackrel{\text{def}}{=} \{z | c(z) \le 0, \ 0 \le y \le 1, \ 0 \le x \le U\}$
• $C \stackrel{\text{def}}{=} \operatorname{conv}(\{x \in C \mid y \in \{0, 1\}^p\})$
• $C_j^{0/1} \stackrel{\text{def}}{=} \{z \in C | y_j = 0/1\}$

$$\operatorname{let} \mathcal{M}_{j}(C) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} z = \lambda_{0}u_{0} + \lambda_{1}u_{1} \\ \lambda_{0} + \lambda_{1} = 1, \ \lambda_{0}, \lambda_{1} \ge 0 \\ u_{0} \in C_{j}^{0}, \ u_{1} \in C_{j}^{1} \end{array} \right\}$$

$$\Rightarrow \mathcal{P}_j(C) := \text{projection of } \mathcal{M}_j(C) \text{ onto } z$$

$$\Rightarrow \mathcal{P}_j(C) = \operatorname{conv} (C \cap y_j \in \{0, 1\}) \text{ and } \mathcal{P}_{1...p}(C) = C$$

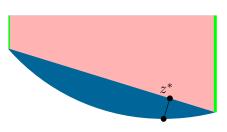
Disjunctive Cuts: Example

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
	Preliminaries MILP Inequalities Applied to MINLP Disjunctive Inequalities	Formulations Inequalities Dealing with Nonconvexity	MILP Inequalities Applied to MINLP

 C^{0}

Disjunctive Cuts Example

$$z^* \stackrel{\mathsf{def}}{=} \arg\min \|z - \hat{z}\|$$



 $\hat{z} = (\hat{x}, \hat{y})$

s.t.
$$\begin{aligned} \lambda_0 u_0 + \lambda_1 u_1 &= z \\ \lambda_0 + \lambda_1 &= 1 \\ \begin{pmatrix} -0.16 \\ 0 \end{pmatrix} \leq u_0 &\leq \begin{pmatrix} 0.66 \\ 1 \end{pmatrix} \\ \begin{pmatrix} -0.47 \\ 0 \end{pmatrix} \leq u_1 &\leq \begin{pmatrix} 1.47 \\ 1 \end{pmatrix} \\ \lambda_0, \lambda_1 &\geq 0 \end{aligned}$$

NONCONVEX

What to do? (Stubbs and Mehrotra, 1999)

• Look at the perspective of c(z)

$$\mathcal{P}(c(\tilde{z}),\mu) = \mu c(\tilde{z}/\mu)$$

- Think of $\tilde{z}=\mu z$
- Perspective gives a convex reformulation of M_j(C): M_j(C̃), where

$$ilde{C} := \left\{ (z,\mu) \left| egin{array}{c} \mu c_i(z/\mu) \leq 0 \ 0 \leq \mu \leq 1 \ 0 \leq x \leq \mu U, \ 0 \leq y \leq \mu \end{array}
ight\}$$

• $c(0/0) = 0 \Rightarrow$ convex representation

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP

Formulations Inequalities Dealing with Nonconvexity	Preliminaries MILP Inequalities Applied to MINLP Disjunctive Inequalities	Dealing
Disjunctive Cuts Example		Example, cont.
$\sim \left(\left(\begin{array}{c} x \end{array} \right) \right) \mu \left[(x/\mu - 1/2) \right]$	$(2)^{2} + (y/\mu - 3/4)^{2} - 1] \leq 0$ $-2\mu \leq x \leq 2\mu$	$ ilde{C}^{m{0}}_j = \{(z, z)\}$
$\tilde{C} = \left\{ \left(\begin{array}{c} x \\ y \\ \mu \end{array} \right) \right \begin{array}{c} \mu \left[(x/\mu - 1/2) \\ x \\ \end{array} \right]$	$ \begin{array}{c} 2\mu \leq w \leq 2\mu \\ 0 \leq y \leq \mu \\ 0 \leq \mu \leq 1 \end{array} $	• Take $v_0 \leftarrow \mu_0 u_0$

à

Inequalities Dealing with None

$\tilde{C}_{i}^{0} = \{(z,\mu) \mid y_{i} = 0\} \quad \tilde{C}_{i}^{1} = \{(z,\mu) \mid y_{i} = \mu\}$

• Take $v_0 \leftarrow \mu_0 u_0 \ v_1 \leftarrow \mu_1 u_1$ $\min \|z - \hat{z}\|$

 $\begin{array}{rcl} \mu_{0}+\mu_{1} & = & 1 \\ (v_{0},\mu_{0}) & \in & \tilde{C}_{j}^{0} \\ (v_{1},\mu_{1}) & \in & \tilde{C}_{j}^{1} \end{array}$

 $\mu_0, \mu_1 >$

s.t. $v_0 + v_1 = z$

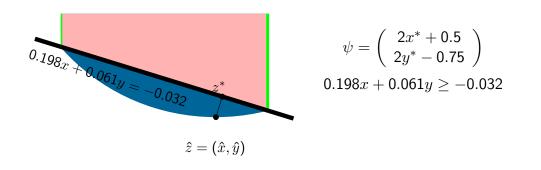
Solution to example:

$$\left(\begin{array}{c} x^* \\ y^* \end{array}\right) = \left(\begin{array}{c} -0.401 \\ 0.780 \end{array}\right)$$

• separating hyperplane: $\psi^T(z - \hat{z})$, where $\psi \in \partial ||z - \hat{z}||$

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
	Preliminaries MILP Inequalities Applied to MINLP Disjunctive Inequalities	Formulations Inequalities Dealing with Nonconvexity	MILP Inequalities Applied to MINLP

Example, Cont.



Nonlinear Branch-and-Cut (Stubbs and Mehrotra, 1999)

- Can do this at *all* nodes of the branch-and-bound tree
- Generalize disjunctive approach from MILP
 - solve one convex NLP per cut
- Generalizes Sherali and Adams (1990) and Lovász and Schrijver (1991)
 - tighten cuts by adding semi-definite constraint
- Stubbs and Mehrohtra (2002) also show how to generate convex quadratic inequalities, but computational results are not that promising

Generalized Disjunctive Programming (Raman and

Disjunctive Inequalities

Inequalities

Grossmann, 1994; Lee and Grossmann, 2000)

Dealing with Nonconvexity

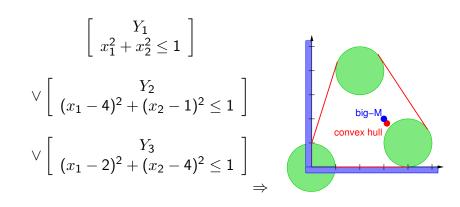
Consider disjunctive NLP

$$\begin{cases} \underset{x,Y}{\text{minimize}} & \sum f_i + f(x) \\ \text{subject to} & \begin{bmatrix} Y_i \\ c_i(x) \leq 0 \\ f_i = \gamma_i \end{bmatrix} \bigvee \begin{bmatrix} \neg Y_i \\ B_i x = 0 \\ f_i = 0 \end{bmatrix} \forall i \in I \\ f_i = 0 \\ 0 \leq x \leq U, \ \Omega(Y) = \text{true}, \ Y \in \{\text{true}, \text{false}\}^p \end{cases}$$

convex hull representation ...

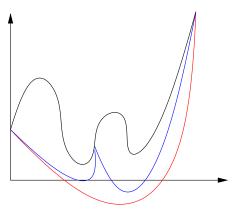
$$\begin{aligned} x &= v_{i1} + v_{i0}, & \lambda_{i1} + \lambda_{i0} = 1 \\ \lambda_{i1}c_i(v_{i1}/\lambda_{i1}) &\leq 0, & B_i v_{i0} = 0 \\ 0 &\leq v_{ij} \leq \lambda_{ij}U, & 0 \leq \lambda_{ij} \leq 1, & f_i = \lambda_{i1}\gamma_i \end{aligned}$$

Disjunctive Programming: Example



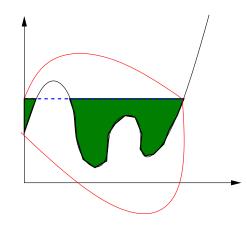
Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Formulations	Difficulties	Formulations	Difficulties
Inequalities	Envelopes	Inequalities	Envelopes
Dealing with Nonconvexity		Dealing with Nonconvexity	Bilinear Terms

Dealing with Nonconvexities



- Functional nonconvexity causes serious problems.
 - Branch and bound must have true lower bound (global solution)
- Underestimate nonconvex functions. Solve relaxation. Provides lower bound.
- If relaxation is not exact, then branch

Dealing with Nonconvex Constraints



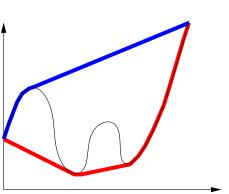
 If nonconvexity in constraints, may need to overestimate and underestimate the function to get a convex region

Envelopes

$f: \Omega \to \mathbb{R}$

Dealing with Nonconvexity

- Convex Envelope (vex_Ω(f)): Pointwise supremum of convex underestimators of f over Ω.
- Concave Envelope (cav_Ω(f)): Pointwise infimum of concave overestimators of f over Ω.



Branch-and-Bound Global Optimization Methods

- Under/Overestimate "simple" parts of (Factorable) Functions individually
 - Bilinear Terms
 - Trilinear Terms
 - Fractional Terms
 - Univariate convex/concave terms
- General nonconvex functions f(x) can be underestimated over a region [l, u] "overpowering" the function with a quadratic function that is ≤ 0 on the region of interest

$$\mathcal{L}(x) = f(x) + \sum_{i=1}^{n} \alpha_i (l_i - x_i)(u_i - x_i)$$

Refs: (McCormick, 1976; Adjiman et al., 1998; Tawarmalani and Sahinidis, 2002)

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Formulations	Difficulties	Formulations	Difficulties
Inequalities	Envelopes	Inequalities	
Dealing with Nonconvexity	Bilinear Terms	Dealing with Nonconvexity	Bilinear Terms

Bilinear Terms

The convex and concave envelopes of the bilinear function $\boldsymbol{x}\boldsymbol{y}$ over a rectangular region

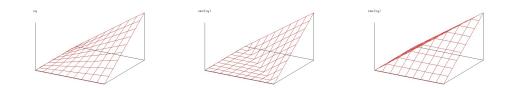
Envelopes

$$R \stackrel{\mathsf{def}}{=} \{ (x, y) \in \mathbb{R}^2 \mid l_x \le x \le u_x, \ l_y \le y \le u_y \}$$

are given by the expressions

$$\begin{array}{llll} \operatorname{vexxy}_R(x,y) &=& \max\{l_yx+l_xy-l_xl_y,u_yx+u_xy-u_xu_y\}\\ \operatorname{cavxy}_R(x,y) &=& \min\{u_yx+l_xy-l_xu_y,l_yx+u_xy-u_xl_y\} \end{array}$$

Worth 1000 Words?



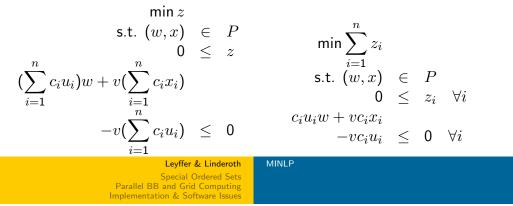
Disaggregation Tawarmalani et al. (2002)

Consider convex problem with bilinear objective

$$\begin{array}{ll} \underset{w,x_1,\ldots,x_n}{\text{minimize}} & w \sum_{i=1}^n c_i x_i \\ \text{subject to} & (w,x) \in P \quad \text{Polyhedror} \\ & 0 \leq w \leq v \ 0 \leq x \leq u \end{array}$$

Formulation #1

Formulation #2



Summary

- MINLP: Good relaxations are important
- Relaxations can be improved
 - Statically: Better formulation/preprocessing
 - Dynamically: Cutting planes
- Nonconvex MINLP:
 - Methods exist, again based on relaxations
- Tight relaxations is an active area of research
- Lots of empirical questions remain

Leyffer & Linderoth	MINLP
Special Ordered Sets Parallel BB and Grid Computing Implementation & Software Issues	

Implementation and Software for MINLP

Part IV

Implementation and Software

- 1. Special Ordered Sets
- 2. Parallel BB and Grid Computing
- 3. Implementation & Software Issues

Special Ordered Sets of Type 1

SOS1: $\sum \lambda_i = 1$ & at most one λ_i is nonzero

Example 1: $d \in \{d_1, \ldots, d_p\}$ discrete diameters $\Leftrightarrow d = \sum \lambda_i d_i \text{ and } \{\lambda_1, \ldots, \lambda_p\}$ is SOS1 $\Leftrightarrow d = \sum \lambda_i d_i \text{ and } \sum \lambda_i = 1 \text{ and } \lambda_i \in \{0, 1\}$

 $\ldots d$ is convex combination with coefficients λ_i

Example 2: nonlinear function c(y) of single integer

 $\Leftrightarrow y = \sum i \lambda_i$ and $c = \sum c(i)\lambda_i$ and $\{\lambda_1, \dots, \lambda_p\}$ is SOS1

References: (Beale, 1979; Nemhauser, G.L. and Wolsey, L.A., 1988; Williams, 1993) . . .

Special Ordered Sets of Type 1

SOS1: $\sum \lambda_i = 1$ & at most one λ_i is nonzero

Branching on SOS1

- 1. reference row $a_1 < \ldots < a_p$ e.g. diameters
- 2. fractionality: $a := \sum a_i \lambda_i$
- 3. find $t: a_t < a \le a_{t+1}$ 4. branch: $\{\lambda_{t+1}, \dots, \lambda_p\} = 0$ or $\{\lambda_1, \dots, \lambda_t\} = 0$

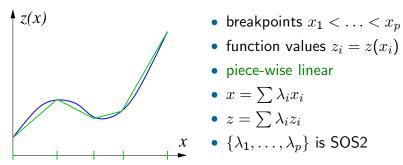
 $a \leq a$

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Special Ordered Sets Parallel BB and Grid Computing Implementation & Software Issues		Special Ordered Sets Parallel BB and Grid Computing Implementation & Software Issues	

Special Ordered Sets of Type 2

SOS2: $\sum \lambda_i = 1$ & at most two adjacent λ_i nonzero

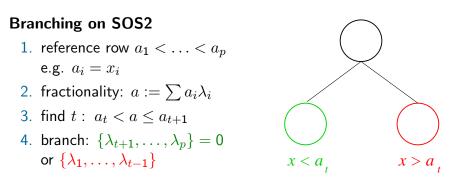
Example: Approximation of nonlinear function z = z(x)



... convex combination of two breakpoints

Special Ordered Sets of Type 2

SOS2: $\sum \lambda_i = 1$ & at most two adjacent λ_i nonzero

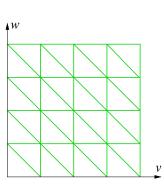


Special Ordered Sets of Type 3

Example: Approximation of 2D function u = g(v, w)

Triangularization of $[v_L, v_U] \times [w_L, w_U]$ domain

- 1. $v_L = v_1 < \ldots < v_k = v_U$
- 2. $w_L = w_1 < \ldots < w_l = w_U$
- 3. function $u_{ij} := g(v_i, w_j)$
- 4. λ_{ij} weight of vertex (i, j)
- $v = \sum \lambda_{ij} v_i$ • $w = \sum \lambda_{ij} w_j$ • $u = \sum \lambda_{ij} u_{ij}$
- $1 = \sum \lambda_{ij}$ is SOS3 ...



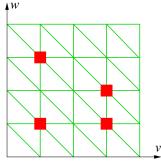
Special Ordered Sets of Type 3

SOS3:
$$\sum \lambda_{ij} = 1$$
 & set condition holds

- 1. $v = \sum \lambda_{ij} v_i$... convex combinations 2. $w = \sum \lambda_{ij} w_j$ 3. $u = \sum \lambda_{ij} u_{ij}$
- $\{\lambda_{11},\ldots,\lambda_{kl}\}$ satisfies set condition

 $\Leftrightarrow \exists \mathsf{trangle} \ \Delta : \{(i,j) : \lambda_{ij} > \mathsf{0}\} \subset \Delta$

i.e. nonzeros in single triangle Δ



violates set condn

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
	Special Ordered Sets of Type 1 Special Ordered Sets of Type 2 Special Ordered Sets of Type 3	Special Ordered Sets Parallel BB and Grid Computing Implementation & Software Issues	

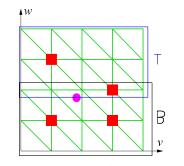
Branching on SOS3

 $\boldsymbol{\lambda}$ violates set condition

- compute centers: $\hat{v} = \sum \lambda_{ij} v_i \&$ $\hat{w} = \sum \lambda_{ii} w_i$
- find s, t such that $v_s \leq \hat{v} < v_{s+1}$ & $w_s \leq \hat{w} < w_{s+1}$
- \bullet branch on v or w

vertical branching:

branching:



 $\sum_{L} \lambda_{ij} = 1$ $\sum_{R} \lambda_{ij} = 1$ horizontal

Branching on SOS3

Example: gas network from first lecture ...

• pressure loss \boldsymbol{p} across pipe is related to flow rate \boldsymbol{f} as

$$p_{in}^2 - p_{out}^2 = \Psi^{-1} \operatorname{sign}(f) f^2 \iff p_{in} = \sqrt{p_{out}^2 + \Psi^{-1} \operatorname{sign}(f) f^2}$$

where Ψ : "Friction Factor"

- nonconvex equation u = g(v, w)
 ... assume pressures needed elsewhere
- (Martin et al., 2005) use SOS3 model
 ... study polyhedral properties
 - ... solve medium sized problem

Leyffer & Linderoth MINLP

 $\sum_{m} \lambda_{ij} = 1$ $\sum_{n} \lambda_{ij} = 1$

Special Ordered Sets Parallel BB and Grid Computing Implementation & Software Issues

Parallel Branch-and-Bound

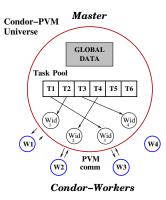
meta-computing platforms:

- set of distributed heterogeneous computers, e.g.
 pool of workstations
 - \circ group of supercomputers or anything
- low quality with respect to bandwidth, latency, availability
- low cost: *i*t's free!!! ... huge amount of resources
- ... use *Condor* to "build" MetaComputer ... high-throughput computing

Parallel Branch-and-Bound

Master Worker Paradigm (MWdriver)

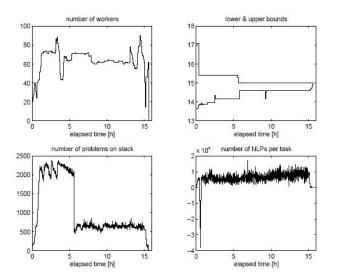
Object oriented C++ library on top of Condor-PVM



Fault tolerance via master check-pointing

Leyffer & Linderoth M Special Ordered Sets Parallel BB and Grid Computing Implementation & Software Issues	IINLP	Leyffer & Linderoth N Special Ordered Sets Parallel BB and Grid Computing Implementation & Software Issues	/INLP
Parallel Branch-and-Bound		Parallel Branch-and-Bound	
First Strategy : 1 worker ≡ 1 NLP ⇒ grain-size <i>too small</i> … NLPs solve in seconds		Trimloss optimization with 56 generation solve 96,408 MINLPs on 62.7 wo \Rightarrow 600,518,018 NLPs	0
New Strategy: 1 worker ≡ 1 subtree (MINLP) "streamers" running down tree Important: workers remove "small t before returning tree to master	Worker 1 Worker 2 Worker 3	Wall clock time = 15.5 hours Cumulative worker CPU time = 752 efficiency := $\frac{\text{work-time}}{\text{work} \times \text{job-time}}$ proportion of time workers were b	$=\frac{752.7}{62.7 \times 15.5}=80.5$

Parallel Branch-and-Bound: Results



Detecting Infeasibility

NLP node inconsistent (BB, OA, GBD) \Rightarrow NLP solver must prove infeasibility \Rightarrow solve feasibility problem: restoration

If \exists solution (\hat{x}, \hat{y}) such that $||c^+(\hat{x}, \hat{y})|| > 0$ \Rightarrow no feasible point (if convex) in neighborhood (if nonconvex)

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
Special Ordered Sets	Detecting Infeasibility	Special Ordered Sets	Detecting Infeasibility
Parallel BB and Grid Computing	Choice of NLP Solver	Parallel BB and Grid Computing	Choice of NLP Solver
Implementation & Software Issues	MINLP Software	Implementation & Software Issues	MINLP Software

Feasibility Cuts for OA et al.

 $\hat{Y} = \{\hat{y}\}$ singleton & c(c, y) convex

 (\hat{x}, \hat{y}) solves $F(\hat{y})$ with $||c^+(\hat{x}, \hat{y})|| > 0$ \Rightarrow valid cut to eliminate \hat{y} given by

$$\mathsf{0} \geq c^+(\hat{x},\hat{y}) + \hat{\gamma}^T \left(egin{array}{c} x - \hat{x} \ y - \hat{y} \end{array}
ight)$$

where $\hat{\gamma} \in \partial \|c^+(\hat{x}, \hat{y})\|$ subdifferential

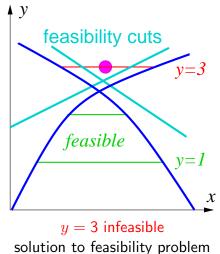
Polyhedral norms: $\hat{\gamma} = \nabla \hat{c} \lambda$ where

1.
$$\ell_{\infty}$$
 norm: $\sum \lambda_i = 1$, and $0 \leq \lambda_i \perp \hat{c}_i \leq \|\hat{c}^+\|$

2.
$$\ell_1$$
 norm: $0 \leq \lambda_i \leq 1 \perp -\hat{c}_i$

 $\ldots \lambda$ multipliers of equivalent smooth NLP \ldots easy exercise

Geometry of Feasibility Cuts



feasibility cuts for OA

Infeasibility in Branch-and-Bound

FilterSQP restoration phase

- satisfiable constraints: $J := \{j : c_j(\hat{x}, \hat{y}) \le 0\}$
- violated constraints J^{\perp} (complement of J)

$$\begin{array}{ll} \underset{x,y}{\text{minimize}} & \sum_{j \in J^{\perp}} c_j(x,y) \\ \text{subject to} & c_j(x,y) \leq 0 \\ & x \in X, \ y \in \hat{Y} \end{array} \quad \forall j \in J \end{array}$$

- filter SQP algorithm on $\|c_J^+\|$ and $\|c_{J^\perp}^+\|$ \Rightarrow 2nd order convergence
- $\bullet\,$ adaptively change J
- similar to ℓ_1 -norm, but $\lambda_i \not\leq 1$

Choice of NLP Solver

MILP/MIQP branch-and-bound

- (\hat{x}, \hat{y}) solution to parent node
- new bound: $y_i \geq \lfloor \hat{y}_i \rfloor$ added to parent LP/QP
- \Rightarrow dual active set method; (\hat{x}, \hat{y}) dual feasible
- \Rightarrow fast re-optimization (MIQP 2-3 pivots!)

MILP exploit factorization of constraint basis \Rightarrow no re-factorization, just updates ...also works for MIQP (KKT matrix factorization)

- \Rightarrow interior-point methods not competitive
- ... how to check $\lambda_i > 0$ for SOS branching ???
- ... how to warm-start IPMs ???

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
	Detecting Infeasibility	Special Ordered Sets	
Parallel BB and Grid Computing	Choice of NLP Solver	Parallel BB and Grid Computing	Choice of NLP Solver
Implementation & Software Issues	MINLP Software	Implementation & Software Issues	MINLP Software
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

Choice of NLP Solver

MINLP branch-and-bound

- (\hat{x}, \hat{y}) solution to parent node
- new bound: $y_i \geq \lfloor \hat{y}_i \rfloor$ added to parent NLP

Snag: $\nabla c(x, y)$, $\nabla^2 \mathcal{L}$ etc. change ...

- factorized KKT system at (x^k, y^k) to find step (d_x, d_y)
- NLP solution:
- $(\hat{x}, \hat{y}) = (x^{k+1}, y^{k+1}) = (x^k + \alpha d_x, y^k + \alpha d_y)$ but KKT system at (x^{k+1}, y^{k+1}) never factorized
-SQP methods take 2-3 iterations (good active set)

Outer Approximation et al.

- no good warm start (y changes too much)
- \Rightarrow interior-point methods or SQP can be used

Software for MINLP

- Outer Approximation: DICOPT++
- Branch-and-Bound Solvers: SBB & MINLP
- Global MINLP: BARON & MINOPT
- Online Tools: MINLP World, MacMINLP & NEOS

Outer Approximation: DICOPT++

Outer approximation with equality relaxation & penalty **Reference**: (Kocis and Grossmann, 1989) **Features**:

- GAMS interface
- NLP solvers: CONOPT, MINOS, SNOPT
- MILP solvers: CPLEX, OSL2
- solve root NLP, or $NLP(y^0)$ initially
- relax linearizations of nonlinear equalities: λ_i multiplier of $c_i(z) = 0 \dots$

$$c_i(\hat{z}) +
abla c_i(\hat{z})^T (z-\hat{z}) \left\{egin{array}{c} \geq \mathsf{0} & ext{if } \lambda_i > \mathsf{0} \ \leq \mathsf{0} & ext{if } \lambda_i < \mathsf{0} \ \end{array}
ight.$$

• heuristic stopping rule: STOP if $\text{NLP}(y^j)$ gets worse AIMMS has version of outer approximation

SBB: (Bussieck and Drud, 2000)

Features:

- GAMS branch-and-bound solver
- variable types: integer, binary, SOS1, SOS2, semi-integer
- variable selection: integrality, pseudo-costs
- node selection: depth-first, best bound, best estimate
- multiple NLP solvers: CONOPT, MINOS, SNOPT
 ⇒ multiple solves if NLP fails

Comparison to DICOPT (OA):

- DICOPT better, if combinatorial part dominates
- SBB better, if difficult nonlinearities

Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP	
Special Ordered Sets Parallel BB and Grid Computing Implementation & Software Issues		Special Ordered Sets Parallel BB and Grid Computing Implementation & Software Issues	Choice of NLP Solver	

MINLPBB: (Leyffer, 1998)

Features:

- AMPL branch-and-bound solver
- variable types: integer, binary, SOS1
- variable selection: integrality, priorities
- node selection: depth-first & best bound after infeasible node
- NLP solver: filterSQP \Rightarrow feasibility restoration
- CUTEr interface available

Global MINLP Solvers

$\alpha\text{-BB}$ & MINOPT: (Schweiger and Floudas, 1998)

- problem classes: MINLP, DAE, optimal control, etc
- multiple solvers: OA, GBD, MINOS, CPLEX
- own modeling language

BARON: (Sahinidis, 2000)

- global optimization from underestimators & branching
- range reduction important
- classes of underestimators & factorable NLP exception: cannot handle sin(x), cos(x)
- CPLEX, MINOS, SNOPT, OSL
- mixed integer semi-definite optimization: SDPA

Online Tools

Model Libraries

- MINLP World www.gamsworld.org/minlp/ scalar GAMS models ... difficult to read
- GAMS library www.gams.com/modlib/modlib.htm
- MacMINLP www.mcs.anl.gov/~leyffer/macminlp/ AMPL models

NEOS Server

- MINLP solvers: SBB (GAMS), MINLPBB (AMPL)
- MIQP solvers: FORTMP, XPRESS

COIN-OR

http://www.coin-or.org

- COmputational INfrastructure for Operations Research
- A library of (interoperable) software tools for optimization
- A development platform for open source projects in the OR community
- Possibly Relevant Modules:
 - OSI: Open Solver Interface
 - CGL: Cut Generation Library
 - CLP: Coin Linear Programming Toolkit
 - CBC: Coin Branch and Cut
 - IPOPT: Interior Point OPTimizer for NLP
 - NLPAPI: NonLinear Programming API

Leyffer & Linderoth Special Ordered Sets Parallel BB and Grid Computing Implementation & Software Issues	MINLP Detecting Infeasibility Choice of NLP Solver MINLP Software	Leyffer & Linderoth	MINLP
Conclusions			
MINLP rich modeling paradigm • most popular solver on NEOS			
Algorithms for MINLP:		Par	t V
 Branch-and-bound (branch-and- Outer approximation et al. 	cut)	Refer	ences

 \Rightarrow many research opportunities!!!

- C. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A global optimization method, aBB, for general twice-differentiable constrained NLPs - I. Theoretical advances. *Computers and Chemical Engineering*, 22:1137–1158, 1998.
- I. Akrotirianakis, I. Maros, and B. Rustem. An outer approximation based branch-and-cut algorithm for convex 0-1 MINLP problems. *Optimization Methods and Software*, 16:21–47, 2001.
- E. Balas. Disjunctive programming. In *Annals of Discrete Mathematics 5: Discrete Optimization*, pages 3–51. North Holland, 1979.
- E. Balas, S. Ceria, and G. Corneujols. A lift-and-project cutting plane algorithm for mixed 0-1 programs. *Mathematical Programming*, 58:295–324, 1993.
- E. M. L. Beale. Branch-and-bound methods for mathematical programming systems. *Annals of Discrete Mathematics*, 5:201–219, 1979.
- B. Borchers and J. E. Mitchell. An improved branch and bound algorithm for Mixed Integer Nonlinear Programming. *Computers and Operations Research*, 21(4): 359–367, 1994.
- R. Borndörfer and R. Weismantel. Set packing relaxations of some integer programs. *Mathematical Programming*, 88:425 450, 2000.
- M. R. Bussieck and A. Drud. SBB: A new solver for mixed integer nonlinear programming. In *Recent Advances in Nonlinear Mixed Integer Optimization*. INFORMS Fall, 2000. Invited talk.
- M. T. Çezik and G. Iyengar. Cuts for mixed 0-1 conic programming. *Mathematical Programming*, 2005. to appear.

ing, 2005. to appear. Engineering Chemistry Research, 27:1407–14		(-1421, 1988.	
Leyffer & Linderoth	MINLP	Leyffer & Linderoth	MINLP
References		References	
			-

- G. R. Kocis and I. E. Grossmann. Computational experience with DICOPT solving MINLP problems in process systems engineering. *Computers and Chemical Engineering*, 13(3):307–315, 1989.
- S. Lee and I. Grossmann. New algorithms for nonlinear disjunctive programming. *Computers and Chemical Engineering*, 24:2125–2141, 2000.
- S. Leyffer. User manual for MINLP_BB. University of Dundee, 1998.
- S. Leyffer. Integrating SQP and branch-and-bound for mixed integer nonlinear programming. *Computational Optimization & Applications*, 18:295–309, 2001.
- L. Lovász and A. Schrijver. Cones of matrices and setfunctions, and 0-1 optimization. *SIAM Journal on Optimization*, 1, 1991.
- H. Marchand and L. Wolsey. The 0-1 knapsack problem with a single continuous variable. *Mathematical Programming*, 85:15–33, 1999.
- A. Martin, M. Möller, and S. Moritz. Mixed integer models for the stationary case of gas network optimization. Technical report, Darmstadt University of Technology, 2005.
- G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. *Mathematical Programming*, 10:147–175, 1976.
- Nemhauser, G.L. and Wolsey, L.A. Integer and Combinatorial Optimization. John Wiley, New York, 1988.
- M. Padberg, T. J. Van Roy, and L. Wolsey. Valid linear inequalities for fixed charge problems. *Operations Research*, 33:842–861, 1985.

- H. Crowder, E. L. Johnson, and M. W. Padberg. Solving large scale zero-one linear programming problems. *Operations Research*, 31:803–834, 1983.
- D. De Wolf and Y. Smeers. The gas transmission problem solved by an extension of the simplex algorithm. *Management Science*, 46:1454–1465, 2000.
- M. Duran and I. E. Grossmann. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. *Mathematical Programming*, 36:307–339, 1986.
- R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer approximation. *Mathematical Programming*, 66:327–349, 1994.
- R. Fletcher and S. Leyffer. Numerical experience with lower bounds for MIQP branch-and-bound. *SIAM Journal on Optimization*, 8(2):604–616, 1998.
- A. M. Geoffrion. Generalized Benders decomposition. *Journal of Optimization Theory* and Applications, 10:237–260, 1972.
- I. E. Grossmann and R. W. H. Sargent. Optimal design of multipurpose batch plants. *Ind. Engng. Chem. Process Des. Dev.*, 18:343–348, 1979.
- Harjunkoski, I., Westerlund, T., Pörn, R. and Skrifvars, H. Different transformations for solving non-convex trim-loss problems by MINLP. *European Journal of Opertational Research*, 105:594–603, 1998.
- Jain, V. and Grossmann, I.E. Cyclic scheduling of continuous parallel-process units with decaying performance. *AIChE Journal*, 44:1623–1636, 1998.
- G. R. Kocis and I. E. Grossmann. Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis. *Industrial Engineering Chemistry Research*, 27:1407–1421, 1988.
- I. Quesada and I. E. Grossmann. An LP/NLP based branch-and-bound algorithm for convex MINLP optimization problems. *Computers and Chemical Engineering*, 16: 937–947, 1992.
- Quist, A.J. Application of Mathematical Optimization Techniques to Nuclear Reactor Reload Pattern Design. PhD thesis, Technische Universiteit Delft, Thomas Stieltjes Institute for Mathematics, The Netherlands, 2000.
- R. Raman and I. E. Grossmann. Modeling and computational techniques for logic based integer programming. *Computers and Chemical Engineering*, 18:563–578, 1994.
- N. V. Sahinidis. BARON: Branch and reduce optimization navigator. Technical report, University of Illinois at Urbana-Champaign, Department of Chemical Engineering, 2000.
- C. A. Schweiger and C. A. Floudas. MINOPT: A modeling language and algorithmic framework for linear, mixed-integer, nonlinear, dynamic, and mixed-integer nonlinear optimization. Technical report, Department of Chemical Engineering, Princeton University, 1998.
- H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. *SIAM Journal on Discrete Mathematics*, 3:411–430, 1990.
- O. Sigmund. A 99 line topology optimization code written in matlab. *Structural Multidisciplinary Optimization*, 21:120–127, 2001.
- R. Stubbs and S. Mehrohtra. Generating convex polynomial inequalities for mixed 0-1 programs. *Journal of Global Optimization*, 24:311–332, 2002.

- R. A. Stubbs and S. Mehrotra. A branch-and-cut method for 0-1 mixed convex programming. *Mathematical Programming*, 86:515-532, 1999.
- M. Tawarmalani, S. Ahmed, and N. Sahinidis. Product disaggregation in global optimization and relaxations of rational programs. *Optimization and Engineering*, 3:281–303, 2002.
- M. Tawarmalani and N. V. Sahinidis. *Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications.* Kluwer Academic Publishers, Boston MA, 2002.
- J. Viswanathan and I. E. Grossmann. Optimal feed location and number of trays for distillation columns with multiple feeds. *I&EC Research*, 32:2942–2949, 1993.
- Westerlund, T. and Pettersson, F. An extended cutting plane method for solving convex MINLP problems. *Computers and Chemical Engineering Supplement*, 19: S131–S136, 1995. ESCAPE–95.
- Westerlund, T., Isaksson, J. and Harjunkoski, I. Solving a production optimization problem in the paper industry. Report 95–146–A, Department of Chemical Engineering, Abo Akademi, Abo, Finland, 1995.
- Westerlund, T., Pettersson, F. and Grossmann, I.E. Optimization of pump configurations as MINLP problem. *Computers & Chemical Engineering*, 18(9): 845–858, 1994.
- H. P. Williams. *Model Solving in Mathematical Programming*. John Wiley & Sons Ltd., Chichester, 1993.

Leyffer & Linderoth MINLP