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Recap: Online Convex Optimization

At each iteration t, the player chooses xt in convex set K.

A convex loss function ft ∈ F : K → R is revealed.

A cost ft(xt) is incurred.

F is a set of bounded functions.

ft is revealed after choosing xt.

ft can be adversarially chosen.

Suyun Liu, Lehigh University Bandit Convex Optimization 2/20



Recap: Online Convex Optimization

Goal: minimize the regret bound

regretT =

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

Online Gradient Descent (OGD) (Zinkevich 2003):

xk+1 = ΠK(xk − ηt∇ft(xt))

Regret bound

if ft is convex: O(GD
√
T )

if ft is α-strongly convex: O(G
2

2α (1 + log(T )))
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Bandit Convex Optimization

Motivation

In Ad-placement, the search engine can inspect which ads were

clicked through, but cannot know whether different ads would have

been click through or not.

Given a fixed budget, how to allocate resources among the research

projects whose outcome is only partially known at the time of

allocation and may change through time.

Bandit Setting

In OCO, player has access to ∇ft(xt)

In BCO, player only has black-box access to the function value ft(xt).

We only can evaluate each function once.

Suyun Liu, Lehigh University Bandit Convex Optimization 4/20



Bandit Convex Optimization

Motivation

In Ad-placement, the search engine can inspect which ads were

clicked through, but cannot know whether different ads would have

been click through or not.

Given a fixed budget, how to allocate resources among the research

projects whose outcome is only partially known at the time of

allocation and may change through time.

Bandit Setting

In OCO, player has access to ∇ft(xt)

In BCO, player only has black-box access to the function value ft(xt).

We only can evaluate each function once.

Suyun Liu, Lehigh University Bandit Convex Optimization 4/20



Exploration vs Exploitation

Balance between exploiting the gathered information and exploring the
new data.

Figure: Where to eat?(Image source: UC Berkeley AI course slide, lecture 11.)
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OGD without a gradient

Question: Can we perform OGD without gradients?

One dim
∇̃f(x) = (f(x+ δ)− f(x− δ))/2δ

d dim

∇̃f(x) ≈ Eu∈∂B[(f(x+ δu)− f(x))u]d/δ

= Eu∈∂B[f(x+ δu)u]d/δ

Note: g̃(x, u) = f(x+ δu)ud/δ

Eu∈∂B[g̃(x, u)] = ∇f̂(x), with f̂(x) = Ev∈B[f(x+ δv)]
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Bandit gradient descent algorithm

Assumption:

only access to ft at one single point xt.

function value is bounded, {ft} : K → [−C,C].

ft can be non-smooth, no bounded gradient assumption.

∃r,R > 0, rB ⊂ K ⊂ RB.

Algorithm (Flaxman et al. 2005)

Let y1 = 0, learning rate η, ξ ∈ (0, 1), δ > 0

for t = 1, . . . , T :

- select ut ∈ ∂B uniformly at random

- xt = yt + δut and receive ft(xt)

- yt+1 = Π(1−ξ)K(yt − ηft(xt)utd/δ)
(yt+1 ∈ (1− ξ)K ensures xt ∈ K for any δ ∈ [0, ξr])
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Bandit gradient descent algorithm

Theorem

For sufficient large T with η = R
C
√
T

, the expected regret bound is

E[

T∑
t=1

ft(xt)]−min
x∈K

T∑
t=1

ft(x) ≤ 6T 5/6dC

With additional assumption L-Lipschitz function

E[

T∑
t=1

ft(xt)]−min
x∈K

T∑
t=1

ft(x) ≤ 6T 3/4d(
√
CLR+ C)

Parameters: T > (3Rd2r )2, δ = ( rR
2d2

12T )1/3 ≤ ξr, and ξ = ( 3Rd
2r
√
T

)1/3
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Multi-Point Bandit Feedback

Recall

g̃t =
d

δ
ft(ut)ut with ‖g̃t‖ ≤

dC

δ

Multi-point scheme (Agarwal et al. 2010): use two function values to
construct bounded norm gradient estimators for L-Lipschitz continuous
functions.

g̃t =
d

2δ
(ft(xt + δut)− ft(xt − δut))ut with ‖g̃t‖ ≤ Ld

Expected regret bound:

- η = 1√
T
, δ =

log(T )
T and ξ = δ

r : (d2L2 +R2)
√
T + Llog(T )(3 + R

r )

- α-strong convex, ηt = 1
αt , δ =

log(T )
T and ξ = δ

r :

Llog(T )(d
2L
α + R

r + 3).
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Summary on regret bounds

Figure: Known regret bounds in the Full-Info./BCO setting (Hazan and Levy
2014)
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Multi-Armed Bandit

Setting

At iteration t, player chooses action it from a set of discrete actions
{1, . . . , n}.
A loss in [0, 1] is independently chosen for each action.

The loss associated with it is revealed.

Various assumptions and constraints.

Example

A gambler pulls one of n slot machines to receive a reward or payoff. Each
arm is configured with fixed unknown reward/payoff probability.

What is the best strategy to achieve highest long-term rewards/lowest
cumulative loss?
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Multi-Armed Bandit

Exploration vs Exploitation: explore more actions or make the best
decision using the current estimates of the loss distribution.

Algorithms

Simple MAB algorithm

EXP3

Let K = ∆n be an n-dimensional simplex. The linear loss function

ft(xt) = `>t xt =
n∑
i=1

`t(i)xt(i) ∀xt ∈ K

Key: to estimate gradient `t.
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Simple MAB algorithm

Separating exploration and exploitation steps (Hazan 2016)

Algorithm 1 Simple MAB algorithm

1: ε ∈ [0, 1], learning rate η > 0.
2: for t = 1, . . . , T do
3: bt ∼ Bernoulli(ε).
4: if bt = 1 then
5: Choose it uniformly at random and receive `t(it)
6: Let

ˆ̀
t(i) =

{
n/ε`t(it), for i = it
0, OW

7: xt+1 = ΠK(xt − η ˆ̀
t)

8: else
9: Play it ∼ xt

10: ˆ̀
t = 0, xt+1 = xt.
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Simple MAB algorithm

E[ˆ̀t] = `t and E[f̂t(xt)] = E[ˆ̀>t xt] = ft(xt)

Expected regret bound when ε = n2/3T−1/3

E[

T∑
t=1

`t(it)]−min
i

T∑
t=1

`t(i) ≤ O(T 2/3n2/3)

Suyun Liu, Lehigh University Multi-Armed Bandit Optimization 14/20



EXP3

Combining exploration and exploitation steps (Auer et al. 2002b).

Algorithm 2 EXP3 - simple version

1: Choose ε > 0, x1 = [1/n, . . . , 1/n].
2: for t = 1, . . . , T do
3: Choose it ∼ xt and receive `t(it).
4: Let

ˆ̀
t(i) =

{
`t(it)
xt(it)

, for i = it

0, OW

5: Update yt+1(i) = xt(i)e
−εˆ̀t(i), xt+1 = yt+1

‖yt+1‖1

E[ˆ̀t] = `t

Choose ε =

√
logn
Tn , expected regret bound O(

√
Tnlogn)
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Stochastic Multi-armed Bandit

Setting

Player chooses it ∈ {1, . . . , n}.
Each action it has a reward rit from a (fixed) probability distribution
Pit with mean µit .

The reward revealed to the player is a sample taken from Pit .

A sub case: Bernoulli Multi-armed Bandit with Pi = Bernoulli(pi),
ri ∈ {0, 1}.
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General Bernoulli Multi-armed Bandit Algorithm

Algorithm 3 Bernoulli Multi-armed Bandit

1: Set N = Q = S = F = 0 ∈ Rn.

2: for t = 1, . . . , T do

3: it = PickArm(Q,N, S, F )

4: rt = BernoulliReward(it)

5: N [it] = N [it] + 1 (number of times arm i is pulled)

6: Q[it] = Q[it] + (rt−Q[it])
N [it]

(empirical average reward of pulling i)

7: S[it] = S[it] + rt (number of times a reward of 1 was received)

8: F [it] = F [it] + (1− rt)(number of times a reward of 0 was received)
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Arm Seclection Algorithms for Stochastic MAB

Random selection

ε-Greedy algorithm

Boltzmann Exploration

Upper Confidence Bounds

Bayesian UCB

Thompson Sampling

. . .
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Upper Confidence Bound Arm selection

Using one sided Hoeffding’s inequality

P(µi ≥ Q[i] + ε) ≤ e−2N [i]ε2

UCB strategy

i = argmaxi(Q[i] + ε), where ε =

√
2log(t)

N [i]

Expected regret bound: O(log(T )) (Auer et al. 2002a)
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Thompson Sampling Strategy

Beta distribution Beta(α, β)

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

Thompson Sampling algorithm:

- Initialize pi ∼ Beta(1, 1), ∀i
- for t = 1, . . . , T

Q[i] ∼ Beta(S[i] + 1, F [i] + 1), ∀i

it = argmaxi{Q[i]}

Expected regret bound: O(log(T )) (Agrawal and Goyal 2012)

Generalize to r̃ ∈ [0, 1]: after observing reward r̃t, perform

rt ∼ BernoulliReward(r̃t)
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