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Clustering on a Graph

Optimal attack and reinforcement of a network
W.H. Cunningham (1985)



Clustering on a Graph

e Given G = (V, F). Each edge has cost ¢, > 0, ¢ € F
e Delete edges K C F to form G' = (V, E \ K)

e Cost: ¢(K) = Z Ce

ec K



Clustering on a Graph

e Given G = (V, F). Each edge has cost ¢, > 0, ¢ € F
e Delete edges K C F to form G' = (V, E \ K)

e Cost: ¢(K) = Z Ce

ecK
e Gain: g(K') = number of connected components of G' = (V, E\ K)

— Let r(K) be the rank of G’ = (V, E'\ K), where rank is the

largest number of edges that can participate in a forest

— Then g(K) = |V| — r(K)



Clustering on a Graph

e Model:
Reg 90
st. ¢K)<b

o If ¢(K) = |K]|: Partition graph into as many pieces as possible,
subject to cardinality constraint on number of edges we delete
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Clustering on a Graph

e A related model:

max  g(&) — Ac(K),

where A > 0 is given

e Easier model and important for reasons we'll see shortly

e Cunningham's strength of a graph:

min ¢(K)/[g(K) — 1

e Bicriteria view: Find Pareto efficient solutions, maximizing g(K ') and
minimizing ¢(K)

e g(K) is a supermodular function



Maximize a supermodular function subject to a
submodular knapsack constraint



A Bicriteria Combinatorial Optimization Problem

e Let S be a finite universal set
o Let ¢ : 2° — R be a supermodular gain function

e letc: 2° = R be an increasing, submodular cost function

e Model:

peg o) 0y
st. cK)<b

e Bicriteria view: Find Pareto efficient solutions, maximizing g( /') and
minimizing ¢(K)

e Nestedness: Let K} and K solve model (1) for b and ¥/, b < b'.
These optimal solutions are nested, if K}, C Ky



Super- and Submodular Functions

°® (g : 29 3 Ris a supermodular function, provided

g(BU{k}) = g(B) = g(AU{k}) — g(A)
where A C B C S and where k € S\ B

o c : 2° = R is submodular if —c(-) is supermodular

e A function is modular if it is both super- and submodular



Nested Clustering on a Graph




Geometry and Nestedness under Supermodularity

e Model:

Rey 9 )
st. c(K)<b

e Assume c¢(-) is submodular and increasing. And g(-) is supermodular

o Let A, B C S satisfy ¢(A) < ¢(B).

Gain-to-cost ratio: m : 2° X 2° 3 R is:

_g9(B)—yg
m(A, B) = T



g(*), gain

Gain-to-Cost Ratio

c(e), cost




Geometry and Nestedness under Supermodularity

Lemma 1 Let B C S be a solution of model (1) on the concave
envelope of the efficient frontier. Then,

= K :
m(A, B) KCS:E?I%:;CZC(B)m(A7 ) VA:c(A) < c¢(B)

and

B = ' ;
m(B,C) Kcszg?fl(l)lgc(B)m(K’C> VC:c(C)>c(B)



Geometry and Nestedness under Supermodularity

Lemma 1 (in pictures): Let B C S be a solution of model (1) on
the concave envelope of the efficient frontier. Then the following is
impossible; i.e., there is no such K*:

A A
9(+) . 9(+)

c(+) c(+)



Geometry and Nestedness under Supermodularity

Lemma 2 Assume c(-) is submodular and increasing and ¢(-) is super-

modular. Let Ki, K9 C S be solutions on the concave envelope of the
efficient frontier of model (1) with K1¢ Ky and Ko7 K. Then

m(K1 M KQ, Kl) = m(KQ, Kl U K2> = m(K1 M KQ, K1 U KQ)



Geometry and Nestedness under Supermodularity

Lemma 2 (in pictures): Assume c¢(-) is submodular and increasing and
g(+) is supermodular. Then

Straight line

g(e), gain

v

c(e), cost

m(K1 M KQ, Kl) = m(KQ, K1 U KQ) = m(K1 M KQ, K1 U KQ)



Proof of Lemma 2
o 1N Ks C K. So,
g(K1) — g(K1 N Ky) < (K U K>) — g(K>)

C(Kl) — C(Kl M K2> 2 C(K1 U KQ) — C(KQ)

e Thus
m(K1 N Ky, Kp) <m(Ksy, K1 U K») (1)
e Applying Lemma 1 with A = K1 N K5 and B = K yields:
m(K1 N Ky, K1 U Ks) < m(K1N Ky, K). (2)
e Applying Lemma 1 with with B = K5 and C' = K7 U K> yields:
m(Ky, K1 U Ky) <m(K1N Ky, K1 U K)). (3)

Taken together, inequalities (1)-(3) yield the desired result.



Geometry and Nestedness under Supermodularity

Theorem 3 Assume c(-) is submodular and increasing and g(-) is super-
modular. Let K1, K5 C S be extreme points on the concave envelope of

the efficient frontier of model (1). Then either K1 C Ky or Ky C Kj.
Moreover, if ¢(K1) = ¢(K>) then K1 = Ko.



Geometry and Nestedness under Supermodularity

K £ C
max (/) A
st. c(K)<b VA

c(e), cost

e Assume c¢(-) is submodular and increasing and ¢(+) is supermodular

e Extreme points of concave envelope of efficient frontier are nested

e Obtain those solutions in strongly polynomial time via

max  g(/K) — Ac(K)



Okay. But, how do we solve
the graph clustering problem?

K
Reg o)
st. oK) <b

or

max  g(/) — Ac(K)



LP for Minimum Spanning Tree

min Zcexe

! eel

8.t Zaze = V| -1
eel
Y w8 -1,8CV,540

e=(i,j)€E

1,JES
0<z. <1l ee k.



LP for Maximum Number of Edges in a Forest

r(F) = max er

st. Y w. <|S|—1,5CV,S#0

e=(i,j)eE
i,jES
0<zx. <1l e€ekF,

Recall:

o Let 7(K) be the rank of G' = (V, E'\ K), where rank is the largest
number of edges that can participate in a forest

e Then g(K) = |V|—r(K)



LP for ¢g(K)

g(K)=|V]|— max Z Te
ec E\K
st Yz <|S][-1,SCV,S#0
e=(i,j)eE\K
1,J€S
0<z.<l,ec F\K
= |V| 4+ min Z — T,
e€e F\K
8.t Z r. <|S|—-1,SCV,K #
e=(i,j)eE\K
1,JES

0<z.<l,ec F\K



Let K ={e : y.=1,ec E}

9(y) = [V| + min

S.t.

= |V| 4+ min

S.t.

= |V| 4+ max
T

s.t.

LP for g(y)

>

eelk

w8 -1,9C V.S £

=(i,j)eE

1,j€S
Oéxegl_ymeeE

Z(ye - 1)$e

eel

Z re <|S|—=1,SCV,S#40 : 7g

=(i,j)€F

1,j€S
0<z.<lieeF : 7

SO0S] - Vs + 3

ScV eck

Y meFr<y—le=(i,j)€E
S:,j€eS

7T5§0,SCV,S7£®

Ye < 0,e € F.



MIP for Knapsack-constrained Graph Clustering
A MIP for model (1) is then:

max Z S| —17T5-|-Z%

Y,y

eelk
8.t Z s+ Y <ye—l,e=(1,j) € B
Su,je8
Zceyegb
eck
WSSO,SCV,S#Q)
Y. < 0,e e b

y. € {0,1},e € E

Pricing problem for column generation is well-known max-flow problem
on an auxiliary graph with |V| + 2 nodes, just like in MST problem.



No, really. How do we solve

the graph clustering problem?

max  g(/) — Ac(K)



Solving Sequence of Max-Flow Problems
Solves Graph Clustering Problem

. Cunningham (1985) solves | /| max-flow problems on a graph with
|V | 4+ 2 nodes

. Barahona (1992) solves at most |V'| max-flow problems on a graph
with |V| 4+ 2 nodes

. Baiou, Barahona and Mahjoub (2000) solve at most |V| max-flow
problems on a graph with |k| 4+ 2 nodes at iteration k

. Preissmann and Sebd (2008) solve |V'| max-flow problems on a graph
with at most |k| + 2 nodes at iteration &

Max-flow problems are the same as in the MST problem.



How do we solve the

nested graph clustering problem?

tax g(K)—Ae(K) VA>0



Solving Sequence of Parametric Max-Flow Problems
Solves Nested Graph Clustering Problem

1. Cunningham (1985)

2. Barahona (1992)

3. Baiou, Barahona, and Mahjoub (2000)
4. Preissmann and Sebé (2008)

e Each algorithm works for fixed A > 0
e \We modify each, solving a parametric max-flow problem in \

e This yields family of nested (hierarchical) clusters on the concave
envelope of the efficient frontier



Parametric Max Flow

e In general, parametric LP and parametric max flow can have
exponentially many break points

e But, we have nested property, and hence, at most |V'| break points

e Parametric push-relabel algorithm has same complexity as for fixed A:
Gallo, Grigoriadis and Tarjan (1989)

e Ditto for pseudo-flow algorithm (Hochbaum 2008) and others

We have preliminary implementation of Preissmann and Sebd (2008)
with parametric max-flow in Python/Gurobi



Relaxed Caveman Graph

~ ¢

I \

3 q"%
ARy

[ TR v‘-—“l -i-l';.h__ = \-—_‘ ,?
(3

< "’o" N3
B ‘%%“ 4 ‘

@
Q ’ {
s v b EH5 Py
. ).“ /v" \ ..‘!l’t al,”‘#'a-ﬂ\

RIS |
“"--""*."é.\ = ‘.'-.”Q

! i
<} =
O




Relaxed Caveman Graph: ¢(K) =2
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Relaxed Caveman Graph: ¢g(K) =3
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Relaxed Caveman Graph: ¢g(K) = 20
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Summary: Nested Clustering on a Graph

e Bicriteria model

— maximize gain: number of clusters

— minimize cost: weight of edges removed
e Gain is supermodular and cost is submodular, increasing
e Pareto efficient solutions on concave envelope of efficient frontier

— computed in polynomial time

— nested
e Proposed algorithm

— combines Preissmann and Sebé (2008) and parametric max flow

— solves nested clustering problem in same complexity as for fixed A

e \alue of, and connections to, MIP formulation?



