Practical Issues: Branching Rules

- Branching must not destroy the structure of the subproblem.
- Branching should result child nodes that represent balanced sets of solutions which leads tighter bounds at each node.
- Original variable x is integer then, $\sum_{q \in Q} q\lambda_q$ be integer.
- Typically, branching on individual master variable λ_q results unbalanced tree and significant subproblem modifications.
Branching Rules and Cuts for Branch and Price Algorithm

1. Branching on and writing cuts in terms of master problem variables (λ).

2. Implicit branching through pricing problem.

3. Branching on and writing cuts in terms of original variables (x).
Master Problem

\[\min \sum_{q \in Q} c_q \lambda_q \]
\[\text{s.t.} \]
\[\sum_{q \in Q} A_q \lambda_q \geq b \quad (\pi) \]
\[\sum_{q \in Q} \lambda_q \leq K \quad (v) \]
\[\lambda_q \geq 0 \quad \forall q \in Q \]

Pricing Problem

\[\min \quad cy - \pi Ay + v \]
\[Dy \geq d \]
\[y \in \mathbb{N}^k \]
Branching on λ

- Branching on fractional λ_q is not appropriate. Because:
 - significant changes for sub problem,
 - unbalanced branch and bound tree.
- If master problem solution $\lambda = (\lambda_1, \ldots, \lambda_{|Q|})$ is fractional, then there exists $\hat{Q} \subseteq Q$ such that
 $$\sum_{q \in \hat{Q}} \lambda_q = \alpha, \quad \alpha \text{ is fractional}.$$
- Then we can write the branching rule:
 $$\sum_{q \in \hat{Q}} \lambda_q \leq \lfloor \alpha \rfloor \quad \text{or} \quad \sum_{q \in \hat{Q}} \lambda_q \geq \lceil \alpha \rceil$$
Branching on λ: Cont.

Generic master formulation with branching rules:

$$
\min \sum_{q \in Q} c_q \lambda_q \\
\text{s.t.} \\
\sum_{q \in Q} A_q \lambda_q \geq b \quad (\pi) \\
\sum_{q \in Q} \lambda_q \leq K^j \quad \text{for } j \in G^u \quad (\mu_j) \\
\sum_{q \in Q} \lambda_q \geq L^j \quad \text{for } j \in H^u \quad (v_j) \\
\lambda_q \geq 0 \forall q \in Q
$$

Reduced cost of the column:

$$
\tilde{c}_q = c_q - \sum_{i=1}^{m} \pi_i a_{iq} + \sum_{j \in G^u} \mu_j g_j(q) - \sum_{j \in H^u} v_j h_j(q)
$$

- $g_j(q) = 1$ if column q has a nonzero coefficient in the row $j \in G^u$.
- $h_j(q) = 1$ if column q has a nonzero coefficient in the row $j \in H^u$.
Column Generation Subproblem:

\[
\begin{align*}
\min & \quad cy - \pi Ay + \mu g - vh \\
Dy & \geq d \\
g &= g(y) \\
h &= h(y) \\
y &\in \mathbb{N}^\infty \\
g &\in \{0, 1\}^{|G''|} \\
h &\in \{0, 1\}^{|H''|}
\end{align*}
\]

- \(g = g(y), h = h(y) \) are boolean functions: \(g = \text{TRUE} (=1) \) if generated column \(y \) will have a positive coefficient in the corresponding branching constraint.
Proposition

Given a feasible solution λ for master problem that is not integral, there exists a hyperplane $((\gamma, \gamma_0) \in \mathbb{Z}^{n+1})$ such that $\sum_{q \in Q: \gamma q \geq \gamma_0} \lambda_q$ is fractional.

- If master problem solution $\lambda = (\lambda_1, ..., \lambda_{|Q|})$ is fractional, then there exists $((\gamma, \gamma_0) \in \mathbb{Z}^{n+1})$ such that
 \[
 \sum_{q \in Q: \gamma q \geq \gamma_0} \lambda_q = \alpha, \quad \alpha \text{ is fractional}.
 \]
- The branching rule is
 \[
 \sum_{q \in Q: \gamma q \geq \gamma_0} \lambda_q \leq \lfloor \alpha \rfloor \quad \text{or} \quad \sum_{q \in Q: \gamma q \geq \gamma_0} \lambda_q \geq \lceil \alpha \rceil
 \]
Subproblem Modification

Let μ_j be the dual variable for $\sum_{q \in Q: \gamma q \geq \gamma_0} \lambda_q \leq [\alpha]$:

- Reduced cost of a column changed to:

$$
\bar{c}_q = c_q - \sum_{i=1}^{m} \pi_i a_{iq} + \mu_j g_j(q)
$$

where $g_j = 1$ if column q satisfy $\gamma q \geq \gamma_0$.

- The objective function of subproblem is updated with $+\mu_j g_j$.

- Since it is unattractive for objective function, it is enough to put a constraint to force $g_j = 1$ when necessary.

- Constraint should be added to the subproblem to force $g_j = 1$ when the column, q satisfy $\gamma q \geq \gamma_0$.

$$
(\gamma_{max}^j - \gamma_0^j + 1) g_j \geq \gamma^j q - \gamma_0^j + 1
$$

where $\gamma_{max}^j = \max_{q \in Q} \gamma^j q$
Let v_j be the dual variable for $\sum_{q \in Q: \gamma q \geq \gamma_0} \lambda_q \geq \lfloor \alpha \rfloor$:

- Reduced cost of a column changed to:

$$\bar{c}_q = c_q - \sum_{i=1}^{m} \pi_i a_{iq} - v_j h_j(q)$$

where $h_j = 1$ if column q satisfy $\gamma q \geq \gamma_0$.

- The objective function of subproblem is updated with $-v_j h_j$.

- Since it is attractive for objective function, it is enough to put a constraint to force $h_j = 0$ when necessary.

- Constraint should be added to the subproblem to force $h_j = 0$ when the column, q satisfy $\gamma q < \gamma_0$.

$$\gamma^j_0 - \gamma^j_{\min} h_j \leq \gamma^j q - \gamma^j_{\min}$$

where $\gamma^j_{\min} = \min_{q \in Q} \gamma^j q$
Comments About the Rule

- Any fractional solution can be cut off.
- Number of possible sets is finite, the rule is finite.
- Complete branching rule.
- Not easy to find a hyperplane. Theoretical.
- In practice, consider hyperplanes with $\gamma = e^i$, but it does not guarantee the existence of hyperplanes.
Subproblem finds shortest path from an origin (s) to a destination (t) with minimum cost.

Columns in master problem represent paths (arc incidence vectors).

Solution of master problem is a combination of these paths satisfying the constraints.

Let \(q \in \{0, 1\}^n \) be the column vector where \(n \) is the number of arcs in the network. If the solution to the master problem is not integral, then there exists an arc \(k \) such that the flow along the arc

\[
\sum_{q \in Q: q^k = 1} \lambda_q
\]

is fractional.
<table>
<thead>
<tr>
<th>Branch 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow on arc $k = (a \rightarrow b)$ is equal to 1.</td>
</tr>
<tr>
<td>- Master Problem: set $\lambda_q = 0$ for all ${q \in Q}$ if λ_q should be zero if arc k is in the solution.</td>
</tr>
<tr>
<td>- Pricing Problem: delete all arcs into b and from a except arc $a \rightarrow b$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Branch 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow on arc $k = (a \rightarrow b)$ is equal to 0.</td>
</tr>
<tr>
<td>- Master Problem: set $\lambda_q = 0$ for all ${q \in Q : q^k = 1}$.</td>
</tr>
<tr>
<td>- Pricing Problem: delete arc k.</td>
</tr>
</tbody>
</table>
Example from Cutting Strip Problem

- z_i^k = number of strips of width w_i cut from sheet k.
- $z_i^k = \sum_{q \in Q(k)} q_i^k \lambda_q$.
- Let z_i^k be fractional and $\lfloor z_i^k \rfloor = \nu$.
- Force
 $$\sum_{q \in Q(k): q_i^k \geq \nu} \lambda_q \in \{0, 1\}$$

- In any cutting pattern for sheet k, there must be at least ν strips of width w_i.
- In master problem, remove columns that do not satisfy the rule.
- In pricing problem, set a lower bound for q_i^k.
- Generic constraints are explained in Vanderbeck (2000).
Symmetric Structure

- Forcing the rule for sheet k_1 → result columns for other sheets that do not satisfy the rule.
- Force:

$$\sum_{q \in Q: q_i \geq v} \lambda_q \text{ integer}$$

Choosing v

- Poorly chosen v results uneven partition of the solution space.
- Partition interval $[0, q_i^{max}]$ where q_i^{max} is the maximum value of q_i in any pattern.
Poggi and Uchoa (2003)\(^1\) introduce explicit master:

<table>
<thead>
<tr>
<th>Reformulation</th>
<th>Explicit Master</th>
<th>Pricing Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\min cx)</td>
<td>(Q\lambda - x = 0) ((\pi))</td>
<td>(\min -\pi x - \nu)</td>
</tr>
<tr>
<td>(x' - x = 0)</td>
<td>(1\lambda = 1) ((\nu))</td>
<td>(Dx \leq d)</td>
</tr>
<tr>
<td>(Ax = b)</td>
<td>(Ax = b) ((\mu))</td>
<td>(x \in \mathbb{Z}_+^n)</td>
</tr>
<tr>
<td>(Dx' \leq d)</td>
<td>(\lambda, x > 0)</td>
<td></td>
</tr>
<tr>
<td>(x', x \in \mathbb{Z}_+^n)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Size of explicit master is larger than DW master.
- LP relaxations are equal.
- Dual variable \(\mu \) corresponds to \(Ax = b \) is not used in pricing problem.
- Cuts in terms of \(x \) variables can easily be added to system \(Ax = b \).

Assume we have N subproblems. Possible strategies:

- Solve N problems pick the best improving column to enter RMP.
- Add all columns with negative reduced cost to the RMP.
- Solve N problems sequentially, e.g. solve 1, then 2, .., solve N.
- Solve the subproblems by selecting randomly.
- Solve subproblem heuristically to generate quick columns.
- Use column pool to keep generated columns.
- Delete columns with positive reduced cost from RMP.