# Lehigh ISE / COR@L Lab Wiki

### Site Tools

mathematical_optimization

# Differences

This shows you the differences between two versions of the page.

 mathematical_optimization [2017/03/27 09:42]ntcnet [Optimal input arguments] mathematical_optimization [2017/04/05 23:02] (current)sertalpbilal old revision restored (2014/09/25 16:11) Both sides previous revision Previous revision 2017/04/05 23:02 sertalpbilal old revision restored (2014/09/25 16:11)2017/03/27 09:42 ntcnet [Optimal input arguments] 2017/03/27 06:00 ntcnet [Optimal input arguments] 2014/09/25 16:11 2014/09/24 12:31 xik312 old revision restored (2014/09/23 12:17)2014/09/24 12:29 xik312 2014/09/23 12:17 sertalpbilal 2014/09/23 12:04 sertalpbilal created 2017/04/05 23:02 sertalpbilal old revision restored (2014/09/25 16:11)2017/03/27 09:42 ntcnet [Optimal input arguments] 2017/03/27 06:00 ntcnet [Optimal input arguments] 2014/09/25 16:11 2014/09/24 12:31 xik312 old revision restored (2014/09/23 12:17)2014/09/24 12:29 xik312 2014/09/23 12:17 sertalpbilal 2014/09/23 12:04 sertalpbilal created Line 63: Line 63: represents the $(x,y)$ pair (or pairs) that maximizes (or maximize) the value of the objective function $x\cos(y)$, with the added constraint that $x$ lie in the interval $[-5,5]$ (again, the actual maximum value of the expression does not matter). In this case, the solutions are the pairs of the form $(5, 2k\pi)$ and $(−5,​(2k+1)\pi)$,​ where $k$ ranges over all integers. represents the $(x,y)$ pair (or pairs) that maximizes (or maximize) the value of the objective function $x\cos(y)$, with the added constraint that $x$ lie in the interval $[-5,5]$ (again, the actual maximum value of the expression does not matter). In this case, the solutions are the pairs of the form $(5, 2k\pi)$ and $(−5,​(2k+1)\pi)$,​ where $k$ ranges over all integers. - **Arg min** and **arg max** are sometimes also written **argmin** and **argmax**, and stand for argument of the minimum and argument of the maximum.[[http://​btseducation.edu.vn/​du-hoc-he-philippines|du hoc he]] + **Arg min** and **arg max** are sometimes also written **argmin** and **argmax**, and stand for argument of the minimum and argument of the maximum.