User Tools

Site Tools



This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
info:tech_report_example [2017/05/04 09:33]
sertalpbilal We have a tex version of this file
— (current)
Line 1: Line 1:
-\usepackage{algorithm} % for algorithm environment 
-\usepackage{algpseudocode} % for algorithmic environment 
-   %\usepackage[pdftex]{graphicx} for pdflatex 
-   %\usepackage{graphicx} for latex 
-% for tiles and keywords 
-\algdef{SE}[DOWHILE]{Do}{doWhile}{\algorithmicdo}[1]{\algorithmicwhile\ #1} 
-% todo(aykut) this will create a problem with \P command of complexity package. 
-\ifthenelse{\coralreport = 1}{ 
-% The report number is the same one used in the ISE tech report series 
-% This is the revision number (increment for each revision) 
-% This is the date f the original report 
-\def\originaldate{March 13, 2015} 
-% This is the date of the latest revision 
-\def\revisiondate{March 13, 2015} 
-% Set these variables according to whether this should be a CORAL or CVCR 
-% report 
-% -> fix path problem of isetechreport.sty 
-\title{On the Complexity of Inverse MILP} 
-\ifthenelse{\coralreport = 1}{ 
-  \author{Aykut Bulut\thanks{E-mail: \texttt{}}} 
-  \author{Ted K. Ralphs\thanks{E-mail: \texttt{}}} 
-  \affil{Department of Industrial and Systems Engineering, Lehigh University, USA} 
-  \titlepage 
-  \author{Aykut Bulut} 
-  \author{Ted K. Ralphs} 
-  \affil{COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University, USA} 
-  \date{\today} 
-Inverse optimization problems determine problem parameters that are closest to 
-the estimates and will make a given solution optimum. In this study we work 
-inverse \textbf{m}ixed \textbf{i}nteger \textbf{l}inear \textbf{p}roblems (MILP) 
-where we seek the objective function coefficients. This is the inverse problem 
-\cite{AhujaSeptember2001} studied for linear programs (LP). They 
-show that inverse LP can be solved in polynomial time under mild conditions. We 
-extend their result for the MILP case. We prove that the decision version of 
-the inverse MILP is $\coNP$--complete. We also propose a cutting plane algorithm for 
-solving inverse MILPs for practical purposes. 
-\ifthenelse{\coralreport = 0}{ 
-{\bf Keywords:} Inverse optimization, mixed integer linear program, 
-computational complexity, polynomial hierarchy 
info/tech_report_example.1493904816.txt.gz ยท Last modified: 2017/05/04 09:33 by sertalpbilal