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Clustering on a Graph

Optimal attack and reinforcement of a network
W.H. Cunningham (1985)



Clustering on a Graph

• Given G = (V,E). Each edge has cost ce > 0, e ∈ E
• Delete edges K ⊂ E to form G′ = (V,E \K)

• Cost: c(K) =
∑
e∈K

ce



Clustering on a Graph

• Given G = (V,E). Each edge has cost ce > 0, e ∈ E
• Delete edges K ⊂ E to form G′ = (V,E \K)

• Cost: c(K) =
∑
e∈K

ce

• Gain: g(K) = number of connected components of G′ = (V,E\K)

− Let r(K) be the rank of G′ = (V,E \ K), where rank is the
largest number of edges that can participate in a forest

− Then g(K) = |V | − r(K)



Clustering on a Graph

• Model:
max
K⊂E

g(K)

s.t. c(K) ≤ b

• If c(K) = |K|: Partition graph into as many pieces as possible,
subject to cardinality constraint on number of edges we delete
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Clustering on a Graph

• A related model:
max
K⊂E

g(K)− λc(K),

where λ > 0 is given

• Easier model and important for reasons we’ll see shortly

• Cunningham’s strength of a graph:

min
K⊂E

c(K)/[g(K)− 1]

• Bicriteria view: Find Pareto efficient solutions, maximizing g(K) and
minimizing c(K)

• g(K) is a supermodular function



Maximize a supermodular function subject to a
submodular knapsack constraint



A Bicriteria Combinatorial Optimization Problem

• Let S be a finite universal set

• Let g : 2S → R be a supermodular gain function

• Let c : 2S → R be an increasing, submodular cost function

• Model:
max
K⊂S

g(K)

s.t. c(K) ≤ b
(1)

• Bicriteria view: Find Pareto efficient solutions, maximizing g(K) and
minimizing c(K)

• Nestedness: Let Kb and Kb′ solve model (1) for b and b′, b < b′.
These optimal solutions are nested, if Kb ⊂ Kb′



Super- and Submodular Functions

• g : 2S → R is a supermodular function, provided

g(B ∪ {k})− g(B) ≥ g(A ∪ {k})− g(A)
where A ⊂ B ⊂ S and where k ∈ S \B

• c : 2S → R is submodular if −c(·) is supermodular

• A function is modular if it is both super- and submodular



Nested Clustering on a Graph



Geometry and Nestedness under Supermodularity

• Model:
max
K⊂S

g(K)

s.t. c(K) ≤ b
(1)

• Assume c(·) is submodular and increasing. And g(·) is supermodular

• Let A,B ⊂ S satisfy c(A) < c(B).

Gain-to-cost ratio: m : 2S × 2S → R is:

m(A,B) =
g(B)− g(A)
c(B)− c(A)



Gain-to-Cost Ratio
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m(A,B) =
g(B)− g(A)
c(B)− c(A)



Geometry and Nestedness under Supermodularity

Lemma 1 Let B ⊂ S be a solution of model (1) on the concave
envelope of the efficient frontier. Then,

m(A,B) = max
K⊂S:c(K)≥c(B)

m(A,K) ∀A : c(A) < c(B)

and

m(B,C) = min
K⊂S:c(K)≤c(B)

m(K,C) ∀C : c(C) > c(B)



Geometry and Nestedness under Supermodularity

Lemma 1 (in pictures): Let B ⊂ S be a solution of model (1) on
the concave envelope of the efficient frontier. Then the following is
impossible; i.e., there is no such K∗:
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Figure 2: In (a) we have that if m(A,B) < m(A,K∗) for some A and K∗ satisfying

c(A) < c(B) ≤ c(K∗), then B is convex dominated by A and K∗. In (b) we have that

if m(B,C) > m(K∗, C) for some K∗ and C satisfying c(K∗) ≤ c(B) < c(C), then B is

convex dominated by K∗ and C.

Part (b) follows in a similar fashion by supposing that m(K∗, C) <

m(B,C) for some K∗ satisfying c(K∗) ≤ c(B). If α = c(C)−c(B)
c(C)−c(K∗) then:

g(C)− g(K∗)

c(C)− c(K∗) <
g(C)− g(B)

c(C)− c(B)
=⇒

α(g(C)− g(K∗)) < g(C)− g(B) =⇒

g(B) < αg(K∗) + (1− α)g(C).

This implies that B is convex dominated by K∗ and C.

Proposition 1(a) implies that the solutions of model (1) that we can find in

polynomial time maximize the gain per unit cost, relative to any solution

with smaller cost. Figure 2 provides a geometric interpretation.

The nestedness property is a direct consequence of the following lemma.

Lemma 2. Consider model (1) and assume that c(·) is submodular and in-

creasing and that g(·) is supermodular. Let K1, K2 ⊆ S be solutions on the
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Geometry and Nestedness under Supermodularity

Lemma 2 Assume c(·) is submodular and increasing and g(·) is super-
modular. Let K1, K2 ⊂ S be solutions on the concave envelope of the
efficient frontier of model (1) with K1 6⊂K2 and K2 6⊂K1. Then

m(K1 ∩K2, K1) = m(K2, K1 ∪K2) = m(K1 ∩K2, K1 ∪K2).



Geometry and Nestedness under Supermodularity

Lemma 2 (in pictures): Assume c(·) is submodular and increasing and
g(·) is supermodular. Then
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m(K1 ∩K2, K1) = m(K2, K1 ∪K2) = m(K1 ∩K2, K1 ∪K2)



Proof of Lemma 2

•K1 ∩K2 ⊂ K2. So,

g(K1)− g(K1 ∩K2) ≤ g(K1 ∪K2)− g(K2)

c(K1)− c(K1 ∩K2) ≥ c(K1 ∪K2)− c(K2)

•Thus
m(K1 ∩K2, K1) ≤ m(K2, K1 ∪K2) (1)

•Applying Lemma 1 with A = K1 ∩K2 and B = K1 yields:

m(K1 ∩K2, K1 ∪K2) ≤ m(K1 ∩K2, K1). (2)

•Applying Lemma 1 with with B = K2 and C = K1 ∪K2 yields:

m(K2, K1 ∪K2) ≤ m(K1 ∩K2, K1 ∪K2). (3)

Taken together, inequalities (1)-(3) yield the desired result.



Geometry and Nestedness under Supermodularity

Theorem 3 Assume c(·) is submodular and increasing and g(·) is super-
modular. Let K1, K2 ⊂ S be extreme points on the concave envelope of
the efficient frontier of model (1). Then either K1 ⊂ K2 or K2 ⊂ K1.
Moreover, if c(K1) = c(K2) then K1 = K2.



Geometry and Nestedness under Supermodularity
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max
K⊂S

g(K)

s.t. c(K) ≤ b

• Assume c(·) is submodular and increasing and g(·) is supermodular

• Extreme points of concave envelope of efficient frontier are nested

• Obtain those solutions in strongly polynomial time via

max
K⊂S

g(K)− λc(K)



Okay. But, how do we solve

the graph clustering problem?

max
K⊂S

g(K)

s.t. c(K) ≤ b

or

max
K⊂S

g(K)− λc(K)



LP for Minimum Spanning Tree

min
x

∑
e∈E

cexe

s.t.
∑
e∈E

xe = |V | − 1∑
e=(i,j)∈E
i,j∈S

xe ≤ |S| − 1, S ⊂ V, S 6= ∅

0 ≤ xe ≤ 1, e ∈ E.



LP for Maximum Number of Edges in a Forest

r(E) = max
x

∑
e∈E

xe

s.t.
∑

e=(i,j)∈E
i,j∈S

xe ≤ |S| − 1, S ⊂ V, S 6= ∅

0 ≤ xe ≤ 1, e ∈ E,
Recall:

• Let r(K) be the rank of G′ = (V,E \K), where rank is the largest
number of edges that can participate in a forest

• Then g(K) = |V | − r(K)



LP for g(K)

g(K) = |V | −max
x

∑
e∈E\K

xe

s.t.
∑

e=(i,j)∈E\K
i,j∈S

xe ≤ |S| − 1, S ⊂ V, S 6= ∅

0 ≤ xe ≤ 1, e ∈ E \K
= |V | +min

x

∑
e∈E\K

−xe

s.t.
∑

e=(i,j)∈E\K
i,j∈S

xe ≤ |S| − 1, S ⊂ V,K 6= ∅

0 ≤ xe ≤ 1, e ∈ E \K



LP for g(y)

Let K = {e : ye = 1, e ∈ E}

g(y) = |V |+min
x

∑
e∈E
−xe

s.t.
∑

e=(i,j)∈E
i,j∈S

xe ≤ |S| − 1, S ⊂ V, S 6= ∅

0 ≤ xe ≤ 1− ye, e ∈ E

= |V |+min
x

∑
e∈E

(ye − 1)xe

s.t.
∑

e=(i,j)∈E
i,j∈S

xe ≤ |S| − 1, S ⊂ V, S 6= ∅ : πS

0 ≤ xe ≤ 1, e ∈ E : γe

= |V |+max
π,γ

∑
S⊂V

(|S| − 1)πS +
∑
e∈E

γe

s.t.
∑
S:i,j∈S

πS + γe ≤ ye − 1, e = (i, j) ∈ E

πS ≤ 0, S ⊂ V, S 6= ∅
γe ≤ 0, e ∈ E.



MIP for Knapsack-constrained Graph Clustering

A MIP for model (1) is then:

max
y,π,γ

∑
S⊂V

(|S| − 1)πS +
∑
e∈E

γe

s.t.
∑
S:i,j∈S

πS + γe ≤ ye − 1, e = (i, j) ∈ E∑
e∈E

ceye ≤ b

πS ≤ 0, S ⊂ V, S 6= ∅
γe ≤ 0, e ∈ E
ye ∈ {0, 1}, e ∈ E

Pricing problem for column generation is well-known max-flow problem
on an auxiliary graph with |V | + 2 nodes, just like in MST problem.



No, really. How do we solve

the graph clustering problem?

max
K⊂S

g(K)− λc(K)



Solving Sequence of Max-Flow Problems
Solves Graph Clustering Problem

1. Cunningham (1985) solves |E| max-flow problems on a graph with
|V | + 2 nodes

2. Barahona (1992) solves at most |V | max-flow problems on a graph
with |V | + 2 nodes

3. Bäıou, Barahona and Mahjoub (2000) solve at most |V | max-flow
problems on a graph with |k| + 2 nodes at iteration k

4. Preissmann and Sebó (2008) solve |V |max-flow problems on a graph
with at most |k| + 2 nodes at iteration k

Max-flow problems are the same as in the MST problem.



How do we solve the

nested graph clustering problem?

max
K⊂S

g(K)− λc(K) ∀λ > 0



Solving Sequence of Parametric Max-Flow Problems
Solves Nested Graph Clustering Problem

1. Cunningham (1985)

2. Barahona (1992)

3. Bäıou, Barahona, and Mahjoub (2000)

4. Preissmann and Sebó (2008)

• Each algorithm works for fixed λ > 0

• We modify each, solving a parametric max-flow problem in λ

• This yields family of nested (hierarchical) clusters on the concave
envelope of the efficient frontier



Parametric Max Flow

• In general, parametric LP and parametric max flow can have
exponentially many break points

• But, we have nested property, and hence, at most |V | break points

• Parametric push-relabel algorithm has same complexity as for fixed λ:
Gallo, Grigoriadis and Tarjan (1989)

• Ditto for pseudo-flow algorithm (Hochbaum 2008) and others

We have preliminary implementation of Preissmann and Sebó (2008)
with parametric max-flow in Python/Gurobi



Relaxed Caveman Graph



Relaxed Caveman Graph: g(K) = 2



Relaxed Caveman Graph: g(K) = 3



Relaxed Caveman Graph: g(K) = 20



Relaxed Caveman Graph: g(K) = 160



Summary: Nested Clustering on a Graph

• Bicriteria model

– maximize gain: number of clusters

– minimize cost: weight of edges removed

• Gain is supermodular and cost is submodular, increasing

• Pareto efficient solutions on concave envelope of efficient frontier

– computed in polynomial time

– nested

• Proposed algorithm

– combines Preissmann and Sebó (2008) and parametric max flow

– solves nested clustering problem in same complexity as for fixed λ

• Value of, and connections to, MIP formulation?


