Online Convex Optimization in the Bandit Setting

Suyun Liu

OptML Group Meeting, Lehigh ISE

October 30, 2019

- At each iteration t, the player chooses x_t in convex set \mathcal{K} .
- A convex loss function $f_t \in \mathcal{F} : \mathcal{K} \to \mathbb{R}$ is revealed.
- A cost $f_t(x_t)$ is incurred.
 - \mathcal{F} is a set of bounded functions.
 - f_t is revealed after choosing x_t .
 - f_t can be adversarially chosen.

Recap: Online Convex Optimization

Goal: minimize the regret bound

$$\mathsf{regret}_T = \sum_{t=1}^T f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^T f_t(x)$$

Online Gradient Descent (OGD) (Zinkevich 2003):

$$x_{k+1} = \Pi_{\mathcal{K}}(x_k - \eta_t \nabla f_t(x_t))$$

Regret bound

- if f_t is convex: $O(GD\sqrt{T})$
- if f_t is α -strongly convex: $O(\frac{G^2}{2\alpha}(1 + \log(T)))$

Motivation

- In Ad-placement, the search engine can inspect which ads were clicked through, but cannot know whether different ads would have been click through or not.
- Given a fixed budget, how to allocate resources among the research projects whose outcome is only partially known at the time of allocation and may change through time.

Motivation

- In Ad-placement, the search engine can inspect which ads were clicked through, but cannot know whether different ads would have been click through or not.
- Given a fixed budget, how to allocate resources among the research projects whose outcome is only partially known at the time of allocation and may change through time.

Bandit Setting

- In OCO, player has access to $abla f_t(x_t)$
- In BCO, player only has black-box access to the function value f_t(x_t).
 We only can evaluate each function once.

Exploration vs Exploitation

Balance between exploiting the gathered information and exploring the new data.

Figure: Where to eat?(Image source: UC Berkeley AI course slide, lecture 11.)

Question: Can we perform OGD without gradients?

One dim

$$\tilde{\nabla}f(x) = (f(x+\delta) - f(x-\delta))/2\delta$$

Question: Can we perform OGD without gradients?

One dim

$$\tilde{\nabla}f(x) = (f(x+\delta) - f(x-\delta))/2\delta$$

• $d \dim$

$$\tilde{\nabla}f(x) \approx \mathbb{E}_{u \in \partial \mathbb{B}}[(f(x+\delta u) - f(x))u]d/\delta$$
$$= \mathbb{E}_{u \in \partial \mathbb{B}}[f(x+\delta u)u]d/\delta$$

Note: $\tilde{g}(x, u) = f(x + \delta u)ud/\delta$

$$\mathbb{E}_{u \in \partial \mathbb{B}}[\tilde{g}(x, u)] = \nabla \hat{f}(x), \quad \text{with } \hat{f}(x) = \mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)]$$

Assumption:

- only access to f_t at one single point x_t .
- function value is bounded, $\{f_t\} : \mathcal{K} \to [-C, C].$
- f_t can be non-smooth, no bounded gradient assumption.
- $\exists r, R > 0, r \mathbb{B} \subset \mathcal{K} \subset R \mathbb{B}.$

Assumption:

- only access to f_t at one single point x_t .
- function value is bounded, $\{f_t\} : \mathcal{K} \to [-C, C]$.
- f_t can be non-smooth, no bounded gradient assumption.
- $\exists r, R > 0, r\mathbb{B} \subset \mathcal{K} \subset R\mathbb{B}.$

Algorithm (Flaxman et al. 2005)

• Let $y_1 = 0$, learning rate η , $\xi \in (0, 1), \delta > 0$

• for $t = 1, \ldots, T$:

- select $u_t \in \partial \mathbb{B}$ uniformly at random

-
$$x_t = y_t + \delta u_t$$
 and receive $f_t(x_t)$

-
$$y_{t+1} = \prod_{(1-\xi)\mathcal{K}} (y_t - \eta f_t(x_t) u_t d/\delta)$$

 $(y_{t+1} \in (1-\xi)\mathcal{K} \text{ ensures } x_t \in \mathcal{K} \text{ for any } \delta \in [0,\xi r]$

Theorem

For sufficient large T with $\eta = \frac{R}{C\sqrt{T}}$, the expected regret bound is

$$\mathbb{E}[\sum_{t=1}^{T} f_t(x_t)] - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x) \le 6T^{5/6} dC$$

With additional assumption L-Lipschitz function

$$\mathbb{E}[\sum_{t=1}^{T} f_t(x_t)] - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x) \le 6T^{3/4} d(\sqrt{CLR} + C)$$

Parameters: $T > (\frac{3Rd}{2r})^2$, $\delta = (\frac{rR^2d^2}{12T})^{1/3} \leq \xi r$, and $\xi = (\frac{3Rd}{2r\sqrt{T}})^{1/3}$

Multi-Point Bandit Feedback

Recall

$$\tilde{g}_t = rac{d}{\delta} f_t(u_t) u_t \text{ with } \|\tilde{g}_t\| \leq rac{dC}{\delta}$$

Multi-Point Bandit Feedback

Recall

$$\tilde{g}_t = rac{d}{\delta} f_t(u_t) u_t \text{ with } \|\tilde{g}_t\| \leq rac{dC}{\delta}$$

Multi-point scheme (Agarwal et al. 2010): use two function values to construct bounded norm gradient estimators for L-Lipschitz continuous functions.

$$\tilde{g}_t = \frac{d}{2\delta}(f_t(x_t + \delta u_t) - f_t(x_t - \delta u_t))u_t \text{ with } \|\tilde{g}_t\| \le Ld$$

Multi-Point Bandit Feedback

Recall

$$ilde{g}_t = rac{d}{\delta} f_t(u_t) u_t ext{ with } \| ilde{g}_t \| \leq rac{dC}{\delta}$$

Multi-point scheme (Agarwal et al. 2010): use two function values to construct bounded norm gradient estimators for L-Lipschitz continuous functions.

$$\tilde{g}_t = \frac{d}{2\delta}(f_t(x_t + \delta u_t) - f_t(x_t - \delta u_t))u_t \text{ with } \|\tilde{g}_t\| \le Ld$$

Expected regret bound:

$$-\eta = \frac{1}{\sqrt{T}}, \delta = \frac{\log(T)}{T} \text{ and } \xi = \frac{\delta}{r} : (d^2L^2 + R^2)\sqrt{T} + L\log(T)(3 + \frac{R}{r})$$

-
$$\alpha$$
-strong convex, $\eta_t = \frac{1}{\alpha t}, \delta = \frac{\log(T)}{T}$ and $\xi = \frac{\delta}{r}$:
 $L\log(T)(\frac{d^2L}{\alpha} + \frac{R}{r} + 3).$

Setting	Convex	Linear	Smooth	StrConvex	StrConvex & Smooth
Full-Info.		$\Theta(\sqrt{T})$			$\Theta(\log T)$
BCO	$ ilde{O}(T^{3/4})$	$\tilde{O}(\sqrt{T})$	Õ	$(T^{2/3})$	$ ilde{O}(\sqrt{T})$ [Thm. 10]
beo	$\Omega(\sqrt{T})$				

Figure: Known regret bounds in the Full-Info./BCO setting (Hazan and Levy 2014)

Setting

- At iteration t, player chooses action i_t from a set of discrete actions $\{1, \ldots, n\}$.
- A loss in [0,1] is independently chosen for each action.
- The loss associated with i_t is revealed.
- Various assumptions and constraints.

Setting

- At iteration t, player chooses action i_t from a set of discrete actions $\{1, \ldots, n\}$.
- A loss in [0,1] is independently chosen for each action.
- The loss associated with i_t is revealed.
- Various assumptions and constraints.

Example

A gambler pulls one of n slot machines to receive a reward or payoff. Each arm is configured with fixed unknown reward/payoff probability.

What is the best strategy to achieve highest long-term rewards/lowest cumulative loss?

Exploration vs Exploitation: explore more actions or make the best decision using the current estimates of the loss distribution.

Algorithms

- Simple MAB algorithm
- EXP3

Exploration vs Exploitation: explore more actions or make the best decision using the current estimates of the loss distribution.

Algorithms

- Simple MAB algorithm
- EXP3

Let $\mathcal{K} = \Delta_n$ be an *n*-dimensional simplex. The linear loss function

$$f_t(x_t) = \ell_t^\top x_t = \sum_{i=1}^n \ell_t(i) x_t(i) \qquad \forall x_t \in \mathcal{K}$$

Key: to estimate gradient ℓ_t .

Simple MAB algorithm

Separating exploration and exploitation steps (Hazan 2016)

Algorithm 1 Simple MAB algorithm

1:
$$\epsilon \in [0, 1]$$
, learning rate $\eta > 0$.
2: for $t = 1, ..., T$ do
3: $b_t \sim \text{Bernoulli}(\epsilon)$.
4: if $b_t = 1$ then
5: Choose i_t uniformly at random and receive $\ell_t(i_t)$
6: Let
 $\hat{\ell}_t(i) = \begin{cases} n/\epsilon \ell_t(i_t), & \text{for } i = i_t \\ 0, & \text{OW} \end{cases}$
7: $x_{t+1} = \Pi_{\mathcal{K}}(x_t - \eta \hat{\ell}_t)$
8: else
9: Play $i_t \sim x_t$
10: $\hat{\ell}_t = 0, x_{t+1} = x_t$.

•
$$\mathbb{E}[\hat{\ell}_t] = \ell_t$$
 and $\mathbb{E}[\hat{f}_t(x_t)] = \mathbb{E}[\hat{\ell}_t^\top x_t] = f_t(x_t)$

• Expected regret bound when $\epsilon = n^{2/3} T^{-1/3}$

$$\mathbb{E}[\sum_{t=1}^{T} \ell_t(i_t)] - \min_i \sum_{t=1}^{T} \ell_t(i) \le O(T^{2/3} n^{2/3})$$

EXP3

Combining exploration and exploitation steps (Auer et al. 2002b).

Algorithm 2 EXP3 - simple version

1: Choose
$$\epsilon > 0, x_1 = [1/n, \dots, 1/n].$$

2: for $t = 1, \dots, T$ do
3: Choose $i_t \sim x_t$ and receive $\ell_t(i_t).$
4: Let
 $\hat{\ell}_t(i) = \begin{cases} \frac{\ell_t(i_t)}{x_t(i_t)}, & \text{for } i = i_t \\ 0, & \text{OW} \end{cases}$

5: Update
$$y_{t+1}(i) = x_t(i)e^{-\epsilon \ell_t(i)}$$
, $x_{t+1} = \frac{y_{t+1}}{\|y_{t+1}\|_1}$

•
$$\mathbb{E}[\hat{\ell}_t] = \ell_t$$

• Choose $\epsilon = \sqrt{\frac{\log n}{Tn}}$, expected regret bound $O(\sqrt{Tn\log n})$

Setting

- Player chooses $i_t \in \{1, \ldots, n\}$.
- Each action i_t has a reward r_{i_t} from a (fixed) probability distribution \mathbb{P}_{i_t} with mean μ_{i_t} .
- The reward revealed to the player is a sample taken from \mathbb{P}_{i_t} .

A sub case: Bernoulli Multi-armed Bandit with $\mathbb{P}_i = \text{Bernoulli}(p_i)$, $r_i \in \{0, 1\}$.

General Bernoulli Multi-armed Bandit Algorithm

Algorithm 3 Bernoulli Multi-armed Bandit

1: Set
$$N = Q = S = F = 0 \in \mathbb{R}^n$$

- 2: for $t = 1, \ldots, T$ do
- 3: $i_t = \mathsf{PickArm}(Q, N, S, F)$
- 4: $r_t = \mathsf{BernoulliReward}(i_t)$
- 5: $N[i_t] = N[i_t] + 1$ (number of times arm *i* is pulled)
- 6: $Q[i_t] = Q[i_t] + \frac{(r_t Q[i_t])}{N[i_t]}$ (empirical average reward of pulling i)
- 7: $S[i_t] = S[i_t] + r_t$ (number of times a reward of 1 was received)

8:
$$F[i_t] = F[i_t] + (1 - r_t)$$
 (number of times a reward of 0 was received)

Arm Seclection Algorithms for Stochastic MAB

- Random selection
- ϵ -Greedy algorithm
- Boltzmann Exploration
- Upper Confidence Bounds
- Bayesian UCB
- Thompson Sampling

• . . .

Upper Confidence Bound Arm selection

Using one sided Hoeffding's inequality

$$\mathbb{P}(\mu_i \ge Q[i] + \epsilon) \le e^{-2N[i]\epsilon^2}$$

UCB strategy

$$i = \operatorname{argmax}_i(Q[i] + \epsilon), \text{ where } \epsilon = \sqrt{\frac{2 \log(t)}{N[i]}}$$

Expected regret bound: $O(\log(T))$ (Auer et al. 2002a)

Thompson Sampling Strategy

Beta distribution $\text{Beta}(\alpha,\beta)$

$$f(x;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

Thompson Sampling algorithm:

- Initialize $p_i \sim \text{Beta}(1,1), \forall i$
- for t = 1, ..., T

$$Q[i] \sim \mathsf{Beta}(S[i] + 1, F[i] + 1), \forall i$$
$$i_t = \operatorname{argmax}_i \{Q[i]\}$$

Thompson Sampling Strategy

Beta distribution $Beta(\alpha, \beta)$

$$f(x;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

Thompson Sampling algorithm:

- Initialize $p_i \sim \mathsf{Beta}(1,1), \forall i$
- **for** t = 1, ..., T

$$Q[i] \sim \mathsf{Beta}(S[i]+1, F[i]+1), \forall i$$

 $i_t = \operatorname{argmax}_i \{Q[i]\}$

Expected regret bound: $O(\log(T))$ (Agrawal and Goyal 2012) Generalize to $\tilde{r} \in [0, 1]$: after observing reward \tilde{r}_t , perform $r_t \sim \text{BernoulliReward}(\tilde{r}_t)$

References

- Agarwal, A., Dekel, O., and Xiao, L. (2010). Optimal algorithms for online convex optimization with multi-point bandit feedback. In COLT, pages 28–40. Citeseer.
- Agrawal, S. and Goyal, N. (2012). Analysis of thompson sampling for the multi-armed bandit problem. In Conference on Learning Theory, volume 23, pages 1–26.
- Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002a). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47:235–256.
- Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (2002b). The nonstochastic multiarmed bandit problem. SIAM journal on computing, 32:48–77.
- Flaxman, A. D., Kalai, A. T., Kalai, A. T., and McMahan, H. B. (2005). Online convex optimization in the bandit setting: gradient descent without a gradient. In <u>Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms</u>, pages 385–394. Society for Industrial and Applied Mathematics.
- Hazan, E. (2016). Introduction to online convex optimization. Foundations and Trends® in Optimization, 2:157–325.
- Hazan, E. and Levy, K. (2014). Bandit convex optimization: Towards tight bounds. In <u>Advances</u> in Neural Information Processing Systems, pages 784–792.
- Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In <u>Proceedings of the 20th International Conference on Machine Learning (ICML-03)</u>, pages 928–936.