A Different Perspective on Perspective Cuts

JEFF LINDEROTH
Unemployed
linderot@cs.wisc.edu

OKTAY GÜNLÜK
Mathematical Sciences Department
IBM T.J. Watson Research Center
gunluk@us.ibm.com

MIP 2007
Centre de recherches mathématiques
Université de Montréal
August 1, 2007
Indicator MINLPs

- We focus on (convex) MINLPs that are driven by 0-1 indicator variables $z_i, i \in \mathcal{I}$
- Each indicator variable $i$ controls a collection of variables $V_i$
- If $z_i = 0$, the components of $x$ controlled by $z_i$ must collapse to a point: $z_i = 0 \Rightarrow x_{V_i} = \hat{x}_{V_i}$
  - WLOG $\hat{x}_{V_i} = 0$ from now on
- If $z_i = 1$, the components of $x$ controlled by $z_i$ belong to a convex set $z_i = 1 \Rightarrow x_{V_i} \in \Gamma_i$
- $\Gamma_i$ is specified by (convex) nonlinear inequality constraints and bounds on the variables

$$\Gamma_i \overset{\text{def}}{=} \{x_{V_i} \mid f_k(x_{V_i}) \leq 0 \ \forall k \in K_i, l \leq x_{V_i} \leq u\}.$$
Indicator MINLPs

\[
\begin{align*}
\min & \quad c^T x + d^T z \\
\text{s.t.} & \quad g_m(x, z) \leq 0 \quad \forall m \in M \\
& \quad z_i f_k(x_{V_i}) \leq 0 \quad \forall i \in I \quad \forall k \in K_i \\
& \quad \ell_j z_i \leq x_j \leq u_j z_i \quad \forall i \in I \quad \forall j \in V_i \\
x & \in X \\
z & \in Z \cap B^p, 
\end{align*}
\]

- $X, Z$ polyhedral sets
- Typically, \( g_m(x, z) = \bar{g}_m(x) + a_m^T z \) is linear in $z$, or even $a_m = 0$. 
Indicator MINLPs

\[
\begin{align*}
\min & \quad c^T x + d^T z \\
\text{s.t.} & \quad g_m(x, z) \leq 0 \quad \forall m \in M \\
& \quad z_i f_k(x_V) \leq 0 \quad \forall i \in I \quad \forall k \in K_i \\
& \quad \ell_j z_i \leq x_j \leq u_j z_i \quad \forall i \in I \quad \forall j \in V_i \\
& \quad x \in X \quad z \in Z \cap \mathbb{B}^p,
\end{align*}
\]

- $X, Z$ polyhedral sets
- Typically, $g_m(x, z) = \bar{g}_m(x) + \alpha_m^T z$ is linear in $z$, or even $\alpha_m = 0$.
- If $z \in Z \cap \mathbb{B}^p$ is fixed, then the problem is convex.
Indicators Everywhere

Process Flow Applications

- $z = 0 \implies x_1 = x_2 = x_3 = x_4 = 0$
- $z = 1 \implies f(x_1, x_2, x_3, x_4) \leq 0$

Note that here $I$ is already lying $z = 0$ does not imply $y = 0$ Nevertheless, results apply to epigraph-type indicator MINLPs.
Indicators Everywhere

Process Flow Applications
- $z = 0 \implies x_1 = x_2 = x_3 = x_4 = 0$
- $z = 1 \implies f(x_1, x_2, x_3, x_4) \leq 0$

Separable Function Epigraphs
- $y_i \geq f_i(x_i) \quad \forall i \in I$
- $l z_i \leq x_i \leq u z_i \quad \forall i \in I$
Indicators Everywhere

**Process Flow Applications**
- $z = 0 \Rightarrow x_1 = x_2 = x_3 = x_4 = 0$
- $z = 1 \Rightarrow f(x_1, x_2, x_3, x_4) \leq 0$

**Separable Function Epigraphs**
- $y_i \geq f_i(x_i) \ \forall i \in I$
- $\ell z_i \leq x_i \leq u z_i \ \forall i \in I$

- Note that here I am already lying
- $z = 0$ does not imply $y = 0$
- Nevertheless, results apply to epigraph-type indicator MINLPs.
A Very Simple Example

\[ R \overset{\text{def}}{=} \left\{ (x, y, z) \in \mathbb{R}^2 \times \mathbb{B} \mid y \geq x^2, 0 \leq x \leq uz \right\} \]
A Very Simple Example

\[ R \overset{\text{def}}{=} \left\{ (x, y, z) \in \mathbb{R}^2 \times \mathbb{B} \mid y \geq x^2, 0 \leq x \leq uz \right\} \]

- \( z = 0 \Rightarrow x = 0, y \geq 0 \)
- \( z = 1 \Rightarrow x \leq u, y \geq x^2 \)
A Very Simple Example

\[ R \overset{\text{def}}{=} \left\{ (x, y, z) \in \mathbb{R}^2 \times \mathbb{B} \mid y \geq x^2, 0 \leq x \leq uz \right\} \]

- \( z = 0 \Rightarrow x = 0, y \geq 0 \)
- \( z = 1 \Rightarrow x \leq u, y \geq x^2 \)

Deep Insights

- \( \text{conv}(R) \equiv \text{line connecting } (0, 0, 0) \text{ to } y = x^2 \text{ in the } z = 1 \text{ plane} \)
Characterization of Convex Hull

- Work out the algebra to get:

**Deep Theorem #1**

\[
\text{conv}(R) = \left\{ (x, y, z) \in \mathbb{R}^3 \mid yz \geq x^2, 0 \leq x \leq uz, 0 \leq z \leq 1, y \geq 0 \right\}
\]
Characterization of Convex Hull

- Work out the algebra to get:

Deep Theorem #1

\[ \text{conv}(\mathbb{R}) = \{(x, y, z) \in \mathbb{R}^3 \mid yz \geq x^2, 0 \leq x \leq uz, 0 \leq z \leq 1, y \geq 0\} \]

\[ x^2 \leq yz, y, z \geq 0 \equiv \]
Characterization of Convex Hull

- Work out the algebra to get:

**Deep Theorem #1**

\[
\text{conv}(\mathbb{R}) = \left\{ (x, y, z) \in \mathbb{R}^3 \mid yz \geq x^2, 0 \leq x \leq uz, 0 \leq z \leq 1, y \geq 0 \right\}
\]

\[x^2 \leq yz, y, z \geq 0 \equiv\]

Second Order Cone Programming

- There are effective and robust algorithms for optimizing linear objectives over \(\text{conv}(\mathbb{R})\)
Higher Dimensions

- Using an extended formulation, we can describe the convex hull of a higher-dimensional analogue of $R$:

$$Q \overset{\text{def}}{=} \left\{ (w, x, z) \in \mathbb{R}^{1+n} \times \mathbb{B}^n \mid w \geq \sum_{i=1}^{n} q_i x_i^2, \ u_i z_i \geq x_i \geq 0, \forall i \right\}$$
Higher Dimensions

- Using an extended formulation, we can describe the convex hull of a higher-dimensional analogue of $\mathbb{R}$:

$$Q \overset{\text{def}}{=} \left\{ (w, x, z) \in \mathbb{R}^{1+n} \times \mathbb{B}^n \mid w \geq \sum_{i=1}^{n} q_i x_i^2, \ u_i z_i \geq x_i \geq 0, \ \forall i \right\}$$

- First we write an extended formulation of $Q$, introducing variables $y_i$:

$$\bar{Q} \overset{\text{def}}{=} \left\{ (w, x, y, z) \in \mathbb{R}^{1+3n} \mid w \geq \sum_i q_i y_i, (x_i, y_i, z_i) \in R_i, \ \forall i \right\}$$

$$R_i \overset{\text{def}}{=} \left\{ (x_i, y_i, z_i) \in \mathbb{R}^2 \times \mathbb{B} \mid y_i \geq x_i^2, 0 \leq x_i \leq u_i z_i \right\}$$
Extended Formulations

- $\bar{Q}$ is indeed an extended formulation in the sense that projecting out the $y$ variables from $\bar{Q}$ gives $Q$: $\text{Proj}_{(w,x,z)} \bar{Q} = Q$. 

The convex hull of $\bar{Q}$ is obtained by replacing $R_i$ with its convex hull description $\text{conv}(R_i)$:

$$\text{conv}(\bar{Q}) = \{ w \in \mathbb{R}, x \in \mathbb{R}^n, y \in \mathbb{R}^n, z \in \mathbb{R}^n : w \geq \sum_{i} q_i y_i, (x_i, y_i, z_i) \in \text{conv}(R_i), i = 1, 2, \ldots, n \}.$$ 

Again, the description of $\text{conv}(\bar{Q})$ is SOC-representable.

You get one rotated cone for each $i$. 

Günlük and Linderoth (UW-Madison) A Different Perspective on Perspective Cuts
Extended Formulations

- $\bar{Q}$ is indeed an extended formulation in the sense that projecting out the $y$ variables from $\bar{Q}$ gives $Q$: $\text{Proj}_{(w,x,z)} \bar{Q} = Q$.
- The convex hull of $\bar{Q}$ is obtained by replacing $R_i$ with its convex hull description $\text{conv}(R_i)$:

$$\text{conv}(\bar{Q}) = \left\{ w \in \mathbb{R}, x \in \mathbb{R}^n, y \in \mathbb{R}^n, z \in \mathbb{R}^n : w \geq \sum_i q_i y_i, \right.$$

$$\left. (x_i, y_i, z_i) \in \text{conv}(R_i), \quad i = 1, 2, \ldots, n \right\}.$$
Extended Formulations

- $\bar{Q}$ is indeed an extended formulation in the sense that projecting out the $y$ variables from $\bar{Q}$ gives $Q$: $\text{Proj}(w,x,z) \bar{Q} = Q$.
- The convex hull of $\bar{Q}$ is obtained by replacing $R_i$ with its convex hull description $\text{conv}(R_i)$:

$$\text{conv}(\bar{Q}) = \left\{ w \in \mathbb{R}, \ x \in \mathbb{R}^n, y \in \mathbb{R}^n, z \in \mathbb{R}^n : w \geq \sum_i q_i y_i, \ (x_i, y_i, z_i) \in \text{conv}(R_i), \ i = 1, 2, \ldots, n \right\}.$$

- Again, the description of $\text{conv}(\bar{Q})$ is SOC-representable.
- You get one rotated cone for each $i$. 

Günlük and Linderoth (UW-Madison)
Descriptions in the Original Space

- We can also write a convex hull description in the original space of variables, by projecting out $y$:

$$Q^c = \left\{ (w, x, z) \in \mathbb{R}^{1+n+n} : \right.$$ 

$$w \prod_{i \in S} z_i \geq \sum_{i \in S} \left( q_i x_i^2 \prod_{l \in S \setminus \{i\}} z_l \right) \quad \text{if } S \subseteq \{1, 2, \ldots, n\}$$

$$u_i z_i \geq x_i \geq 0, \quad x_i \geq 0, \quad i = 1, 2, \ldots, n \right\} \tag{\Pi}$$
Descriptions in the Original Space

- We can also write a convex hull description in the original space of variables, by projecting out $y$:

$$Q^c = \left\{(w, x, z) \in \mathbb{R}^{1+n+n} : \right.$$

$$w \prod_{i \in S} z_i \geq \sum_{i \in S} \left( q_i x_i^2 \prod_{l \in S \setminus \{i\}} z_l \right) \quad S \subseteq \{1, 2, \ldots, n\}$$

$$u_i z_i \geq x_i \geq 0, \quad x_i \geq 0, \quad i = 1, 2, \ldots, n \right\} \quad (\Pi)$$

**Theorem**

$$\text{Proj}_{(w,x,z)}(\bar{Q}^c) = Q^c = \text{conv}(Q).$$
Descriptions in the Original Space

- We can also write a convex hull description in the original space of variables, by projecting out $y$:

$$Q^c = \left\{ (w, x, z) \in \mathbb{R}^{1+n+n} : \right.$$ 

$$w \prod_{i \in S} z_i \geq \sum_{i \in S} \left( q_i x_i^2 \prod_{l \in S \setminus \{i\}} z_l \right) S \subseteq \{1, 2, \ldots, n\}$$

$$u_i z_i \geq x_i \geq 0, \ x_i \geq 0, \ i = 1, 2, \ldots, n \right\} \ (\Pi) \n$$

**Theorem**

$$\text{Proj}_{(w,x,z)}(\tilde{Q}^c) = Q^c = \text{conv}(Q).$$

- $Q^c$ consists of an exponential number of nonlinear inequalities.
Extending the Intuition

- To deal with general convex sets, let $W = W^1 \cup W^0$:
  
  $$W^0 = \{(x, z) \in \mathbb{R}^{n+1} | x = 0, z = 0\}$$
  $$W^1 = \{(x, z) \in \mathbb{R}^{n+1} | f_k(x) \leq 0 \text{ for } k \in K, u \geq x \geq 0, z = 1\}$$

- Write an extended formulation (XF) for $\text{conv}(W)$

\[
\left\{(x, x_0, x_1, z, z_0, z_1, \alpha) \in \mathbb{R}^{3n+4} | 1 \geq \alpha \geq 0, x^0 = 0, z^0 = 0
\right.
\]
\[
x = \alpha x^1 + (1 - \alpha) x^0, z = \alpha z^1 + (1 - \alpha) z^0,
\]
\[
f_i(x^1) \leq 0 \text{ for } i \in I, u \geq x^1 \geq 0, z^1 = 1\]
Simplify, Simplify, Simplify

- Substitute out $x^0, z^0$ and $z^1$: They are fixed in $(XF)$
- $z = \alpha$ after these substitutions, so substitute it out as well.
- $x = \alpha x^1 = zx^1$, so we can eliminate $x^1$ by replacing it with $x/z$ provided that $z > 0$. 

---

Lemma

If $W_1$ is convex, then $\text{conv}(W) = W - \cup W_0$, where $W_n = \{(x, z) \in R^n_+ | f_k(x/z) \leq 0 \forall k \in K, uz \geq x \geq 0, 1 \geq z > 0\}$

Lemma Extension

$\text{conv}(W) = \text{closure}(W - \cup W_0)$
Simplify, Simplify, Simplify

- Substitute out $x^0, z^0$ and $z^1$: They are fixed in $(XF)$
- $z = \alpha$ after these substitutions, so substitute it out as well.
- $x = \alpha x^1 = zx^1$, so we can eliminate $x^1$ by replacing it with $x/z$ provided that $z > 0$.

Lemma

If $W^1$ is convex, then $\text{conv}(W) = W^- \cup W^0$, where

$$W^- = \left\{ (x, z) \in \mathbb{R}^{n+1} \mid f_k(x/z) \leq 0 \ \forall k \in K, uz \geq x \geq 0, 1 \geq z > 0 \right\}$$
Simplify, Simplify, Simplify

- Substitute out $x^0, z^0$ and $z^1$: They are fixed in $(XF)$
- $z = \alpha$ after these substitutions, so substitute it out as well.
- $x = \alpha x^1 = zx^1$, so we can eliminate $x^1$ by replacing it with $x/z$ provided that $z > 0$.

**Lemma**

If $W^1$ is convex, then $\text{conv}(W) = W^- \cup W^0$, where

$$W^- = \left\{ (x, z) \in \mathbb{R}^{n+1} \mid f_k(x/z) \leq 0 \ \forall k \in K, \ uz \geq x \geq 0, 1 \geq z > 0 \right\}$$

**Lemma Extension**

$$\text{conv}(W) = \text{closure}(W^-)$$
Convexify, Convexify, Convexify

- **Note:** $f_k(x/z)$ is not necessarily convex, even if $f_k(x)$ is.
- However, $zf_k(x/z)$ is convex if $f_k(x)$ is.
- Multiplying both sides of the inequality by $z > 0$ doesn’t change the set $W^-$:

  $$W^- = \left\{ (x, z) \in \mathbb{R}^{n+1} \mid zf_k(x/z) \leq 0 \ \forall k \in K, uz \geq x \geq 0, 1 \geq z > 0 \right\}$$

- You can, if you wish, multiply by $z^p$
Giving You Some Perspective

- For a convex function $f(x) : \mathbb{R}^n \rightarrow \mathbb{R}$, the function
  \[ P(f(z, x)) = z f(x/z) \]

  is known as the perspective function of $f$

- The epigraph of $P(f(z, x))$ is a cone pointed at the origin whose lower shape is $f(x)$
For a convex function $f(x) : \mathbb{R}^n \to \mathbb{R}$, the function

$$P(f(z, x)) = zf(x/z)$$

is known as the perspective function of $f$.

The epigraph of $P(f(z, x))$ is a cone pointed at the origin whose lower shape is $f(x)$.

Exploiting Your Perspective

- If $z_i$ is an indicator that the (nonlinear, convex) inequality $f(x) \leq 0$ must hold, (otherwise $x = 0$), replace the inequality with its perspective version:

$$z_i f(x/z_i) \leq 0$$

- The resulting (convex) inequality is a much tighter relaxation of the feasible region.
An Axioma Connection

**Stubbs (1996)**

- In his Ph.D. thesis, Stubbs gives (without proof) $\text{conv}(\bar{Q})$, our original (high-dimensional) set.
An Axioma Connection

**Stubbs (1996)**
- In his Ph.D. thesis, Stubbs gives (without proof) $\text{conv}(\bar{Q})$, our original (high-dimensional) set.

**Ceria and Soares (1999)**
- Describe $K = \bigcup_{i \in M} K_i$, with $K_i = \{x \mid f_i(x) \leq 0\}$ in a higher-dimensional space.
- $x \in \text{conv}(K) \iff$

$$x = \sum_{i \in M} \lambda_i x_i, \ P(f_i(\lambda_i, x_i)) \leq 0, \lambda \in \Delta_{|M|}$$
Other Smart People

Frangioni and Gentile (2006)

- Study: $y \geq f(x), \ x \leq uz$, give **perspective cut**:
  
  $$y \geq f(x) + \nabla f(x)^T(x - \hat{x}) - (\hat{x}^T \nabla f(\hat{x}) + f(\hat{x}))(z - 1)$$

- This is first-order Taylor expansion of perspective $zf(x/z) + y \leq 0$ about $(\hat{x}, f(\hat{x}), 1)$

- Feasible inequality by convexity of $f(x)$
Other Smart People

Frangioni and Gentile (2006)

- Study: \( y \geq f(x), x \leq uz \), give perspective cut:
  \[
  y \geq f(x) + \nabla f(x)^T(x - \hat{x}) - (\hat{x}^T \nabla f(\hat{x}) + f(\hat{x}))(z - 1)
  \]
- This is first-order Taylor expansion of perspective \( zf(x/z) + y \leq 0 \) about \((\hat{x}, f(\hat{x}), 1)\)
- Feasible inequality by convexity of \( f(x) \)

Aktürk, Atamtürk, and Gürel (2007)

- Apply perspective reformulation (of epigraph indicator MINLP) to nonlinear machine scheduling problem
- Explain that formulations are representable as SOCP.
Facility Location

- $M$: Facilities
- $N$: Customers
- $x_{ij}$: percentage of customer $i$’s demand served from facility $j$
- $z_i = 1 \iff$ facility $i$ is opened
- Fixed cost for opening facility $i$
- **Quadratic** cost for serving $j$ from $i$
- Problem studied by Günlük, Lee, and Weismantel (’07), and classes of strong cutting planes derived
Separable Quadratic UFL—Formulation

\[ z^* \overset{\text{def}}{=} \min \sum_{i \in M} c_i z_i + \sum_{i \in M} \sum_{j \in N} q_{ij} x_{ij}^2 \]

subject to

\[ x_{ij} \leq z_i \quad \forall i \in M, \forall j \in N \]
\[ \sum_{i \in M} x_{ij} = 1 \quad \forall j \in N \]
\[ x_{ij} \geq 0 \quad \forall i \in M, \forall j \in N \]
\[ z_i \in \{0, 1\} \quad \forall i \in M \]
Separable Quadratic UFL—Formulation

\[ z^* \overset{\text{def}}{=} \min \sum_{i \in M} c_i z_i + \sum_{i \in M} \sum_{j \in N} q_{ij} y_{ij} \]

subject to

\[ x_{ij} \leq z_i \quad \forall i \in M, \forall j \in N \]
\[ \sum_{i \in M} x_{ij} = 1 \quad \forall j \in N \]
\[ x_{ij} \geq 0 \quad \forall i \in M, \forall j \in N \]
\[ z_i \in \{0, 1\} \quad \forall i \in M \]
\[ x_{ij}^2 - y_{ij} \leq 0 \quad \forall i \in M, \forall j \in N \]
Separable Quadratic UFL—Formulation

\[ z^* \overset{\text{def}}{=} \min \sum_{i \in M} c_iz_i + \sum_{i \in M} \sum_{j \in N} q_{ij}y_{ij} \]

subject to

\[ x_{ij} \leq z_i \quad \forall i \in M, \forall j \in N \]
\[ \sum_{i \in M} x_{ij} = 1 \quad \forall j \in N \]
\[ x_{ij} \geq 0 \quad \forall i \in M, \forall j \in N \]
\[ z_i \in \{0, 1\} \quad \forall i \in M \]
\[ x_{ij}^2 - z_iy_{ij} \leq 0 \quad \forall i \in M, \forall j \in N \]
Strength of Relaxations

- $z_R$: Value of NLP relaxation
- $z_{GLW}$: Value of NLP relaxation after GLW cuts
- $z_P$: Value of perspective relaxation
- $z^*$: Optimal solution value
## Strength of Relaxations

- $z_R$: Value of NLP relaxation
- $z_{GLW}$: Value of NLP relaxation after GLW cuts
- $z_P$: Value of perspective relaxation
- $z^*$: Optimal solution value

| $|M|$ | $N$ | $z_R$ | $z_{GLW}$ | $z_P$ | $z^*$ |
|-----|-----|-------|-----------|-------|-------|
| 10  | 30  | 140.6 | 326.4     |       | 348.7 |
| 15  | 50  | 141.3 | 312.2     |       | 384.1 |
| 20  | 65  | 122.5 | 248.7     |       | 289.3 |
| 25  | 80  | 121.3 | 260.1     |       | 315.8 |
| 30  | 100 | 128.0 | 327.0     |       | 393.2 |
## Strength of Relaxations

- $z_R$: Value of NLP relaxation
- $z_{GLW}$: Value of NLP relaxation after GLW cuts
- $z_P$: Value of perspective relaxation
- $z^*$: Optimal solution value

<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
<th>$z_R$</th>
<th>$z_{GLW}$</th>
<th>$z_P$</th>
<th>$z^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>30</td>
<td>140.6</td>
<td>326.4</td>
<td>346.5</td>
<td>348.7</td>
</tr>
<tr>
<td>15</td>
<td>50</td>
<td>141.3</td>
<td>312.2</td>
<td>380.0</td>
<td>384.1</td>
</tr>
<tr>
<td>20</td>
<td>65</td>
<td>122.5</td>
<td>248.7</td>
<td>288.9</td>
<td>289.3</td>
</tr>
<tr>
<td>25</td>
<td>80</td>
<td>121.3</td>
<td>260.1</td>
<td>314.8</td>
<td>315.8</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>128.0</td>
<td>327.0</td>
<td>391.7</td>
<td>393.2</td>
</tr>
</tbody>
</table>
Design of Uncongested Network

- Capacitated directed network: $G = (N, A)$
- Set of commodities: $K$
- Node demands: $b^k_i$
  \[ \forall i \in N, \forall k \in K \]
- Each arc $(i, j) \in A$ has
  - Fixed cost: $c_{ij}$
  - Capacity: $u_{ij}$
  - Queueing weight: $r_{ij}$
Design of Uncongested Network

- Capacitated directed network: \( G = (N, A) \)
- Set of commodities: \( K \)
- Node demands: \( b^k_i \)
  \[ \forall i \in N, \forall k \in K \]
- Each arc \((i, j) \in A\) has
  - Fixed cost: \( c_{ij} \)
  - Capacity: \( u_{ij} \)
  - Queueing weight: \( r_{ij} \)

- \( z_{ij} \in \{0, 1\} \): Indicates whether arc \((i, j) \in A\) is opened.
- \( x^k_{ij} \): The quantity of commodity \( k \) routed on arc \((i, j)\)
Network Design

- Let $f_{ij} \overset{\text{def}}{=} \sum_{k \in K} x_{ij}^k$ be the flow on arc $(i,j)$.

- A measure of queueing delay is:

\[
\rho(f) \overset{\text{def}}{=} \sum_{(i,j) \in A} r_{ij} \frac{f_{ij}}{1 - f_{ij}/u_{ij}}
\]

\[
\frac{f}{(1 - f/u)}
\]

\[
f = u
\]
Network Design

Let $f_{ij} \overset{\text{def}}{=} \sum_{k \in K} x_{ij}^k$ be the flow on arc $(i, j)$.

A measure of queueing delay is:

$$\rho(f) \overset{\text{def}}{=} \sum_{(i,j) \in A} r_{ij} \frac{f_{ij}}{1 - f_{ij}/u_{ij}}$$

f/(1 - f/u)

Our Network Design Problem

Design network to keep total queueing delay less than a given value $\beta$, and this is to be accomplished at minimum cost.
Network Design Formulation

\[
\begin{align*}
\min & \quad \sum_{(i,j) \in A} c_{ij} z_{ij} \\
\text{s.t.} & \quad \sum_{(j,i) \in A} x_{ij}^k - \sum_{(i,j) \in A} x_{ij}^k = b_i^k \quad \forall i \in N, \forall k \in K \\
& \quad \sum_{k \in K} x_{ij}^k - f_{ij} = 0 \quad \forall (i,j) \in A \\
& \quad f_{ij} \leq u_{ij} z_{ij} \quad \forall (i,j) \in A \\
& \quad y_{ij} \geq \frac{r_{ij} f_{ij}}{1 - f_{ij}/u_{ij}} \quad \forall (i,j) \in A \\
& \quad \sum_{(i,j) \in A} y_{ij} \leq \beta
\end{align*}
\]
Perspective Formulations and Cones

Consider the nonlinear inequality:

\[ y \geq \frac{rf}{1 - f/u} \iff ruf \leq y(u - f) \]
Perspective Formulations and Cones

- Consider the nonlinear inequality:

\[ y \geq \frac{rf}{1 - f/u} \iff ruf \leq y(u - f) \]

- Since \( z_{ij} = 0 \Rightarrow f_{ij} = 0 \), we can write the perspective reformulation:

\[ \frac{y}{z} \geq \frac{rf}{1 - f/zu} \iff ruzf \leq y(uz - f) \]
Perspective Formulations and Cones

- Consider the nonlinear inequality:
  \[ y \geq \frac{rf}{1 - f/u} \iff ruf \leq y(u - f) \]

- Since \( z_{ij} = 0 \Rightarrow f_{ij} = 0 \), we can write the perspective reformulation:
  \[ y/z \geq \frac{rf/z}{1 - f/zu} \iffruzf \leq y(uz - f) \]

Cones Are Everywhere!

- The inequalities \( ruf \leq y(u - f) \) and \( urfz \leq y(uz - f) \) are SOC-representable:
  \[ ruf \leq y(u - f) \iff rf^2 \leq (y - rf)(u - f) \]
  \[ rufz \leq y(uz - f) \iff rf^2 \leq (y - rf)(uz - f) \]

since \( y \geq rf, \ u \geq f, \ uz \geq f \)
Results (Under Construction)

- ZIB SNDLIB instance: ATL.
- $|N| = |K| = 15$, $|A| = 22$
- Instance solved using (beta) version of Mosek (v5) conic MIP solver
- No fancy cutting planes (cut-set inequalities) added
Results (Under Construction)

- ZIB SNDLIB instance: ATL.
- $|N| = |K| = 15$, $|A| = 22$
- Instance solved using (beta) version of Mosek (v5) conic MIP solver
- No fancy cutting planes (cut-set inequalities) added

<table>
<thead>
<tr>
<th></th>
<th>Nodes</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Perspective</td>
<td>3686</td>
<td>517.1</td>
</tr>
<tr>
<td>W/Perspective</td>
<td>414</td>
<td>52.5</td>
</tr>
</tbody>
</table>

ATL Network

Günlük and Linderoth (UW-Madison) A Different Perspective on Perspective Cuts
Conclusions

Jeff Linderoth Gives Really Stupid Talks
Other Conclusions

- Strong reformulations for MINLPs are likely to be just as important as they are for MILPs.
- Strong formulations for MINLPs may require nonlinear inequalities. (Duh!)
- Much of the work we present here has (recently) found its way into the literature.
Other Conclusions

- Strong reformulations for MINLPs are likely to be just as important as they are for MILPs.
- Strong formulations for MINLPs may require nonlinear inequalities. (Duh!)
- Much of the work we present here has (recently) found its way into the literature.

Our “contributions”

- Give convex hull for the union of a (general) bounded convex set and a point.
- Give description in original space of variables.
- Exploit SOC-representability of strong reformulations to solve instances much more effectively.