(Duality), Warm Starting, and Sensitivity Analysis for MILP

Ted Ralphs and Menal Guzelsoy
Industrial and Systems Engineering
Lehigh University

INFORMS Annual Conference, Denver, CO, Tuesday, October 26, 2004
Outline of Talk

• A little bit of theory
 – Duality
 – Sensitivity analysis
 – Warm starting

• A little bit of implementation
 – SYMPHONY 5.0
 – Examples
Introduction to Duality

- For an optimization problem

\[z = \min \{ f(x) \mid x \in X \}, \]

called the **primal problem**, an optimization problem

\[w = \max \{ g(u) \mid u \in U \} \]

such that \(w \leq z \) is called a **dual problem**.

- It is a **strong dual** if \(w = z \).

- Uses for the dual problem
 - Bounding
 - Deriving optimality conditions
 - Sensitivity analysis
 - Warm starting
Some Previous Work

- R. Gomory (and W. Baumol) ('60–'73)
- G. Roodman ('72)
- E. Johnson (and Burdet) ('72–'81)
- R. Jeroslow (and C. Blair) ('77-'85)
- A. Geoffrion and R. Nauss ('77)
- D. Klein and S. Holm ('79–'84)
- L. Wolsey (and L. Schrage) ('81–'84)
- ...
- D. Klabjan ('02)
Duals for ILP

- Let $\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax = b, x \geq 0\}$ nonempty for $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$.
- We consider the (bounded) pure integer linear program $\min_{x \in \mathcal{P} \cap \mathbb{Z}^n} c^\top x$ for $c \in \mathbb{R}^n$.
- The most common dual for this ILP is the well-known Lagrangian dual.
 - The Lagrangian dual is not generally strong.
 - Blair and Jeroslow discussed how to make the Lagrangian dual strong by for ILP by introducing a quadratic penalty term.
- How do we derive a strong dual? Consider the following more formal notion of dual (Wolsey).

$$w_{IP}^g = \max_{g: \mathbb{R}^m \to \mathbb{R}} \{g(b) \mid g(Ax) \leq c^\top x, x \geq 0\}$$

$$= \max_{g: \mathbb{R}^m \to \mathbb{R}} \{g(b) \mid g(d) \leq z_{IP}(d), d \in \mathbb{R}^m\},$$

(1)

(2)

where $z_{IP}(d) = \min_{x \in \mathcal{P}^I(d)} c^\top x$ is the value function and $\mathcal{P}^I(d) = \{x \in \mathbb{Z}^n \mid Ax = d, x \geq 0\}$.
Subadditive Duality

- Solutions to the dual (2) bound the value function from below.
- Any function that agrees with the value function at b, including the value function itself, is optimal.
- This shows the dual (2) is strong.
- **Question:** Under what restrictions on the function g does this remain a strong dual?
 - g linear results in the dual of the LP relaxation \Rightarrow not strong.
 - g convex also results in the dual of the LP relaxation \Rightarrow not strong. (Jeroslow)
 - g subadditive \Rightarrow strong (Gomory; Johnson; Jeroslow).
 - In this case, the dual simplifies to
 \[
 w_{IP}^s = \max \{ f(b) \mid f(a^i) \leq c_i, f \text{ subadditive} \},
 \]
 - This is called the *subadditive dual*
Optimal Solutions to the Subadditive Dual

- The subadditive dual has most of the nice properties of the LP dual.

- With an optimal solution, we can calculate reduced costs, perform local sensitivity analysis, etc.

- Again, the value function is subadditive and hence optimal.

- Blair and Jeroslow showed the value function has a closed form.

- One can produce the value function from a cutting plane proof of optimality obtained using the Gomory procedure.

- What about other optimal solutions?
 - Different solutions estimate the value function differently.
 - One would like to produce such a solution as a by-product of an efficient algorithm.
 - Wolsey discusses how to do this with several classes of algorithms.
 - We will focus here on branch and bound.
Dual Solutions from Primal Algorithms

• The approach is to consider the implicit optimality conditions associated with an algorithm such as branch and bound.

• Let P_1, \ldots, P_s be a partition of P into (nonempty) subpolyhedra.

• Let LP_i be the linear program $\min_{x^i \in P_i} c^\top x^i$ associated with the subpolyhedron P_i.

• Let B^i be an optimal basis for LP_i.

• Then the following is a valid lower bound

\[
L = \min\{c_{B^i}(B^i)^{-1}b + \gamma_i \mid 1 \leq i \leq s\},
\]

where γ_i is the constant factor associated with the nonbasic variables fixed at nonzero bounds.

• A similar function yields an upper bound.

• We call a partition that yields lower and upper bounds equal is called an optimal partition.

• Note the similarity to LP duality.
Sensitivity Analysis

• The function

\[L(d) = \min\{c_{B_i}(B^i)^{-1}d + \gamma_i \mid 1 \leq i \leq s\}, \]

is not subadditive, but provides an optimal solution to (2).

• Here is the corresponding upper bounding function

\[U(c) = \min\{c_{B_i}(B^i)^{-1}b + \beta_i \mid 1 \leq i \leq s, \hat{x}^i \in P^I\} \]

• These functions can be used for local sensitivity analysis, just as one would do in linear programming.
 – For changes in the right-hand side, the lower bound remains valid.
 – For changes in the objective function, the upper bound remains valid.
 – One can also add cuts and variables.
Some Details

• Note that we’ve swept some things under the carpet:
 – The “allowable range” is the intersection of the ranges for each member of the partition, so it may be very small or empty.
 – The method presented only applies to branch and bound.
 – Cut generation complicates matters.
 – Fixing by reduced cost also complicates matters.
 – Have to deal with infeasibility of subproblems.

• Question: What happens outside the allowable range?

• Answers:
 – Continue solving from a “warm start.”
 – Perform a parametric analysis.
Warm Starting

• **Question**: What is “warm starting”?

• **Question**: Why are we interested in it?

• There are many examples of algorithms that solve a sequence of related ILPs.

 – Decomposition algorithms
 – Stochastic ILP
 – Parametric/Multicriteria ILP
 – Determining irreducible inconsistent subsystem

• For such problems, warm starting can potentially yield big improvements.

• Warm starting is also important for performing sensitivity analysis outside of the allowable range.
Warm Starting Information

- **Question**: What is “warm starting information”?

- Many optimization algorithms can be viewed as iterative procedures for satisfying a set of optimality conditions, often based on duality.

- These conditions provide a measure of “distance from optimality.”

- Warm starting information can be seen as additional input data that allows an algorithm to quickly get “close to optimality.”

- In linear and integer linear programming, the *duality gap* is the usual measure.

- A starting basis can reduce the initial duality gap in LP.

- The corresponding concept in ILP is a *starting partition*.

- It is not at all obvious what makes a good starting partition.

- The most obvious choice for a starting partition is to use the optimal partition from a previous computation.
Parametric Analysis

- For global sensitivity analysis, we need to solve parametric programs.

- Along with Saltzman and Wiecek, we have developed an algorithm for determining all Pareto outcomes for a bicriteria MILP.

- The algorithm consists of solving a sequence of related ILPs and is asymptotically optimal.

- Such an algorithm can be used to perform global sensitivity analysis by constructing a “slice” of the value function.

- Warm starting can be used to improve efficiency.
SYMPHONY 5.0

• Overview
 – A callable library for solving mixed-integer linear programs with a wide variety of customization options.
 – Core solution methodology is branch, cut, and price.
 – Outfitted as a generic MILP solver.
 – Fully integrated with the Computational Infrastructure for Operations Research (COIN-OR) libraries.
 – Extensive documentation available.
 – All of the methods discussed in this talk are in SYMPHONY 5.0.

• SYMPHONY Solvers
 - Generic MILP
 - Multicriteria MILP
 - Traveling Salesman Problem
 - Vehicle Routing Problem
 - Mixed Postman Problem
 - Set Partitioning Problem
 - Matching Problem
 - Network Routing
Basic Sensitivity Analysis

- SYMPHONY will calculate bounds after changing the objective or right-hand side vectors.

```c
int main(int argc, char **argv)
{
    OsiSymSolverInterface si;
    si.parseCommandLine(argc, argv);
    si.loadProblem();
    si.setSymParam(OsiSymSensitivityAnalysis, true);
    si.initialSolve();
    int ind[2];
    double val[2];
    ind[0] = 4;  val[0] = 7000;
    ind[1] = 7;  val[1] = 6000;
    lb = si.getLbForNewRhs(2, ind, val);
}
```
Warm Starts for MILP

• To allow resolving from a warm start, we have defined a SYMPHONY warm start class, which is derived from *CoinWarmStart*.

• The class stores a snapshot of the search tree, with node descriptions including:

 – lists of active cuts and variables,
 – branching information,
 – warm start information, and
 – current status (candidate, fathomed, etc.).

• The tree is stored in a compact form by storing the node descriptions as differences from the parent.

• Other auxiliary information is also stored, such as the current incumbent.

• A warm start can be saved at any time and then reloaded later.

• The warm starts can also be written to and read from disk.
Warm Starting Procedure

• After modifying parameters
 – If only parameters have been modified, then the candidate list is recreated and the algorithm proceeds as if left off.
 – This allows parameters to be tuned as the algorithm progresses if desired.

• After modifying problem data
 – Currently, we only allow modification of rim vectors.
 – After modification, all leaf nodes must be added to the candidate list.
 – After constructing the candidate list, we can continue the algorithm as before.

• There are many opportunities for improving the basic scheme, especially when solving a known family of instances ([Geoffrion and Nauss](#))
Warm Starting Example (Parameter Modification)

- The following example shows a simple use of warm starting to create a dynamic algorithm.

```c
int main(int argc, char **argv)
{
    OsiSymSolverInterface si;
    si.parseCommandLine(argc, argv);
    si.loadProblem();
    si.setSymParam(OsiSymFindFirstFeasible, true);
    si.setSymParam(OsiSymSearchStrategy, DEPTH_FIRST_SEARCH);
    si.initialSolve();
    si.setSymParam(OsiSymFindFirstFeasible, false);
    si.setSymParam(OsiSymSearchStrategy, BEST_FIRST_SEARCH);
    si.resolve();
}
```
Warm Starting Example (Problem Modification)

- The following example shows how to warm start after problem modification.

```c
int main(int argc, char **argv)
{
    OsiSymSolverInterface si;
    CoinWarmStart ws;
    si.parseCommandline(argc, argv);
    si.loadProblem();
    si.setSymParam(OsiSymNodeLimit, 100);
    si.initialSolve();
    ws = si.getWarmStart();
    si.resolve();
    si.setObjCoeff(0, 1);
    si.setObjCoeff(200, 150);
    si.setWarmStart(ws);
    si.resolve();
}
```
Example: Warm Starting

- Consider the simple warm-starting code from earlier in the talk.
- Applying this code to the MIPLIB 3 problem p0201, we obtain the results below.
- Note that the warm start doesn’t reduce the number of nodes generated, but does reduce the solve time dramatically.

<table>
<thead>
<tr>
<th></th>
<th>CPU Time</th>
<th>Tree Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate warm start</td>
<td>28</td>
<td>100</td>
</tr>
<tr>
<td>Solve orig problem (from warm start)</td>
<td>3</td>
<td>118</td>
</tr>
<tr>
<td>Solve mod problem (from scratch)</td>
<td>24</td>
<td>122</td>
</tr>
<tr>
<td>Solve mod problem (from warm start)</td>
<td>6</td>
<td>198</td>
</tr>
</tbody>
</table>
Using Warm Starting: Network Routing

Table 1: Results of using warm starting to solve multi-criteria optimization problems.
Using Warm Starting: Stochastic Integer Programming

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tree Size Without WS</th>
<th>Tree Size With WS</th>
<th>% Gap Without WS</th>
<th>% Gap With WS</th>
<th>CPU Without WS</th>
<th>CPU With WS</th>
</tr>
</thead>
<tbody>
<tr>
<td>storm8</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>14.75</td>
<td>8.71</td>
</tr>
<tr>
<td>storm27</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>69.48</td>
<td>48.99</td>
</tr>
<tr>
<td>storm125</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>322.58</td>
<td>176.88</td>
</tr>
<tr>
<td>LandS27</td>
<td>71</td>
<td>69</td>
<td>-</td>
<td>-</td>
<td>6.50</td>
<td>4.99</td>
</tr>
<tr>
<td>LandS125</td>
<td>37</td>
<td>29</td>
<td>-</td>
<td>-</td>
<td>15.72</td>
<td>12.72</td>
</tr>
<tr>
<td>LandS216</td>
<td>39</td>
<td>35</td>
<td>-</td>
<td>-</td>
<td>30.59</td>
<td>24.80</td>
</tr>
<tr>
<td>dcap233_200</td>
<td>39</td>
<td>61</td>
<td>-</td>
<td>-</td>
<td>256.19</td>
<td>120.86</td>
</tr>
<tr>
<td>dcap233_300</td>
<td>111</td>
<td>89</td>
<td>0.387</td>
<td>-</td>
<td>1672.48</td>
<td>498.14</td>
</tr>
<tr>
<td>dcap233_500</td>
<td>21</td>
<td>36</td>
<td>24.701</td>
<td>14.831</td>
<td>1003</td>
<td>1004</td>
</tr>
<tr>
<td>dcap243_200</td>
<td>37</td>
<td>53</td>
<td>0.622</td>
<td>0.485</td>
<td>1244.17</td>
<td>1202.75</td>
</tr>
<tr>
<td>dcap243_300</td>
<td>64</td>
<td>220</td>
<td>0.0691</td>
<td>0.0461</td>
<td>1140.12</td>
<td>1150.35</td>
</tr>
<tr>
<td>dcap243_500</td>
<td>29</td>
<td>113</td>
<td>0.357</td>
<td>0.186</td>
<td>1219.17</td>
<td>1200.57</td>
</tr>
<tr>
<td>sizes3</td>
<td>225</td>
<td>165</td>
<td>-</td>
<td>-</td>
<td>789.71</td>
<td>219.92</td>
</tr>
<tr>
<td>sizes5</td>
<td>345</td>
<td>241</td>
<td>-</td>
<td>-</td>
<td>964.60</td>
<td>691.98</td>
</tr>
<tr>
<td>sizes10</td>
<td>241</td>
<td>429</td>
<td>0.104</td>
<td>0.0436</td>
<td>1671.25</td>
<td>1666.75</td>
</tr>
</tbody>
</table>
Example: Bicriteria ILP

- Consider the following bicriteria ILP:

\[
\begin{align*}
\text{vmax} & \quad [8x_1 + x_2, x_2] \\
\text{s.t.} & \quad 7x_1 + x_2 \leq 56 \\
& \quad 28x_1 + 9x_2 \leq 252 \\
& \quad 3x_1 + 7x_2 \leq 105 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

- We get the set of Pareto outcomes with the following code.

```c
int main(int argc, char **argv)
{
    OsiSymSolverInterface si;
    si.parseCommandLine(argc, argv);
    si.loadProblem();
    si.setObj2Coeff(0, 1);
    si.setSymParam(OsiSymMCFindSupportedSolutions, true);
    si.multiCriteriaBranchAndBound();
}
```
Example: Pareto and Supported Outcomes for Example
Example: Bicriteria Solver

- By examining the supported solutions and break points, we can easily determine $p(\theta)$, the optimal solution to the ILP with objective $8x_1 + \theta$.

<table>
<thead>
<tr>
<th>θ range</th>
<th>$p(\theta)$</th>
<th>x_1^*</th>
<th>x_2^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(-\infty, 1.333)$</td>
<td>64</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>$(1.333, 2.667)$</td>
<td>$56 + 6\theta$</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>$(2.667, 8.000)$</td>
<td>$40 + 12\theta$</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>$(8.000, 16.000)$</td>
<td>$32 + 13\theta$</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>$(16.000, \infty)$</td>
<td>15θ</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>
Example: Graph of Price Function
Conclusion

- We have briefly introduced the issues surrounding warm starting and sensitivity analysis for integer programming.

- An examination of early literature has yielded some ideas that can be useful in today’s computational environment.

- We presented a new version of the SYMPHONY solver supporting warm starting and sensitivity analysis for MILPs.

- We have also demonstrated SYMPHONY’s multicriteria optimization capabilities.

- This work has only scratched the surface of what can be done.

- In future work, we plan on refining SYMPHONY’s warm start and sensitivity analysis capabilities.

- We will also provide more extensive computational results.