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Abstract

The quadratic assignment problem (QAP), one of the most difficult problems in the NP-hard class, models many
applications in several areas such as operational research, parallel and distributed computing, and combinatorial data
analysis. Other optimization combinatorial problems such as the traveling salesman problem, maximal clique, isomorphism
and graph partitioning can be formulated as a QAP. In this paper, we survey some of the most important formulations
available and classify them according to their mathematical sources. We also present a discussion on the theoretical
resources used to define lower bounds for exact and heuristic algorithms, including those formulated according to
metaheuristic strategies. Finally, we analyze the extension of the contributions brought about by the study of different
approaches.
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1. Introduction

Let us consider the problem of assigning objects to positions in such a way that each object is designated to
exactly one position and reciprocally. The distances between positions, the demand flows among the objects
and, in the general case, the object versus position assignment costs are known. The international literature
identifies the quadratic assignment problem (QAP) as the problem of finding a minimum cost allocation of
objects into positions, taking the costs as the sum of all possible distance-flow products.

The main motivation for this survey is the continuous interest in QAP, shown by a number of researchers
worldwide, for the theory, applications and solution techniques for this problem. Among the many references
listed in this bibliography, we found over a hundred ones published since 1999. The last surveys, books and
review articles in the literature are Burkard (1991), Pardalos et al. (1994), Burkard and Çela (1996), Çela (1998)
and Burkard et al. (1998a). The article of Anstreicher (2003) reviews only the recent advances on algorithms.
An article by Drezner et al. (2004) surveys the state-of-the-art in both heuristic and exact methods.

Koopmans and Beckmann (1957) first proposed the QAP as a mathematical model related to economic
activities. Since then, it has appeared in several practical applications: Steinberg (1961) used the QAP to
minimize the total amount of connections between components in a backboard wiring; Heffley (1972, 1980)
applied it in economic problems; Francis and White (1974) developed a decision framework for assigning a new
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facility (police posts, supermarkets, schools) in order to serve a given set of clients; Geoffrion and Graves
(1976) focused on scheduling problems; Pollatschek et al. (1976) invoked it to define the best design for
typewriter keyboards and control panels; Krarup and Pruzan (1978) applied it to archeology; Bokhari (1987), in
parallel and distributed computing; Hubert (1987), in statistical analysis; Forsberg et al. (1994) used it in the
analysis of reaction chemistry and Brusco and Stahl (2000), in numerical analysis. Nevertheless, the facilities
layout problem is the most popular application for the QAP: Dickey and Hopkins (1972) applied the QAP for
the assignment of buildings in a University campus, Elshafei (1977) in a hospital planning and Bos (1993) in a
problem related to forest parks. Benjaafar (2002) introduced a formulation of the facility layout design problem
in order to minimize work-in-process (WIP). In his work, he shows that layouts obtained using a WIP-based
formulation can be very different from those obtained using the conventional QAP-formulation. For example, a
QAP-optimal layout can be WIP-infeasible.  The placement of electronic components was studied by Rabak and
Sichman (2003) and Miranda et al (2004). Other applications can be found in McCormick (1970), Hubert and
Schulz (1976), Heffley (1977), Los (1978), Khare et al. (1988a, 1988b), Krackhardt (1988), Eschermann and
Wunderlich (1990), Bland and Dawson (1991), Balakrishnan et al. (1992) Lacksonen and Enscore (1993),
Medova (1994), Philips and Rosen (1994), Gouveia and Voß (1995), Bozer and Suk-Chul (1996), Talbot and
Cawley (1996), White (1996), Mason and Rönnqvist (1997), Ostrowski and. Ruoppila (1997), Ball et al. (1998),
Haghani and Chen (1998), Kochhar et al. (1998), Martin (1998), Sarker et al. (1998), Spiliopoulos and
Sofianopoulou (1998), Tansel and Bilen (1998), Tavakkoli-Moghaddain and Shayab (1998), Urban (1998),
Gong et al. (1999), Rossin et al. (1999), Bartolomei-Suarez and Egbelu (2000), Ho and Moodie (2000), Urban
et al. (2000), Hahn and Krarup (2001), Pitsoulis et al. (2001), Takagi (2001), Siu and Chang (2002), Wang and
Sarker (2002), Niemi (2003), Youssef et al. (2003), Yu and Sarker (2003), Ciriani et al. (2004), and Solimanpur
et al. (2004).

Since its first formulation, the QAP has been drawing researchers attention all over the world, not only because
of its practical and theoretical importance, but also mainly because of its complexity. The QAP is one of the
most difficult combinatorial optimization problems: in general, instances of order n > 30 cannot be solved in
reasonable time. Sahni and Gonzales (1976) had shown that QAP is NP-hard and that, unless P = NP, it is not
possible to find an f-approximation algorithm, for a constant f. Such results are valid even when flows and
distances appear as symmetric coefficient matrices. Due to its high computation complexity, the QAP has been
chosen as the first major test application for the GRIBB project (great international branch-and-bound search).
This project is seeking to establish a software library for solving a large class of parallel search problems by the
use of numerous computers around the world accessed by Internet. Preliminary results from test runs are
presented in Moe (2003).

Several NP-hard combinatorial optimization problems, as the traveling salesman problem, the bin-packing
problem, the max clique problem and the isomorphism of graphs, can be modeled as QAPs. The search for local
optima in classical internet-available instances is a tendency that allows for the comparison of technique
performances, even when the optimum is unknown, or when the use of exact algorithms in these instances is
possible, Burkard et al. (1996a, 1998b) and Çela, (1998). In the QAP case, we can mention as examples,
instances with recently proved optimal solutions: Bur26 (b to h), (2004) and Tai25a (2003) by Hahn; Ste36a
(2001) by Brixius and Anstreicher; Bur26a (2001) by Hahn; Kra30a by Hahn; Kra30b, Kra32 and Tho30 (2000)
by Anstreicher, Brixius, Goux and Linderoth; Nug30 (one of the most known and challenging instances) (2000)
by Anstreicher, Brixius, Goux and Linderoth; Ste36b and Ste36c (1999) by Nystrõm. In 2003, Misevicius
enhanced the best-known solution for Tai50a, Tai80a and Tai100a using a modified tabu search. Those results
motivated the article of Anstreicher (2003) that registers the recent advances on QAP-solutions, exalting the
new algorithms and computational structures used. Besides, the new instances are available for tests in Burkard
et al. (1991, 1997), Li and Pardalos (1992) and QAPLIB (2004). Also, there are instance generators with known
optimum values that are currently used for testing algorithms, Çela (1998). Finally, Palubeckis (1999, 2000),
Drezner et al. (2004) and Stützle and Fernandes (2004) present new instance sets that are reported to be difficult
for metaheuristics.

Other tendencies of combinatorial optimization experts concern the search for particular polynomial versions of
NP problems and researches on mechanisms to measure the difficulty of instances. In the QAP cases:
Christofides and Gerrard (1976) studied some special instances of QAP; Sylla and Babu (1987) developed a
methodology for an orderly quadratic assignment problem; Chen (1995) presented other QAP-cases, followed
by Çela (1998), who presented several polynomial instances; Herroeleven and Vangils (1985), Cyganski et al.
(1994), Mautor and Roucairol (1994b) showed that Palubetskis instances are degenerate; Angel and
Zissimopoulos (1998, 2000, 2001, 2002) discussed the difficulty of other instances based on the variance of
their flow and distance sets; Abreu et al. (2002) derived a polynomial expression for the variance of the solution
costs and defined a measure of the difficulty instances and Barvinok and Stephen (2003) built a distribution of
QAP-values.



In the challenge of identifying new structural properties for QAP instances many formulations have appeared,
based on different points of view. Here we propose to collect these formulations, highlighting their most
important features to classify them according to used techniques, such as integer programming, positive
semidefinite programming, discrete and combinatorial mathematics, graph and group theory, and linear algebra
via spectral theory. Most of these formulations are equivalent (exception to those that characterize more general
situations) and, considering the QAP challenging performance, they allow mathematical resources for the
development of new solution techniques. By the end of this article, we discuss the contributions obtained from
these formulations, building several tables and charts from the extensive bibliography concerning the
elaboration of exact and heuristic algorithms, lower bound calculation, instance class characteristics and
recording the development of QAP since 1957 to now.

The following surveys are essential references for those who want to have a more complete understanding of
this problem: Hanan and Kurtzberg (1972), Burkard (1984, 1991, 2002), Pardalos et al. (1994) and Burkard et
al. (1998a), as well as, the books by Pardalos and Wolkowicz (1994), Padberg and Rijal (1996), Dell'Amico et
al. (1997) and Çela (1998).

2 Formulations of QAP and Related Problems

In this section, we present the QAP most important formulations, exploiting the type of approach adopted in
each case.

2.1. Selected QAP Formulations

Integer Linear Programming Formulations (IP): Firstly we present the QAP as a Boolean program followed by a
linear programming problem, where the binary constraints are relaxed. The Boolean formulation was initially
proposed by Koopmans and Beckmann (1957) being used later in several works such as Steinberg (1961),
Lawler (1963), Gavett and Plyter (1966), Elshafei (1977), Bazaraa and Sherali (1979), Bazaraa and Kirca
(1983), Christofides and Benavent (1989), Bos (1993), Mans et al. (1995), Jünger and Kaibel (1996a, 1996b,
2000, 2001a, 2001b), Liang (1996), Torki et al. (1996), Tsuchiya et al. (1996, 2001), Maniezzo (1997), Ball et
al. (1998), Ishii and Sato (1998), Kaibel (1998), Kochhar et al. (1998), Martin (1998), Spiliopoulos and
Sofianopoulou (1998), and most recently, Siu and Chang (2002), Yu and Sarker (2003) and, finally, Fedjki and
Duffuaa (2004).

We consider ijf  the flow between objects i and j, and kpd  the distance between positions k and p. It is our goal
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If we consider the cost of assignment of activities to places, a general form for a QAP instance of order n is
given by three matrices F = [fij], D = [dkp] and B = [bik], the two first ones defining the flows between objects
and the distances between places, bik being the allocation costs of objects to positions. This problem can be
defined as:
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s.t.          (2.2), (2.3) and (2.4).

Since the linear term of (2.5) is easy to be solved, most authors discarded it.

A more general QAP version was proposed by Lawler (1963) and involves costs cijkp that do not necessarily
correspond to products of flows by distances. The Lawler formulation is as follows:
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This model was also used in Bazaraa and Elshafei (1979), Drezner (1995), Sarket et al. (1995, 1998), Brüngger
et al. (1997, 1998), Chiang and Chiang (1998), Hahn and Grant (1998), Hahn et al. (1998), Gong et al. (1999)
and Rossin et al. (1999).

Mixed Integer Linear Programming Formulation (MILP): The QAP, as a mixed integer programming
formulation, is found in the literature in different forms, all of them replacing the quadratic terms by linear ones.
For example, Lawler (1963) used n4 variables,

kpijijkp dfc =  and ,jpikijkp xxy = ,kpijijkp xxy =  npkji ££ ,,,1 .

Other formulations use relaxations of the original problem. In this category, one can find Love and Wong
(1976a, 1976b), Kaufman and Broeckx (1978), Balas and Mazolla (1980), Bazaraa and Sherali (1980),
Christofides et al. (1980), Burkard and Bonniger (1983), Frieze and Yadegar (1983), Assad and Xu (1985),
Adams and Sherali (1986), Christofides and Benavent (1989) and the works of Adams and Johnson (1994),
Drezner (1995), Gouveia and Voß (1995), Milis and Magirou (1995), Padberg and Rijal (1996), White (1996),
Ramachandran and Pekny (1998), Karisch et al. (1999) and of Ramakrishnan et al. (2002). In general, QAP
linearizations based on MILP models present a huge number of variables and constraints, a fact that makes this
approach avoided in many cases. However, they allow exploiting properties that arise from the linearization of
the objective function that, together with some constraint relaxations, lend to the achievement of lower bounds
for the optimal solution. In this line we have the works of Kaufman and Broeckx (1978), Bazaraa and Sherali
(1980), Frieze and Yadegar (1983), Adams and Sherali (1986), Adams and Johnson (1994) and Padberg and
Rijal (1996). Çela (1998) mentions three QAP linearizations: Kaufman and Broeckx (1978), which has the
advantage of a smaller number of restrictions; Frieze and Yadegar (1983) for achieving the best lower bounds
via Lagrangean relaxation and Padberg and Rijal (1996) owing to its polytope description. The formulation
presented by Frieze and Yadegar (1983) describes the QAP in a linear form, using n4 real variables, n2 Boolean
variables and n4 + 4n3 + n2 + 2n constraints. The authors show that the formulation given in (2.7) to (2.16)
below is equivalent to Equations (2.1) to (2.4), Çela (1998)..
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Formulations by Permutations: Taking a simple approach, the pairwise allocation of object costs to adjacent
positions is proportional to flows and to distances between them. The QAP formulation that arises from this
proportionality and uses the permutation concept can be found in Hillier and Michael (1966), Graves and
Whinston (1970), Pierce and Crowston (1971), Burkard and Stratman (1978), Roucairol (1979, 1987), Burkard
(1984), Frenk et al. (1985), Brown et al. (1989), Bland and Dawson (1991, 1994), Battiti and Tecchiolli (1994a,
1994b), Bui and Moon (1994), Chakrapani and Skorin-Kapov (1994), Fleurent and Ferland (1994), Li et al.
(1994b), Mautor and Roucairol (1994a, 1994b), Li and Smith (1995), Taillard (1995), Bozer and Suk-Chul
(1996), Colorni et al. (1996), Huntley and Brown (1996), Peng et al. (1996), Tian et al. (1996, 1999), Cung et
al. (1997), Mavridou and Pardalos (1997), Merz and Freisleben (1997), Nissen (1997), Pardalos et al. (1997),
Angel and Zissimopoulos (1998), Deineko and Woeginger (1998), Talbi et al. (1998a, 1998b, 2001), Tansel and
Bilen (1998), Abreu et al. (1999), Fleurent and Glover (1999), Gambardella et al. (1999) and Maniezzo and
Colorni (1999). More recently, the following articles were released: Ahuja et al. (2000), Angel and
Zissimopoulos (2000, 2001 e 2002), Stützle and Holger (2000), Arkin et al. (2001), Pitsoulis et al. (2001),
Abreu et al. (2002), Gutin and Yeo (2002), Hasegawa et al. (2002), Boaventura-Netto (2003) and Rangel and
Abreu (2003). Costa and Boaventura-Netto (1994) studied the non-symmetrical QAP through a directed graph
formulation.
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Let Sn be the set of all permutations with n elements, ijf  the flows between objects i and j and )()( j∂i∂d
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the problem expression becomes:
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This formulation is equivalent to the first one presented in (2.1) - (2.4), since the constraints (2.2) and (2.3)
define permutation matrices X = [xij] related to Sn elements, as in (2.17), where, for all nji ££ ,1 ,
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Trace Formulation: This formulation is supported by linear algebra and exploits the trace function (the sum of
the matrix main diagonal elements) in order to determine QAP lower bounds for the cost. This approach allows
for the application of spectral theory, which makes possible the use of semidefinite programming to the QAP.
The trace formulation, by Edwards (1977), can be stated as:
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Afterwards, this approach was used in several works: Edwards (1980), Finke et al. (1987), Hadley et al. (1990,
1992a, 1992b, 1992c), Hadley (1994), Karisch et al. (1994), Karisch and Rendl (1995), Lin and Saigal (1997),
Zhao et al. (1998), Anstreicher et al. (1999), Wolkowicz (2000a, 2000b) and Anstreicher and Brixius (2001).

Semidefinite Programming Relaxation (SDP): These formulations define QAP relaxations through the dual of
the Lagrangean dual, as we find in Karisch et al. (1994), Zhao et al. (1998), Wolkowicz (2000a, 2000b). Let e
be the vector such that each coordinate is equal to 1. If X is a permutation matrix and B is a cost matrix, then the
SDP formulation is:
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Another formulation that follows this approach, Zhao et al. (1998), is
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Graph Formulation: Let us consider two undirected weighted complete graphs, the first one having its edges
associated to flows and the second one, to distances. The QAP can be thought as the problem of finding an
optimal allocation of the vertices of one graph on those of the other. In this formulation the solution costs are
given as the sum of products of corresponding edge weights. See Figure 2.1.

Figure 2.1 – Allocation of cliques KF over KD concerning permutation p = (4,2,1,3).

The algebraic and combinatorial approach adopted by Abreu et al. (1999) suggested Marins et al. (2004) to
define a new algebraic graph-theoretical approach involving line-graph automorphisms. The line-graph of a
given graph G, denoted L(G), is determined by taking each edges of G as a vertex of L(G), while an edge of
L(G) is defined as a pair of edges that are adjacent in G. A graph automorphism is a permutation of its vertices



that preserves the edges. The set of all automorphisms of G together with the permutations composition is a
group denoted by Aut(L(G)) (Kreher and Stinson (1998)).

As a consequence of a theorem by Whitney (1932) we have that if G = Kn, n ≠ 2 and 4, Aut(G) and Aut(L(G))
constitute isomorphic groups. Based on this result, Marins et al. (2004) noticed that solving the QAP means
either find a permutation p Œ Sn or find a L(Kn) automorphism, which is a Cn,2 permutation, that minimizes the
following expression:
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It is convenient to mention White (1995) where a number of QAP representations are discussed with respect to
their convexity and concavity aspects and of Yamada (1992) where a formulation is presented for the QAP on
an n-dimensional grid.

2.2 QAP related problems

The most classical QAP-related problem is, obviously, the Linear Assignment Problem (LAP), which is
polynomial and easily solved by the Hungarian method. As several presentations of this problem can be found
in the literature (for example, Burkard (2002)) we do not discuss it here, so we prefer to begin with another
linear problem also used in QAP studies.

The three-index assignment problem (3-dimensional AP): was firstly suggested by Pierskalla (1967a, 1967b,
1968) searches for two permutations p  and j Œ Sn, such that the following expression is minimized:
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Hansen and Kaufman (1973) presented later a primal-dual algorithm for this problem and Burkard and Fröhlich
(1980) proposed a branch-and-bound algorithm to solve it. Emelichev et al. (1984) described transportation
models with multiple indices, with details, based on this formulation. The 3-dimensional AP has been studied
by several QAP experts: Vlach (1967), Frieze (1974, 1983), Frieze and Yadegar (1981), Burkard et al. (1986,
1996a, 1996b), Euler (1987), Balas and Saltzman (1989, 1991), Bandelt et al. (1991), Crama and Spieksma
(1992), Balas and Qi (1993), Burkard and Rudolf (1993), Qi et al. (1994), Magos and Miliotis (1994), Poore
(1994a, 1994b, 1995), Fortin and Rudolf (1995), Burkard and Çela (1996), Magos (1996), Poore and Robertson
(1997), Aiex et al. (2000), Aiex et al. (to appear) and Burkard (2002).

The wide range of QAP theoretical studies involve several related quadratic problems, as the quadratic
bottleneck assignment problem, the biquadratic assignment problem, the 3-dimensional QAP, the quadratic
semiassignment problem and the multiobjective QAP. Almost all of these problems were reported in Burkard
(2002).

Quadratic bottleneck assignment problem (QBAP): Steinberg (1961) considered QBAP a variation of QAP with
applications to backboard wiring. In that work, a placement algorithm was presented for the optimal connection
of n elements in individual positions such that the total wire needed to connect two elements should have
minimum length. Its basic claim is: the optimal weighted-wire-length equals the least among the maximum-
wire-length norm. This concept rises from the principle that it can be worthy to minimize the largest cost instead
of the overall given cost.

The QBAP general program is obtained from the QAP formulation by substituting the maximum operation in
the objective function for the sums, which suggests the term bottleneck function:
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A general formulation related to (2.30) was studied in Burkard and Finke (1982), Burkard and Zimmermann
(1982), Kellerer and Wirsching (1998) and Burkard (2002).

Biquadratic assignment problem (BiQAP): Proposed by Burkard et al. (1994), this problem can be found in other
works, such as Burkard and Çela (1995), Mavridou et al. (1998) and Burkard (2002). The flow and distance
matrices are order n4 and the BiQAP-formulation is:
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Quadratic 3-dimensional assignment problem (Q3AP): Pierskalla (1967b) introduces it in a technical
memorandum. The work was never published in the open literature.  Since then, nothing on the subject has been
found in the publication databases.  Hahn et al. (2004) re-discovered the Q3AP while working together with
others on a problem arising in data transmission system design.  The purpose is to jointly optimize pairs of



mappings for multiple transmissions using higher order signal constellations.  The resulting problem
formulation is:
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Quadratic semi-assignment problem (QSAP): this is a special case used to model clustering and partitioning
problems by Hansen and Lih (1992), and scheduling problems by Malucelli and Pretolani (1993). It can be
written as:

Â Â= =
m
k

n
i,j jkikij xxc

1 1
min (2.34)

s.t. 1
1

=Â =
m
k ikx ni ££1 , (2.35)

}1,0{Œijx nji ££ ,1 . (2.36)

Other applications can be found in Simeone (1986a, 1986b) and Bullnheimer (1998). References for polynomial
heuristics and lower bounds are Freeman et al. (1966), Magirou and Milis (1989), Malucelli and Pretolani
(1993), Carraresi and Malucelli (1994) and Billionnet and Elloumi (2001).

Multiobjective QAP (mQAP): Knowles and Corne (2002a, 2002b) presented another QAP variation considering
several flow and distance matrices. This problem is a benchmark case for multiobjective metaheuristics or
multiobjective evolutionary algorithms. According to the authors, this model is more suitable for some layout
problems, such as the allocation of facilities in hospitals, where it is desired to minimize the products of the
flows by the distances between doctors and patients, and between nurses and medical equipment,
simultaneously. The mathematical expression is then,
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In this last constraint, k
ijf  denotes the k-the flow between i- and j-facilities. More recently, Knowles and Corne

(2003) and Day et al. (2003) presented two instance generators for the multiobjective version of QAP and
Paquete and Stützle (2004) developed a study of stochastic local search algorithms for the biobjective QAP with
different degrees of correlation between the flow matrices..

3. Lower Bounds

The study of lower bounds is very important for the development of algorithms to solve mathematical
programming and combinatorial optimization problems. Generally, the exact methods employ implicit
enumeration, in an attempt to guarantee the optimum and, at the same time, to avoid the total enumeration of the
feasible solutions. The performance of these methods depends on the computational quality and efficiency of
the lower bounds. Thus, lower bounds are fundamental tools for branch-and-bound techniques and for the
evaluation of the quality of the solutions obtained from some heuristic algorithms. One can measure the quality
of a lower bound by the gap between its value and the optimal solution. So, good lower bounds should be closer
to the optimum and lower bounds should be used within exact methods when they can be found quickly, while
to be used in heuristics, their good quality is most important.

The QAP lower bound presented by Gilmore (1962) and Lawler (1963) is one of the best known. Its importance
is due to its simplicity and its low computational cost. However, it shows an important drawback as its gap
grows very quickly with the size of the problem, making it a weak bound for bigger instances. The most recent
and promising trends of research are based on semidefinite programming, reformulation-linearization and lift-
and-project techniques, although they usually need an extra computational effort. Anstreicher and Brixius
(2001) reported a new QAP bound using semidefinite and convex quadratic programming with good relation
between cost and quality. White (1994b) used a data decomposition method, linking the actual data to the data
of a special class of assignment problems for which bounds are computationally tractable.

 The Gilmore and Lawler lower bound (GLB) is given by the solution of the following linear assignment
problem (LAP):
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Roucairol (1979, 1987), Edwards (1980), Frieze and Yadegar (1983), Finke et al. (1987), White (1994a),
Maniezzo (1997), Burkard (1991), Brüngger et al. (1997, 1998), and Spiliopoulos and Sofianopoulou (1998)
present improvement methods for the GLB and its application to algorithms used to solve QAP.

Bounds based on MILP Relaxations: The optimal solution for a MILP-formulation is a lower bound for the
corresponding QAP and each dual solution of the linear programming is also a lower bound for the QAP.
Several researchers as in Frieze and Yadegar (1983), Assad and Xu (1985), Adams and Johnson (1994),
Ramachandran and Pekny (1998) and Karisch et al. (1999) used this principle. Lagrangean relaxation has been
applied to the QAP (Michelon and Maculan (1991)). Drezner (1995) also proved that the linear programming
relaxation is equal or better than the GLB bound. Adams et al. (to appear) calculate bounds using a level-2
reformulation linearization technique (2-RLT) due to Hahn et al. (2001b). The RLT is a general theory for
reformulating mixed 0-1 linear and polynomial programs in higher-variable spaces in such a manner that tight
polyhedral outer-approximations of the convex hull of solutions are obtained (Adams and Sherali (1986, 1990)).
In Sherali and Adams (1999a, 1999b) both first and second-level constructs for the QAP were presented as an
illustration of the general methodology.

Bounds based on GLB reformulations: These bounds were adapted by several authors including Frieze and
Yadegar (1983), Assad and Xu (1985), Carraresi and Malucelli (1992, 1994) and Adams and Johnson (1994). A
bound based on a dual formulation was proposed in Hahn and Grant (1998) and Hahn et al. (1998). The bounds
given by Assad and Xu (1985) and by Carraresi and Malucelli (1992, 1994) are comparable to the ones obtained
by Frieze and Yadegar (1983) in terms of quality, with the advantage that they demand less computational time.
However, there is no theoretical proof concerning its convergence. Those bounds characterize a finite sequence
of problems related to the original one, producing a non-decreasing GLB sequence. The computational results in
Hahn and Grant (1998) have shown that these bounds are competitive in terms of quality when compared to
some of the best bounds and still better in computational time.

 Bounds based on interior points methods: Resende et al. (1995) used Drezner (1995) theory and solved a MILP
linear relaxation using an interior points algorithm (Karmarkar and Ramakrishnan (1991)). This technique gives
better quality lower bounds than those obtained by Adams and Johnson (1994). However, these bounds require
much computational effort, and they are not recommended for branch-and-bound algorithms. In this case, it is
better to use the Hahn and Grant (1998) dual ascent lower bound.

Variance reduction bounds: Initially proposed by Li et al. (1994a), these bounds are based on reduction schemes
and are defined from the variance of F and D matrices. These bounds, when used in a branch-and-bound
algorithm, take less computational time and generally obtain better performance than GLB. They show more
efficiency when the flow and distance matrices have high variances.

Bounds based on graph formulation: As we discussed previously, a pair of n ¥ n matrices F and D associated to
a given QAP instance can be seen as the adjacency matrices of two weighted complete graphs KF and KD. It is
known that p Œ  Sn defines an isomorphism between KF and K D, then solving the QAP means to find an
isomorphism p Œ  Sn such that Zp is minimum. Gavett and Plyter (1966) and Christofides and Gerrard (1981)
used this concept, decomposing KF and KD in isomorphic spanning subgraphs to find lower bounds through an
LAP relaxation.

Spectral bounds: We consider here the bounds derived from the trace formulation, using the calculation of data
matrix eigenvalues. For some time, the quality of the results compensated the computational hardness of the
calculations, but recently some of these bounds have been superseded by reformulation-linearization and
semidefinite programming bounds. Some references on spectral bounds are Finke et al. (1984, 1987), Rendl
(1985), Hadley et al. (1990, 1992a, 1992b), Rendl and Wolkowicz (1992) and Karisch et al. (1994).



Semidefinite programming and reformulation-linearization bounds: This new trend uses a number of theoretical
tools to obtain linear programming representations of QAP. Zhao et al. (1998) study semidefinite programming
(SDP) relaxations; Anstreicher (2001) compares SDP relaxations and eigenvalue bounds; Anstreicher and
Brixius (2001) propose a SDP representation of a basic eigenvalue bound; Burer and Vandenbussche (2004)
applied Lagrangean relaxation on a lift-and-project QAP relaxation, following the ideas in Lovász and Scrijver
(1991), thus obtaining very tight SDP bounds.

Instance Optimum GLB RRD95 HG98 KCCEB99 AB01 HH01 RRRP02 BV04

Had16 3720 3358 3558 3553 3595 3720* 3672

Had18 5358 4776 5083 5078 5143 5358* 5299

Had20 6922 6166 6571 6567 6677 6922* 6811

Kra30a 88900 68360 75853 75566 68572 86247 86678

Kra30b 91420 69065 76562 76235 69021 87107 87699

Nug12 578 493 523 523 521 498 578* 578* 568

Nug15 1150 963 1041 1039 1033 1001 1150* --- 1141

Nug20 2570 2057 2182 2179 2173 2290 2487 --- 2506

Nug30 6124 4539 4793 4785 5365 5750 5934

Rou15 354210 298548 323943 323589 303777 354210* 350207

Rou20 725520 559948 642058 641425 607822 699390 695123

Tai20a 703482 580674 617206 616644 585139 675870 671685

Tai25a 1167256 962417 1006749 1005978 983456 1091618 1112862

Tai30a 1818146 1504688 1566309 1565313 1518059 1686290 1706875

Tho30 149936 90578 99995 99855 124684 136708 142814

* Problem solved exactly by lower bound calculation

Table 3.1 – Comparison of Lower Bounds.

Table 3.1 shows some results for different bounds, where GLB is the Gilmore-Lawler bound; RRD95 is the
interior-point bound from Resende et al. (1995); HG98 is the interior-point bound from Hahn and Grant (1998);
KCCEB99 is the dual-based bound from Karisch et al. (1999); RRRP02 is the 2-RLT interior point bound from
Ramakrishnan et al. (2002); HH01 is the Hahn-Hightower 2-RLT bound from Adams et al. (to appear); AB01 is
the Rendl-Wolkowicz eigenvalue bound (Anstreicher and Brixius (2001)); and BV04 is the lift-and-project SDP
bound from Burer and Vandenbussche (2004). The best lower bounds are in the shaded cells of the table.

4 Resolution Methods

The methods used in combinatorial optimization problems can be either exact or heuristic. In the first case, the
most frequent used strategies are branch-and-bound or dynamic programming general methods. On the other
hand, there are a number of heuristic techniques using different conceptions. In what follows we discuss both
approaches and we quote their most important references.

4.1 Exact Algorithms

The different methods used to achieve a global optimum for the QAP include branch-and-bound, cutting planes
or combinations of these methods, like branch-and-cut, and dynamic programming. Branch-and-bound are the
most known and used algorithms and are defined from allocation and cutting rules, which define lower bounds
for the problem. We can find the first enumerative schemes that use lower bounds to eliminate undesired
solutions: Gilmore (1962), Land (1963) and Lawler (1963). Several references concerning QAP branch-and-
bound algorithms are available, as Gavett and Plyter (1966), Nugent et al. (1968), Graves and Whinston (1970),
Pierce and Crowston (1971), Burkard and Stratman (1978), Bazaraa and Elshafei (1979), Mirchandani and
Obata (1979), Roucairol (1979), Burkard and Derigs (1980), Edwards (1980), Bazaraa and Kirca (1983), Kaku
and Thompson (1986), Pardalos and Crouse (1989), Burkard (1991), Laursen (1993), Mans et al. (1995), Bozer
and Suk-Chul (1996), Pardalos et al. (1997), Brüngger et al. (1998), Ball et al. (1998), Spiliopoulos and
Sofianopoulou (1998), Brixius and Anstreicher (2001) and Hahn et al. (2001a, 2001b). In recent years,
procedures that combine branch-and-bound techniques with parallel implementation are being widely used. Due
to them, the best results for the QAP are being achieved. Yet, it is important to observe that the success for the
instances of bigger sizes is also related to the hardware technological improvements, Roucairol (1987), Pardalos
and Crouse (1989), Mautor and Roucairol (1994a), Brüngger et al. (1997), Clausen and Perregaard (1997) and
Maniezzo (1997).

Dynamic programming is a technique used for QAP special cases where the flow matrix is the adjacency matrix
of a tree. Christofides and Benavent (1989) studied this case using a MILP approach to the relaxed problem. It
was then solved with a dynamic programming algorithm, taking advantage of the polynomial complexity of the
instances. This technique was also used by Urban (1998).



 Cutting plane methods introduced by Bazaraa and Sherali (1980), initially, did not present satisfactory results.
However, they contributed in the formulation of some heuristics that use MILP and Benders decomposition. The
employed technique is not widely used so far, but good quality solutions for QAP cases are being presented.
The slow convergence of this method makes it proper only for small instances (Kaufman and Broeckx (1978),
Balas and Mazolla (1980), Bazaraa and Sherali (1980, 1982) and Burkard and Bonniger (1983). Recently,
Miranda et al (2004) use Benders decomposition algorithm to deal with a motherboard design problem,
including linear costs in the formulation. The branch-and-cut technique, a denomination proposed by Padberg
and Rinaldi (1991), appears as an alternative strategy and exploits the polytope defined by the feasible solutions
of the considered problem. Its main advantage over cutting planes is the use of cuttings that are valid to the
polytope formed by all feasible solutions, defining facets. These cuts that are associated to the facets are more
significant then the ones produced by cutting planes method, so the convergence to an optimal solution is
accelerated. The little knowledge about the polytope characterized by QAP solutions is the reason why
polyhedral cutting planes are not widely used in this case. Even in this scenario, some researches have been
describing basic properties of this polytope, which can contribute for future algorithms development, Jünger and
Kaibel (1996a, 1996b, 2000, 2001a, 2001b), Padberg and Rijal (1996), Kaibel (1998) and Blanchard et al.
(2003).

The effects of methodology and computer speed improvements

Through Table 4.1 below, we look for presenting a quick landscape of which was achieved by QAP research in
the last 35 years, Hahn (2000) and Brixius and Anstreicher (2001), through the work done on the classical
Nugent instances, Nugent et al. (1968). The first result (for Nug08) was obtained by complete enumeration; all
the others have been obtained by several branch-and-bound variations. Owing to lack of space, the references
within the table are quoted by their number in the reference list. The column “Single CPU seconds” allows for
some comparison of  results obtained in different machines

Size Bound Year Machine Cpu
speed

Single Cpu
seconds

No. Nodes Who [Ref] Mins
(Norm)

8 --- 1968 GE 265* 3,374 40,320 (267)

8 GL 1975 CDC CYBER-76 <1 (61)

12 GL 1978 CDC CYBER-76 29 (62)

15 GL 1980 CDC CYBER-76 2,947 (63)

15 GL 1994 Cray 2 121 (233)

16 GL 1994 Cray 2 969 (233)

20 GL 1995 i860 40 MHz 811,440 360,148,026 (96) 845

20 RLT1 1995 SPARC10 75 MHz 159,900 724,289 (157) 333

20 QP 1999 HP-C3000 300 MHz 8,748 1,040,308 )17) 146

20 RLT1 1999 UltraSPARC10 360 MHz 5,087 181,073 (160) 42

22 C-M 1995 16 i860 40 MHz 48,308,400 48,538,844,413 (96) 50,321

22 RLT1 1995 DEC Alpha 500 300 MHz 1,812,420 10,768,366 (157) 10,270

22 QP 1999 HP-C3000 300 MHz 8,058 1,225,892 (17) 134

22 RLT1 1999 UltraSPARC10 360 MHz 48,917 1,354,837 (160) 408

24 GL 1997 32 Motorola 604 82,252,800 Unknown (54) 466,099

24 RLT1 1997 DEC Alpha 500 300 MHz 4,859,940 49,542,338 (157) 27,540

24 QP 2000 HP-C3000 300 MHz 349,794 31,865,440 (17) 5,830

24 RLT2 2000 DEC Alpha 500 300 MHz 1,487,724 16,710,701 (160) 8,430

25 RLT1 1998 UltraSPARC10 360 MHz 5,698,818 108,738,131 (160) 64,207

25 QP 2000 HP-C3000 (1)* 300 MHz 715,020 71,770,751 (18) 11,917

25 RLT1 2000 HP-J5000 440 MHz 1,393,117 27,409,486 (160) 31,879

25 RLT2 2000 Dell 7150 733 MHz 254,179 11,796 (160) 5,816

27 QP 2000 HP-C3000 (2)* 300 MHz 5,676,480 ~402,000,000 (18) 94,608

27 RLT2 2001 IBM S80 450 MHz 1,579,956.31 46,315 (160) 37,639

28 QP 2000 HP-C3000 (3)* 300 MHz 27,751,680 ~2,230,000,000 (18) 462,528

28 RLT2 2001 IBM S80 450 MHz 8,682,044 202,295 (160) 206,922

30 QP 2000 HP-C3000 (4)* 300 MHz 218,859,840 11,892,208,412 (18) 3,647,664

30 RLT2 2004 Dell 7150 733 MHz ~40,000,000** <500,000** (6) 915,333**

*  means equivalent single CPU seconds in HP-C3000, for time on computational pools with active machines (average):
    (1) 185; (2) 185; (3) 224; (4) 653.
** Estimated results from a 90% branch and bound enumeration.

Table 4.1 – The Nugent instances along time



A number of optimal solutions have been found in recent years. The details can be found in QAPLIB homepage
(QAPLIB (2004)): Ste36b-c (Nyström, 1999); Bur26a (Hahn, 10/2001); Ste36a (Brixius and Anstreicher,
10/2001); Kra30b, Kra32, Tho30 (Anstreicher et al. 11/2000); Kra30a (Hahn, 12/2000); Tai25a (Hahn, 2003);
Bur26b-h (Hahn, 2004).

4.2. Heuristic Algorithms

Heuristic algorithms do not give any guarantee of optimality for the best solution obtained. Approximate
methods can be included in this category, having, in addition, the fact that properties with worst-case guarantee
are known. As a matter of fact, it is usual to find approximate algorithms treated as heuristic algorithms in the
Combinatorial Optimization literature, as in Osman and Laporte (1996). In this context, we are considering
heuristic techniques only as a procedure dedicated to the search of good quality solutions. These procedures
include the following categories: constructive, limited enumeration and improvement methods. The most recent
techniques that can be adapted to a wide range of problems are the metaheuristics and will be the subject of the
next section.

Gilmore (1962) introduced constructive methods that complete a permutation with each iteration of the
algorithm. Sets A and L were considered, the first one concerning the allocated objects and the second, the
occupied positions, both initially empty. In these methods, the construction of a permutation p is made by
means of a heuristic and, in each step, a new allocation (i, j) is chosen, such that i œ A, j œ L and making p(i) =
j. For an instance of size n , the process is repeated until a complete permutation on the problem order is
achieved. Those methods were used in Armour and Buffa (1963), Buffa et al. (1964), Sarker et al. (1995, 1998),
Tansel and Bilen (1998), Burkard (1991), Arkin et al. (2001), Gutin and Yeo (2002) and Yu and Sarker (2003).
At the end of 1990, multistart techniques are used to begin heuristic or metaheuristic methods. In this category,
we cite Misevicius (1997), Fleurent and Glover (1999) and Misevicius and Riskus (1999).

Enumeration methods can guarantee that the obtained solution is optimum only if they can go to the end of the
enumerative process. However, it is possible that a good solution, or even an optimal solution, is found by the
beginning of the process. It can be observed that the best the information used to guide the enumeration, the
bigger the chances to find prematurely good quality solutions. However, in general it may take long to guarantee
optimality. In order to bound this enumeration, stopping conditions are defined: maximum number of loops for
the whole execution, or between two successive improvements; a limit for the execution time and so on. It
becomes clear that any one of these stopping criteria can eliminate the optimum solution, a fact that requires
some attention when using bounded enumeration methods (Burkard and Bonniger (1983), West (1983)). Nissen
and Paul (1995) applied the threshold accepting technique to the QAP.

Improvement methods correspond to local search algorithms. Most of the QAP heuristics are part of this
category. An improvement method begins with a feasible solution and tries to improve it, searching for other
solutions in its neighborhood. The process is repeated until no improvement can be found. The basic elements
for this method are the neighborhood and the selection criterion that defines the order through which the
neighbors are analyzed (Heider (1973), Mirchandani and Obata (1979), Bruijs (1984), Pardalos et al. (1993),
Burkard and Çela (1995), Li and Smith (1995), Anderson (1996), Talbi et al. (1998a), Deineko and Woeginger
(2000), Misevicius (2000a) and Mills et al. (2003)). Those category methods are frequently used by
metaheuristics.

It is worthy to mention that up to this date, approximate algorithms with performance guaranteed for one
constant were only obtained for special cases of QAP. Examples are the cases where the distance matrix
satisfies the triangular inequality (Queyranne (1986)) or when the problem is treated as a maximal clique
problem with given maximum bound (Arkin et al. (2001)).

White (1993) proposed a new approach, where the actual data is relaxed by embedding them in a data space that
satisfies an extension of the metric triangle property. The computations become simpler and bounds are given
for the loss of optimality.

4.3. Metaheuristics

Before the end of the 80’s, most of the proposed heuristic methods for combinatorial optimization problems
were specific and dedicated to a given problem. After that period, this paradigm has changed. More general
techniques have appeared, known as metaheuristics. They are characterized by the definition of a priori
strategies adapted to the problem structure. Several of these techniques are based on some form of simulation of
a natural process studied within another field of knowledge (metaphors). With the advent of metaheuristics,
QAP research received new and increased interest. Recall that the QAP is considered a classical challenge or
“benchmark” as we mentioned earlier, Moe (2003).

4.3.1 The following metaheuristics are based on natural process metaphors.



Simulated annealing is a local search algorithm that exploits the analogy between combinatorial optimization
algorithms and statistical mechanics (Kirkpatrick et al. (1983)). This analogy is made by associating the feasible
solutions of the combinatorial optimization problem to states of the physical system, having costs associated to
these states energies. Let Ei and Ei+1 be two energy successive states, corresponding to two neighbor solutions
and let DE = Ei+1 - Ei. The following situations can occur: if DE < 0, there is an energy reduction and the process
continues. In other words, there is a reduction on the problem cost function and the new allocation may be
accepted; if DE = 0, there is a stability situation and there is no change in the energy state. This means that the
problem cost function was not changed; if DE > 0, an increase on the energy is characterized and it is useful for
the physical process to permit particle accommodation, i.e., the problem cost function is increased. Instead of
eliminating this allocation, its use is subjected to the values of a probability function, to avoid convergence into
poor local minima. Burkard and Rendl (1984) proposed one of the first applications of simulated annealing to
the QAP. After that, Wilhelm and Ward (1987) presented the new equilibrium components for it. Connolly
(1990) introduced an optimal temperature concept that gave valuable results. Later, Abreu et al. (1999) applied
the technique by trying to reduce the number of inversions associated to the problem solution, together with the
cost reduction. Other approaches for the simulated annealing applied to the QAP are Bos (1993), Yip and Pao
(1994), Burkard and Çela (1995), Peng et al. (1996), Tian et al. (1996, 1999), Mavridou and Pardalos (1997),
Chiang and Chiang (1998), Misevicius (2000b, 2003c), Tsuchiya et al. (2001), and Siu and Chang (2002).

Genetic algorithms are techniques that simulate the natural selection and adaptation of the species. These
algorithms keep a population formed by a subset of individuals that correspond, in the QAP case, to the feasible
permutations, with fitness values associated to these permutations costs. By means of the so-called genetic
operators, and of selection criteria, the algorithm replaces a population by another with best fitness values. The
basic idea consists in the believing that the best individuals survive and generate descendents with their genetic
characteristics, in the same way as described by the biological species theory. The analogy is conducted by
making the genetic algorithms begin with a population of randomly generated initial solutions, evaluate their
costs, select a subset with the best solutions and apply genetic operations on them, generating a new solution set
(a new population), Davis (1987) and Goldberg (1989). Some ideas for the use of genetic algorithms on the
QAP can be found in Brown et al. (1989), Bui and Moon (1994), Tate and Smith (1995), Mavridou and
Pardalos (1997), Kochhar et al. (1998), Tavakkoli-Moghaddain and Shayan (1998), Gong et al. (1999) and
Drezner and Marcoulides (2003). The use of these algorithms in the QAP context presents some difficulties in
getting the optimal solution, even for small instances. However, some hybrid ideas using genetic algorithms
have shown to be more efficient, as discussed ahead.

Scatter search is a technique that was introduced by Glover (1977) in a heuristic study of integer linear
programming problems. It is an evolutionary method that takes linear combinations of solution vectors in order
to produce new solution vectors in successive generations. This metaheuristic is composed of initial and
evolutionary phases. On the first one, a solution set is made with the better solutions that will be used as
reference and, in the other; new solutions are generated using strategically selected combinations of the
reference subsets. From that time on, a set of the best-generated solutions is included into the reference set. The
evolutionary phase procedures are repeated until the moment that a stop criterion is satisfied. An application to
the QAP can be found in Cung et al. (1997).

Ant colony is referred to a class of distributed algorithms that has as most important feature the definition of
properties in the interaction of several simple agents. Its principle is the way through that the ants are able to
find a path from the colony to a feeding source. Each simple agent is called an ant and the set of ants,
cooperating in an ordinary activity to solve a problem, constitute the ant system. The main characteristic of this
method is the fact that the interaction of these agents generates a synergetic effect, because the quality of the
obtained solutions increases when these agents work together, interacting among themselves. Numerical results
for the QAP are presented in Maniezzo and Colorni (1995, 1999), Colorni et al. (1996), Dorigo et al. (1996) and
Maniezzo (1997). Gambardella et al. (1999) show ant colony as a competitive metaheuristic, mainly for
instances that have few good solutions close to each other. Other references are in Stützle and Dorigo (1999),
Stützle and Holger (2000), Talbi et al. (2001), Middendorf et al. (2002), Solimanpur et al. (2004) and Ying and
Liao (2004).

Although neural networks and Markov chains are structurally different from metaheuristics, they are also based
on a nature metaphor and they have been applied to the QAP, Bousonocalzon and Manning (1995), Liang
(1996), Obuchi et al. (1996), Tsuchiya et al. (1996), Ishii and Sato (1998, 2001), Rossin et al. (1999), Niitisuma
et al. (2001), Nishiyama et al. (2001), Hasegawa et al. (2002) and Uwate et al. (2004). 

4.3.2 The following metaheuristics are based directly on theoretical and experimental considerations.

Tabu search is a local search algorithm that was introduced by Glover (1989a, 1989b) to find good quality
solutions for integer programming problems. Its main feature is an updated list of the best solutions that were
found in the search process. Each solution receives a priority value or an aspiration criterion. Their basic



ingredients are: a tabu list, used to keep the history of the search process evolution; a mechanism that allows the
acceptance or rejection of a new allocation in the neighborhood, based on the tabu list information and on their
priorities; and a mechanism that allows the alternation between neighborhood diversification and intensification
strategies. Adaptations for the QAP can be found in Skorin-Kapov (1990, 1994), Taillard (1991), Bland and
Dawson (1991), Rogger et al. (1992), Chakrapani and Skorin-Kapov (1993), Misevicius (2003a) and Drezner
(2005). Despite the inconvenience of depending on the size of the tabu list and the way this list is managed, the
performances of those algorithms show them as being very efficient strategies for the QAP, as analyzed by
Taillard (1991) and Battiti and Tecchiolli (1994a). Taillard (1995) presents a comparison between the uses of
tabu search and genetic algorithm, when applied to the QAP.

Greedy randomized adaptive search procedure (GRASP) is a random and iterative technique where, at each
step, an approximate solution for the problem is obtained. The final solution is the best resulting one among all
iterations. At each step, the first solution is constructed through a random greedy function and the following
solutions are obtained by applying on the previous solution a local search algorithm that gives a new best
solution regarding to the previous one. At the end of all iterations, the resulting solution is the best generated
one. It is not guaranteed that GRASP solutions do not stick to a local optimum, so it is important to apply the
local search phase to try to improve them. The use of suitable data structures and careful implementations allow
an efficient local search. This technique was applied to the QAP by several researchers, as follows: Li et al.
(1994b), Feo and Resende (1995), Resende et al. (1996), Fleurent and Glover (1999), Ahuja et al. (2000),
Pitsoulis et al. (2001) and Rangel et al. (2000). Oliveira et al. (2004) built a GRASP using the path-relinking
strategy, which looks for improvements along the paths joining pairs of good solutions. GRASP was also
applied to QAP variations: BiQAP, Mavridou et al. (1998) and 3-dimensional QAP, Aiex et al. (2000).

Variable neighborhood search (VNS) was introduced by Mladenovi (1995) and Mladenovi and Hansen (1997)
and is based on systematic moving within a set of neighborhoods conveniently defined. A number of change
rules can be utilized and a change is applied when the exploring on the current neighborhood does not give a
better result. It has been applied on the solution of large combinatorial problem instances. In Taillard and
Gambardella (1999), three strategies are proposed for the QAP. One of them is a search over variable
neighborhood, according to the basic paradigm, and the other two are hybrid methods based on the combination
of some of the previously described methods.

There are also several ideas of hybrid algorithms for the QAP. In Bölte and Thonemann (1996), a combination
of  simulated annealing with genetic is presented; Battiti and Tecchiolli (1994b), Bland and Dawson (1994),
Chiang and Chiang (1998) and Misevicius (2001, 2004a) use tabu search with simulated annealing, while Talbi
et al. (1998b) and Hasegawa et al. (2002) used tabu search with a neural network, and Youssef et al. (2003) use
tabu search, simulated annealing and fuzzy logic. Some hybrid algorithms combine a genetic algorithm with
tabu search, Fleurent and Ferland (1994), Drezner (2003), or with a greedy algorithm, Ahuja et al. (2000), were
proved to be more promising than the genetic use. More recently, there are more procedures in this class as the
algorithms of Lim et al. (2000, 2002) which work with hybrid genetic algorithms based on k-gene exchange
local search, and Misevicius (2004b) whose introduced new results for the quadratic assignment problem used a
improved hybrid genetic procedure. Dynamic programming was combined with evolutionary computation by
Dunker et al (2004) for solving a dynamic facility layout problem. Balakrishnan et al. (2003) and Rodriguez et
al. (2004) used GATS, a hybrid algorithm that considers a possible planning horizon, which combines genetic
with tabu search and is designed to obtain all global optima. Some categories of hybrid genetic algorithms are
known as memetic algorithms or evolutionary algorithms and some works can be found in this context: Brown
et al. (1989), Brown and Huntley (1991), Carrizo et al. (1992), Nissen (1994), Huntley and Brown (1996), Merz
and Freisleben (1997, 1999, 2000), Nissen (1997), Ostrowski and Ruoppila (1997). Misevicius et al. (2002)
presented an algorithm based on reconstruct and improve principle. The main components of this meta-
heuristics are a reconstruction (mutation) procedure and an improvement (local search) procedure. Misevicius
(2003b, 2003d) presented a new heuristic, based on the run and recreate cause. The main components are ruin
(mutation) and a recreate (improvement) procedure. There is still a technique introduced by Goldbarg and
Goldbarg (2002) that uses a variation of the genetic algorithms, known as transgenetic heuristics. In the QAP
case, the presented results are just compatible with other ones, without improvements on the computational
time. The use of several metaheuristics and hybrid proposals on QAP is discussed and their results are compared
and analyzed in Maniezzo and Colorni (1995) and Taillard et al. (2001). Kelly et al. (1994) studied
diversification strategies for the QAP; Fedjki and Duffuaa (2004) developed a work using extreme points in a
search algorithm to solve the QAP. Finally, several techniques use parallel and massive computation, Bokhari
(1987), Roucairol (1987), Brown et al. (1989), Pardalos and Crouse (1989), Brown and Huntley (1991, 1996),
Taillard (1991), Chakrapani and Skorin-Kapov (1993), Laursen (1993), Mans (1995), Mautor and Roucairol
(1995), Obuchi et al. (1996), Brüngger et al. (1997, 1998), Clausen et al. (1998), Talbi et al. (1998a, 1998b,
2001), Aiex et al. (2000), Anstreicher et al. (2002) and Moe (2003).  Almost these references were cited in other
procedure classes.



5 The main research trends and tendencies

In this section, we seek to identify the behavior of the main research trends along the time, after almost 50 years
of QAP appearance in the literature. This study raises a number of questions concerning researcher preferences
and also the needs for formulations, techniques and theoretical developments. We also consider the influence of
hardware development throughout different periods and the possibilities brought by the most recent conquests
represented by parallel processing and metacomputing.

The bibliography presented in this work, listing 362 publications, from which about 95% deal  directly with
QAP, determines the considered universe. The curve displays in Figure 5.1 shows the consistency of  interest in
the problem along the more recent years.
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Figure 5.1 – Tendency of the Publications.

In the following figures, the references are grouped by the approach strategy, determined by the formulation
classification given in Section 2; the kinds of lower bounds adopted according to classification of Section 3; the
solution techniques or procedures given in Section 4; the reference distribution concerning algorithmic,
theoretical or applied work along the time (periods of five years). To finish this section, we present a sketch
pointing new research tendencies based on recent advances.

Figure 5.2 presents the number of publications related to the different QAP formulations, classified in this work
as Permutations (PM), Integer Linear Programming (ILP), Mixed Integer Linear Programming (MILP), Trace
(TR), Semidefinite Programming (SDP) and Graphs (GR). We observed that the QAP approach that identifies
solutions with permutations is the most used, followed by ILP and MILP formulations. The formulations
derived from semidefinite programming and the ones using exclusively graphs are less contemplated in the
literature, perhaps because they are more recent.
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Figure 5.2 – Publications: QAP Formulations.

Figure 5.3 presents the number of publications related to lower bounds, following the classification that are
adopted in this article: Gilmore and Lawler (GLB) bounds, MILP relaxation based bounds, trace formulation
derived bounds (TRB), spectral bounds (SB), semidefinite programming (SDP), graph formulation based
bounds (GRB), variance reduction bounds (VRB) and, finally, interior points based bounds (IPB).
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Figure 5.3 – Publications: lower bounds.

Observing Figure 5.3, we conclude that most works use lower bounds derived from the Gilmore and Lawler
Bound (GLB), followed by MILP and TRB relaxation based bounds. However, GLB is the most traditional and
frequently the quickest to produce results and this justifies the illustrated distribution in this figure.

Figure 5.4 registers the reference distribution by solution techniques that were classified in this work as
Heuristic Methods, Exact Methods and Metaheuristics.
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Figure 5.4 – Publications: solution techniques.
We can observe that about 30 papers deal with exact methods, while more that one hundred are dedicated to
heuristic or metaheuristic methods, a natural consequence of the NP-hardness of the problem.

Figure 5.5 registers the reference distribution by metaheuristic resolution methods. In this arrangement we have:
simulated annealing (SA), genetic algorithm (GA), scatter search (SS), ant colony (AC), neural networks and
others (NNO), tabu search (TS), greedy randomized adaptive search procedure (GRASP), variable
neighborhood search (VNS) and hybrid algorithms (HA).
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Figure 5.5 – Publications: Metaheuristics used to the QAP

From Figure 5.5 we can see that hybrid procedures that result from different metaheuristic compositions are the
most used. However, when we look for comparison among pure metaheuristics, the procedures based on
simulated annealing and genetic algorithms have been the most applied to the QAP.
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Figure 5.6 shows the reference distribution with relation to QAP applications, theoretical works involving
formulations, complexity studies and lower bound techniques, and those dedicated to algorithms.
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Figure 5.7 – Number of publications in a five-year basis.

Figure 5.7 distributes the number of articles by 5-year periods since 1957, when the problem was proposed. For
each period, the work is also classified according to the same categories of Figure 5.6. We can observe that an
explosion of interest in theory and algorithm development occurred in the 1992-2001 period. The last period is
only half passed but it seems to keep the same level and trends.

The problem seems to have attracted little interest until the middle of the 70’s. The 80’s have seen a number of
theoretical developments followed, near their end, by a growing interest in algorithms to which the theory
naturally conducted. By the end of the 80’s, with the emerging of metaheuristics, the problem received more
attention, partly as a benchmark: a metaheuristic would be considered competitive if, when applied to the QAP,
could achieve better results than the known ones. The end of the 90’s profited from the development of
computer technology, both in hardware and in capacity management (parallel computing and metacomputing).
This, combined with the available exact techniques, made possible to find optimal solutions for larger instances
(over n = 30) and also to obtain better ones for some bigger instances, QAPLIB (2004).

Figure 5.8, where the more recent work is indicated, shows that the interest in algorithms continues very strong,
even after 2001, when the interestwhile we observe a periodical trend on theoretical developments decreases
(perhaps because few novelties were achieved). Applications continue to be presented but in a lesser extent.
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