
On Efficiently Computable Compressed Sensing

A. Nemirovski
nemirovs@isye.gatech.edu, ISyE GaTech

Joint Research with
A. Iouditski

Anatoli.Iouditski@imag.fr, Fourier University, Grenoble, France
F. Kilinc Karzan

fkilinc@gatech.edu, ISyE GaTech

MOPTA, August 18 – 20, 2010

On Efficiently Computable Compressed Sensing

Overview

♣ Compressed Sensing: What is it?

♣ Verifiable sufficient conditions in Compressed Sensing
• Verifiable sufficient conditions for goodness of a sensing matrix

— the relaxation scheme
— limits of performance

• Applying the goodness conditions: Error bounds for imperfect
ℓ1 recovery

— uncertain-but-bounded observation error
— random observation error

♣ ℓ1 minimization via First Order algorithms
• Strategy
• Performance in deterministic case
• Acceleration by randomization

On Efficiently Computable Compressed Sensing

Compressed Sensing: what it is?

♣ Compressed Sensing is about recovery of a high-dimensional
signal x from its relatively low-dimensional projection

y = Ax + ξ
• y : observation • ξ: observation noise • A: m × n sensing matrix, m ≪ n

♣ It is assumed that x is sparse — possesses at most a known
number s ≪ m nonzero entries.
♠ Sparsity makes the recovery problem solvable, at least in the
noiseless case ξ = 0. In this case, for a “general position” sensing
matrix A, one has

x = argmin
z∈Rn

{Card{i : zi 6= 0} : Az = y} (C)

However: the arising combinatorial problem is intractable
⇒The standard recovery routine in CS is the ℓ1 recovery:

y 7→ x̂ ∈ Argmin
z

{‖z‖1 : ‖Az − y‖ ≤ δ}
• δ: properly chosen tolerance, e.g., an a priori upper bound on ‖ξ‖

On Efficiently Computable Compressed Sensing

s-good sensing matrices

R
n ∋ x 7→ y = Ax + ξ ∈ R

m, ‖ξ‖ ≤ δ
x̂ ∈ Argminz {‖z‖1 : ‖Az − y‖ ≤ δ}

Definition

A is s-good, if in the noiseless case (δ = 0) ℓ1 recovery is exact
(x̂ = x) for every x with at most s nonzero entries.

♣ A necessary and sufficient condition for A to be s-good is:
γs(A) := max

x

{
‖x‖s,1 : x ∈ KerA, ‖x‖1 ≤ 1

}
< 1/2

[‖x‖s,1 : sum of s largest magnitudes of entries in x]
[Donoho&Huo’01, Zhang’05, Cohen&Dahmen&DeVore’06,...]

♠ γs(A) is difficult to compute ⇒the condition is unverifiable...

On Efficiently Computable Compressed Sensing

Verifiable sufficient condition for s-goodness

γs(A) := max
x

{
‖x‖s,1 : x ∈ KerA, ‖x‖1 ≤ 1

}
< 1/2

⇔ A is s-good

♣ Theorem [Ioud.&Nem.’08]

The efficiently computable quantity

αs(A) =min
Y

{
max
1≤j≤n

‖Colj [I − Y T A]‖s,1

}

[Colj [B] : j -th column of B]
is an upper bound on γs(A) which is exact for s = 1: γ1(A) = α1(A).

⇒The verifiable condition αs(A) < 1/2 is sufficient for A to be
s-good.

Remark: αs(A) ≤ sα1(A) = sγ1(A)
⇒The easily verifiable “rough” condition α1(A) < 1

2s is sufficient for
A to be s-good.

On Efficiently Computable Compressed Sensing

What is inside: a novel (?) relaxation scheme for
maximizing convex functions over polytopes

Situation: Consider the problem
Opt = maxx {f (x) : x ∈ Conv{g1, ...,gN},Ax = 0}

A : m × n
of maximizing an efficiently computable convex function f (x) over
the intersection of a polytope given by its vertices and a linear
subspace.
Note: this is a universal form of the problem of maximizing convex
function over a polytope.

Relaxation scheme: Let Y ∈ R
m×n and λ ∈ R

m, and let
U(Y , λ) = max

1≤i≤N

{
f ([I − Y T A]gi) + λT Agi

}

Observation: U(Y , λ) is a convex function of Y , λ such that
Opt ≤ U(Y , λ) ∀(Y , λ)

⇒The efficiently computable quantity Opt+ = inf
Y ,λ

U(Y , λ) is an

upper bound on Opt.
On Efficiently Computable Compressed Sensing

Relaxation scheme (continued)

Claim: U(Y , λ) := maxi
{

f ([I − Y T A]gi) + λT Agi
}

≥Opt := maxx {f (x) : x ∈ Conv{g1, ...,gN},Ax = 0}
Indeed, let x =

∑
i µigi be a convex combination of gi such that

Ax = 0. We have
U(Y , λ) = maxi

{
f ([I − Y T A]gi) + λT Agi

}

≥∑i µi
[
f ([I − Y T A]gi) + λT Agi

]

≥ f
(∑

i µi [I − Y T A]gi
)
+ λT A [

∑
i µigi]

= f ([I − Y T A]x) + λT Ax = f (x)
and Claim follows.

Note: the “λ-component” of the relaxation scheme is the standard
Lagrangian relaxation. The “Y –component” seems to be new.

♠ To get verifiable sufficient goodness conditions, one applies the
outlined relaxation scheme to

γs(A) = max
x

{
‖x‖s,1 : x ∈ Conv{±e1, ...,±en},Ax = 0

}

In this case, the Lagrangian component does not help...

On Efficiently Computable Compressed Sensing

Relations with other goodness conditions

Relation to Mutual Incoherence

♣ The only previously known verifiable sufficient condition for
A = [A1, ...,An] to be s-good is based on mutual incoherence

µ(A) = maxi 6=j |AT
i Aj |/AT

i Ai

and states that A is s-good whenever sµ(A)/(1 + µ(A)) < 1/2
[Donoho&Elad&Temlyuakov’06].
Fact [Ioud.&Nem.’08]: The easily verifiable “rough” sufficient
condition for s-goodness α1(A) < 1

2s provably is less conservative
than the condition based on mutual incoherence.

On Efficiently Computable Compressed Sensing

Relation to Restricted Isometry Property

♠ The standard in CS unverifiable sufficient goodness condition is
based on the Restricted Isometry Property RIP(δ, k):

(1 − δ)Ik � AT
k Ak � (1 + δ)Ik for every m × k submatrix Ak of A

• Every RIP(2
5 ,2s)-matrix A is s-good.

• For large m,n, a randomly generated A ∈ R
m×n with independent

N (0,m−1/2) (or ±m−1/2) entries with overwhelming probability is
RIP(0.1,2s) with s as large as O(m/ ln(2n/m)).
Fact [Ioud.&Nem.’08]: Whenever A is RIP(δ, k) with δ <

√
2 − 1,

one has
s < (1−δ)

√
k−1

2
√

2δ
= O(1)

√
k ⇒ α1(A) < 1

2s .
⇒Already rough sufficient condition can certify s-goodness of an
m × n sensing matrix for s as large as O(1)

√
m/ ln(n/m).

Fact [Ioud.&Nem.’08]: When A is not “nearly square:” n
m ≥ θ > 1,

the condition αs(A) < 1/2 can be satisfied only if s ≤O(1) θ√
θ−1

√
m.

Note: So far, all explicitly defined families of s-good m × n sensing
matrices A with n/m ≥ θ > 1 obey the bound s ≤ O(1)

√
m.

On Efficiently Computable Compressed Sensing

Extension to the “signed” case
[Ioud.&Kil.-Karz.&Nem.’09]

♣ The above results admit natural extension to the case of “signed”
sparse signals

x ∈ R
n : xj ≥ 0, j ∈ I+ & xj ≤ 0, j ∈ I−

and associated “signed ℓ1 recovery”

[y = Ax + ξ, ‖ξ‖ ≤ δ] 7→ x̂ := argmin
z



‖z‖1 :

‖Az − y‖ ≤ δ
zj ≥ 0, j ∈ I+
zj ≤ 0, j ∈ I−





On Efficiently Computable Compressed Sensing

Upper bounding of goodness level

♣ In order to certify that A is not s-good, it suffices to show that
1
2 ≤ γs(A) := max

x

{
‖x‖s,1 : ‖x‖1 ≤ 1,Ax = 0

}

= max
u,x

{
uT x :

x ∈ X = {‖x‖1 ≤ 1,Ax = 0}
u ∈ Us = {‖u‖∞ ≤ 1, ‖u‖1 ≤ s}

}

This can be done by bounding γs(A) from below via several series
of randomly initialized alternating maximizations of uT x over u ∈ Us

and x ∈ X .

On Efficiently Computable Compressed Sensing

Efficiently computable goodness bounds
µ-LB ≤ α-LB ≤ s∗(A) ≤ UB

[Goodness s∗(A) of A: the largest s such that A is s-good]
Unsigned Nonnegative

m µ-LB α-LB UB LB UB

128 3 5 11 5 32
m × 256 random submatrix 178 3 7 16 7 42
of 256 × 256 Fourier matrix 242 5 11 26 11 89

128 2 5 7 5 7
m × 256 random submatrix 178 4 9 15 9 19
of 256 × 256 Hadamard matrix 242 12 26 31 27 31

128 1 5 15 5 48
m × 256 Rademacher matrix 178 2 8 24 9 78

242 2 23 47 27 111

128 1 5 14 5 44
m × 256 Gaussian matrix 178 2 8 24 9 79

242 2 23 47 27 112

• αs-based goodness bounds significantly outperform bounds
based on mutual incoherence
• Computability has its price: for random matrices, there is a
significant gap between upper and lower goodness bounds

On Efficiently Computable Compressed Sensing

Numerical illustration (continued)

Efficiently computable goodness bounds
µ-LB ≤ α-LB ≤ s∗(A) ≤ UB

m µ-LB α-LB UB

102 2 2 8
204 2 4 18
307 2 6 30
409 3 7 44

m × 1024 Gaussian matrix 512 3 10 61
614 3 12 78
716 3 15 105
819 4 21 135
921 4 32 161

960 × 1024 convolution matrix 960 0 5 7

• Matrices with “personal story” seem to have smaller and easier to
estimate goodness than random matrices of the same sizes.

On Efficiently Computable Compressed Sensing

Application: Error bound for imperfect recovery with
uncertain-but-bounded noise

R
n ∋ x 7→ y = Ax + ξ ∈ R

m, ‖ξ‖ ≤ δ
Opt := min

z
{‖z‖1 : ‖Az − y‖ ≤ δ}

x̃ : ‖x̃‖1 ≤ Opt + ν & ‖Ax̃ − y‖ ≤ µ

♣ Theorem [Ioud.&Nem.’08]:

Let α < 1/2, β > 0 be such that
∃Y : ‖Colj [In − Y T A]‖s,1 ≤ α ∀j & ‖Colj [Y]‖∗ ≤ β

s ∀j
where ‖ · ‖∗ is the conjugate of ‖ · ‖. Let also xs be the best in ‖ · ‖1

s-sparse approximation of x ∈ R
n. Then

‖x̃ − x‖1 ≤ 2β(δ + µ) + ν + 2‖x − xs‖1

1 − 2α

On Efficiently Computable Compressed Sensing

Application: Recovery in the case of random
observation noise

R
n ∋ x 7→ y = Ax + ξ ∈ R

m

ξ = σζ + u, ζ ∼ N (0, I), ‖u‖ ≤ δ
x : s-sparse with known s

Goal and Assumptions

♠ Goal: Given ǫ ∈ (0,1) and s, to ensure with probability ≥ 1 − ǫ
“good recovery” of nearly s-sparse signals x
♠ Assumption A: We have in our disposal matrix Y such that

α := s‖I − Y T A‖∞ < 1
2

• We set
‖Y‖σ,δ = max1≤j≤n

[
δ‖Colj [Y]‖∗ + σ

√
2 ln(n/ǫ)‖Colj [Y]‖2

]

On Efficiently Computable Compressed Sensing

Regular and Penalized ℓ1 recoveries

R
n ∋ x 7→ y = Ax + ξ ∈ R

m

ξ = σζ + u, ζ ∼ N (0, I), ‖u‖ ≤ δ
• Regular ℓ1 recovery:

y 7→x̂ = x̂(y) ∈ Argminz

{
‖z‖1 : ‖Y T (Az − y)‖∞ ≤ ‖Y‖σ,δ

}

• Penalized ℓ1 recovery:
y 7→x̂ = x̂(y) ∈ Argminz

{
‖z‖1 + 2s‖Y T (Az − y)‖∞

}

Note: Penalized recovery does not require knowledge of σ, δ, ǫ!

Theorem [Ioud.,Kil.-Karz.,Nem.’10]

Under Assumption A, there exists a set Z of “good” ζ such that
• Prob{ζ ∈ Z} ≥ 1 − ǫ
• When ζ ∈ Z, for both Regular and Penalized ℓ1 recovery one has

∀(x ∈ R
n,u, ‖u‖ ≤ δ, y = Ax + σζ + u) :{

‖x − x̂(y)‖∞ ≤ ω := 2 s−1‖x−xs‖1+2‖Y‖σ,δ
1−2α

‖x − x̂(y)‖1 ≤ sω
where xs is the best in ‖ · ‖1 s-sparse approximation of x.

On Efficiently Computable Compressed Sensing

• When ζ ∈ Z, for both Regular and Penalized ℓ1 recovery one has
∀(x ∈ R

n,u, ‖u‖ ≤ δ, y = Ax + σζ + u) :{
‖x − x̂(y)‖∞ ≤ ω := 2 s−1‖x−xs‖1+‖Y‖σ,δ

1−2α
‖x − x̂(y)‖1 ≤ sω

Remarks:

• ω ≤ O(σ + δ + s−1‖x − xs‖1) is small when when σ, δ are small
and x is nearly s-sparse.
• The set Y = {(Y , t , τ) : s‖I − Y T A‖∞ ≤ t , ‖Y‖σ,δ ≤ τ} is convex
⇒Given s, σ, δ and an upper bound on ‖x − xs‖1, we can efficiently
optimize the quality of the recovery, as given by Theorem, in Y .

On Efficiently Computable Compressed Sensing

How it works

♣ Gaussian Setup

• A: Gaussian 161 × 256 with normalized columns

• ‖ · ‖: {u : ‖u‖ ≤ 1} =

{
Av :

|v1| ≤ 1, |v2 − v1| ≤ 1
|vj+1 − 2vj + vj−1| ≤ 1 ∀j

}

• ǫ = 0.01

♣ Convolution Setup

• A: 2D signal [xij]0≤i ,j≤15 is convolved with kernel [Kij]−7≤i ,j≤7. The
output is observed on the “deficient” grid {1 ≤ i ≤ 15,0 ≤ j ≤ 15},
which results in a linear mapping x 7→ Ax : R256 → R

240.
• ‖ · ‖: {u : ‖u‖ ≤ 1} = {Av : v ∈ V}
• V : all functions v ∈ R(Z16 × Z16) with zero mean satisfying
‖∆2v‖∞ ≤ 1
• ∆: discrete Laplacian on R(Z16 × Z16)
• ǫ = 0.01

On Efficiently Computable Compressed Sensing

How it works (continued)

Empirical Averages of Recovery Errors, Gaussian A

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

1 2 3 4 5 6 7 8
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

ℓ∞ error vs. δ
σ = 0.1, s = 2,

α = 0.2, ‖x‖1 = 10

ℓ∞ error vs. σ
δ = 0.01, s = 2,

α = 0.2, ‖x‖1 = 10

ℓ∞ error vs. s
δ = 0.01, σ = 0.1,

α = 0.1s, ‖x‖1 = 5s

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

ℓ1 error vs. δ
σ = 0.1, s = 2,

α = 0.2, ‖x‖1 = 10

ℓ1 error vs. σ
δ = 0.01, s = 2,

α = 0.2, ‖x‖1 = 10

ℓ1 error vs. s
δ = 0.01, σ = 0.1,

α = 0.1s, ‖x‖1 = 5s

• Winners: Lasso and Penalized ℓ1 Recovery
On Efficiently Computable Compressed Sensing

How it works (continued)

Empirical Averages of Recovery Errors, Convolution A

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

1

2

3

4

5

6

7

8

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

ℓ∞ error vs. δ
σ = 0.1, s = 2,

α = 0.4, ‖x‖1 = 10

ℓ∞ error vs. σ
δ = 0.01, s = 2,

α = 0.4, ‖x‖1 = 10

ℓ∞ error vs. s
δ = 0.01, σ = 0.1,

α = 0.2s, ‖x‖1 = 5s

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
1

2

3

4

5

6

7

8

9

10

11

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

ℓ1 error vs. δ
σ = 0.1, s = 2,

α = 0.4, ‖x‖1 = 10

ℓ1 error vs. σ
δ = 0.01, s = 2,

α = 0.4, ‖x‖1 = 10

ℓ1 error vs. s
δ = 0.01, σ = 0.1,

α = 0.2s, ‖x‖1 = 5s

• Winner: Penalized ℓ1 Recovery
On Efficiently Computable Compressed Sensing

ℓ1 minimization via deterministic and randomized first
order algorithms

♣ Problems of ℓ1 minimization arising in Signal Processing

Opt = min
z

{‖z‖1 : ‖Az − b‖p ≤ δ} [p = ∞ or p = 2]

may have dense sensing matrices A with sizes in the range of 104 -
105 and more. Whenever this is the case, an iteration of every
known polynomial time algorithm becomes too time consuming.

♠ At present, the most attractive alternative to IP methods in the
extremely large-scale ℓ1 minimization is offered by computationally
cheap First Order methods.
♠ In FOMs, the effort per iteration is dominated by computing O(1)
matrix-vector products involving A and AT , which is much easier
than solving systems of linear equations of sizes comparable with
those of A, as required in IPMs.
♠ One can further simplify an iteration by replacing precise
matrix-vector multiplications by their randomized versions.

On Efficiently Computable Compressed Sensing

Limits of performance of FOMs

♠ FOMs are provably badly suited for solving large-scale problems
to high accuracy.
However: FOMs can be theoretically and practically efficient when
medium accuracy solutions are sought. In this case, FOMs under
favorable circumstances (e.g., in ℓ1 minimization) exhibit nearly
dimension-independent rate of convergence, which is crucial in
large-scale applications.

On Efficiently Computable Compressed Sensing

The approach

Opt = minz {‖z‖1 : ‖Az − b‖p ≤ δ} [p = ∞ or p = 2] (ℓ1)

The strategy

♣ The state-of-the-art complexity results on the first order methods
suggest the following strategy:

♠ The problem of interest (ℓ1) is reformulated as
1

Opt = max
{
ρ : Φ(ρ) := min

x,‖x‖1≤1
‖Ax − ρb‖p − δρ

= min
x:‖x‖1≤1

max
y :‖y‖ p

p−1
≤1

yT (Ax − ρb)− δρ≤ 0
}

• The solution is found by a Newton-type root finding routine as
applied to the master problem max {ρ : Φ(ρ) ≤ 0}

• (Approximate) information on Φ(·) used by root finding is given
by the Mirror Prox FOM [Nem.’04,Ioud.&Kil.-Karz.&Nem.’10] as
applied to the bilinear saddle point problem

Φ(ρ) = min
x:‖x‖1≤1

max
y :‖y‖p∗≤1

[
yT (Ax − ρb)− δρ

]
, p∗ =

p
p−1

On Efficiently Computable Compressed Sensing

The approach (continued)

Acceleration by randomization

♣ With our approach, ℓ1-minimization reduces to a “small series” of
bilinear saddle point problems

minx∈X maxy∈Y [〈a, x〉+ 〈b, y〉+ 〈y ,Ax〉] (S)
♠ When solving (S) by a FOM, the main effort is to compute
matrix-vector products involving A and AT . These computations are
easy to randomize: to estimate Bu, we

• treat the vector abs[u]
‖u‖1

as a probability distribution on the set of
columns of B,

• draw at random a column B of B. The vector ‖u‖1sign(u)B is
the desired unbiased estimate of Bu.

♣ Randomization simplifies dramatically an iteration, while
increasing the number of iterations required to get an ǫ-solution.
In a meaningful range of problem sizes and desired accuracies, the
tradeoff between iteration complexity and iteration count is in favor
of randomization.

On Efficiently Computable Compressed Sensing

Results, Deterministic case

Theorem [Ioud.&Nem.’09]

Consider a feasible and nontrivial (‖b‖p ≥ 2δ) ℓ1 minimization
problem

Optp = min
z

{‖z‖1 : ‖Az − b‖p ≤ δ} (ℓ1)

with A ∈ R
m×n and p ∈ {2,∞}, and let

‖A‖1,p = maxj ‖Colj [A]‖p.
Given ǫ, 0 < ǫ < ‖A‖1,pOptp, one can find an ǫ-solution xǫ to (ℓ1):

‖xǫ‖1 ≤ Optp & ‖Axǫ − b‖p ≤ δ + ǫ

in no more than
(

Ωp‖A‖1,pOptp
ǫ

)
ln
(

Ωp‖A‖1,pOptp
ǫ

)
steps, where

Ωp = O(1) ·
{ √

ln(m) ln(n), p = ∞√
ln(n), p = 2

.

Computational effort per step is dominated by the necessity to
multiply O(1) vectors by A and AT .

On Efficiently Computable Compressed Sensing

How it works: ℓ1 minimization by Deterministic MP

x̂ ≈ argmin
x

{‖Ax − b‖∞ : ‖x‖1 ≤ 1}
⇔ min

‖x‖1≤1
max
‖y‖1≤1

yT (Ax − b)
[

A: random m × n submatrix of n × n D.F.T. matrix
b: ‖Ax∗ − b‖∞ ≤ δ = 5.e-3 with 16-sparse x∗, ‖x∗‖1 = 1

]

Errors CPU
m × n Method ‖x∗ − x̂‖1 ‖x∗ − x̂‖2 ‖x∗ − x̂‖∞ sec

512 × 2048 DMP 0.005 0.002 0.001 3.3
IP 0.039 0.006 0.002 321.6

1024 × 4096 DMP 0.010 0.003 0.002 3.5
IP Out of space (2GB RAM)

4096 × 16384 DMP 0.006 0.003 0.002 46.4
IP not tested

• DMP: Deterministic Mirror Prox utilizing FFT
• IP: Commercial Interior Point LP solver mosekopt

On Efficiently Computable Compressed Sensing

How it works (continued)

200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 500 1000 1500 2000 2500 3000 3500 4000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 5000 10000 15000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

512 × 2048 1024 × 4096 4096 × 16384
ℓ1-recovery: o: true signal, +: DMP recovery

On Efficiently Computable Compressed Sensing

How it works (continued)

Situation and Goal
We observe randomly selected pixels in a 256 × 256 image X at
sampling rate 33% and want to recover the image.

Approach

• The underlying signal is the vector x of coefficients of X in a 2D
wavelet basis: X = Ux , with n × n orthogonal U, n = 65,536.
• Observed part of the image is y = Ax with the m = 21,789 ≈ n/3
rows of A selected at random from rows of U.
Note: A is rather dense (3.4% ≈ 5.3 · 107 nonzeros).
• The recovery is Xǫ = Uxǫ,

xǫ :
{

‖xǫ‖1 ≤ min{‖z‖1 : Az = y}
‖Axǫ − y‖2 ≤ ǫ‖y‖2

• Multiplication by A and AT takes time linear in n
⇒we are in an ideal position to apply deterministic first order
methods

On Efficiently Computable Compressed Sensing

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observations True image ‖x − xs‖1 vs. s/n

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

X (0.0647)
Steps: 328 Calls†:918

CPU= 99 sec

X (0.0271)
Steps: 947 Calls: 2,682

CPU= 290 sec

X (0.0075)
Steps: 4,746 Calls: 13,469

CPU= 1460 sec
† Call: a pair of matrix-vector multiplications (x , y) 7→ (Ax ,AT y).

On Efficiently Computable Compressed Sensing

Acceleration by Randomization

Theorem [Ioud.&Kil.-Karz.&Nem.’10]

Consider a feasible problem
Optp = min

z
{‖z‖1 : ‖Az − b‖p ≤ δ} (ℓ1)

with A ∈ R
m×n and p ∈ {2,∞}, and let ǫ ∈ (0, ‖A‖1,pOptp] be given.

Then, for every χ ∈ (0,1/2],
(i) In the case of p = ∞, assuming δ small enough (namely,

2δ ≤ ‖b‖∞), an ǫ-solution to (ℓ1) can be found, with confidence
≥ 1 − χ, in at most

O(1)

[√
ln(m) ln(n)‖A‖1,∞Opt∞

ǫ
ln

(√
ln(m) ln(n)‖A‖1,∞Opt∞

ǫχ

)]2

steps of a randomized algorithm, with effort per step dominated by
the necessity to extract from A O(1) columns and rows.

Note: Setting ω = ǫ/(‖A‖1,∞Opt∞) and modulo logarithmic factors,
randomization rises the iteration count from O(ω−1) to O(ω−2),
while reducing the effort per iteration from O(mn) to O(m + n) a.o.

On Efficiently Computable Compressed Sensing

Acceleration by Randomization (continued)

Optp = min
z

{‖z‖1 : ‖Az − b‖p ≤ δ} (ℓ1)

Theorem (continued)

(ii) In the case of p = 2, assuming δ small enough (namely,
2
√

mδ ≤ ‖b‖2), an ǫ-solution to (ℓ1) can be found with confidence
≥ 1 − χ in at most

O(1)

[√
ln(n)Γ(A)‖A‖1,2Opt2

ǫ
ln

(√
ln(n)Γ(A)‖A‖1,2Opt2

ǫχ

)]2

,

Γ(A) =
√

m‖A‖1,∞/‖A‖1,2

steps of a randomized algorithm with the same as in (i) effort per
step.
• With randomized preprocessing

[A,b] ֋ [UDiag{ξ}A,UDiag{ξ}b]
(U is an appropriate orthogonal matrix, ξ is a random ±1 vector),
with confidence ≥ 1 − χ one has Γ(A) ≤ O(1)

√
ln(mn/χ). The cost

of this preprocessing does not exceed O(1)mn ln(m) a.o.

On Efficiently Computable Compressed Sensing

Acceleration by Randomization: how it works

Optp = min
z

{‖z‖1 : ‖Az − b‖p ≤ δ} (ℓ1)

• A: randomly drawn m × n matrix with i.i.d. entries taking values
±m−1/p with probabilities 1/2
• b = Ax∗ + ξ with randomly selected sparse (⌊√n⌋ nonzeros)
vector x∗, ‖x∗‖1 = 1, and randomly generated ξ, ‖ξ‖p = δ = 0.005.

On Efficiently Computable Compressed Sensing

Acceleration by Randomization: how it works

♠ Uniform fit p = ∞, ǫ = 0.0025

DMP SMP

Size of A Calls CPU FCalls CPU CPU,DMP
CPU,SMP

min 811 32.5 88.8 22.5 1.238
1000 x 2000 mean 1500 61.0 130.0 31.6 1.975

max 2339 98.1 188.2 44.7 3.325
min 963 142.3 84.8 77.1 1.846

2000 x 4000 mean 2340 346.2 121.0 105.2 3.243
max 4217 622.4 158.8 135.9 5.747
min 1697 992.3 69.2 271.3 2.565

4000 x 8000 mean 2570 1470.7 90.2 348.0 4.368
max 4380 2516.6 104.4 394.5 7.324

Deterministic algorithm DMP vs. randomized algorithm SMP
5 experiments per each size.

• Calls: # of matrix-vector multiplications in DMP run
• FCalls: equivalent # of full matrix-vector multiplications

in SMP run

On Efficiently Computable Compressed Sensing

Acceleration via Randomization: how it works

♠ ℓ2 fit p = 2, ǫ = 0.0025

DMP SMP

Size of A Calls CPU FCalls CPU CPU,DMP
CPU,SMP

min 321 12.5 102.2 29.9 0.374
1000 x 2000 mean 719 28.3 139.3 43.2 0.703

max 916 35.5 194.9 60.0 1.187
min 515 74.2 54.1 68.4 0.763

2000 x 4000 mean 616 89.0 63.6 80.9 1.136
max 720 104.5 71.0 97.3 1.528
min 526 293.3 42.6 195.6 1.257

4000 x 8000 mean 756 424.6 45.2 210.7 2.045
max 935 526.8 48.6 233.3 2.625

Deterministic algorithm DMP vs. randomized algorithm SMP
5 experiments per each size.

• Calls: # of matrix-vector multiplications in DMP run
• FCalls: equivalent # of full matrix-vector multiplications

in SMP run

On Efficiently Computable Compressed Sensing

Acceleration by Randomization: how it works

♠ Uniform and ℓ2 fits

‖x̂ − x∗‖r
p Steps Calls FCalls CPU ‖Ax̂ − b‖p r = 1 r = 2 r = ∞

DMP 2 21 45 45 7229
0.0350≈
0.6‖b‖p

1.21
121%

0.095
86%

0.020
76%

SMP 2 9104 13,648 29.4 7252
0.0080≈
0.1‖b‖p

0.167
17%

0.015
13%

0.003
10%

DMP ∞ 19 40 40 7364
0.1638≈
0.6‖b‖p

1.25
125%

0.113
97%

0.033
98%

SMP ∞ 12006 17816 19.3 6050
0.0075≈
0.03‖b‖p

0.090
9%

0.007
6%

0.002
6%

Experiments with 32,000 × 64,000 matrix
≈ 7,200 sec CPU limit

Percents: ‖x̂ − x∗‖/‖x∗‖r

On Efficiently Computable Compressed Sensing

Acceleration by Randomization: how it works

0 1 2 3 4 5 6 7

x 10
4

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0 1 2 3 4 5 6 7

x 10
4

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

DMP, p = 2 SMP, p = 2

0 1 2 3 4 5 6 7

x 10
4

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0 1 2 3 4 5 6 7

x 10
4

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

DMP, p = ∞ SMP, p = ∞

DMP-based (left) and SMP-based (right) recovery of sparse
signals in the 32,000 × 64,000 experiments.

Circles: true signal Crosses: recovery

On Efficiently Computable Compressed Sensing

