A. Nemirovski
nemirovs@isye.gatech.edu, ISyE GaTech

Joint Research with
A. louditski

Anatoli.louditski@imag.fr, Fourier University, Grenoble, France

F. Kilinc Karzan
fkilinc@gatech.edu, ISyE GaTech

MOPTA, August 18 — 20, 2010

Overview

& Compressed Sensing: What is it?

& Verifiable sufficient conditions in Compressed Sensing
e Verifiable sufficient conditions for goodness of a sensing matrix
— the relaxation scheme
— limits of performance
e Applying the goodness conditions: Error bounds for imperfect
/1 recovery
— uncertain-but-bounded observation error
— random observation error
& /1 minimization via First Order algorithms
e Strategy
e Performance in deterministic case
e Acceleration by randomization

Compressed Sensing: what it is?

& Compressed Sensing is about recovery of a high-dimensional
signal x from its relatively low-dimensional projection

y =AX +¢
e y: observation e &: observation noise ¢ A: m x n sensing matrix, m < n

ot

& It is assumed that x is sparse — possesses at most a known
number s < m nonzero entries.
& Sparsity makes the recovery problem solvable, at least in the
noiseless case ¢ = 0. In this case, for a “general position” sensing
matrix A, one has

x = argmin{Card{i : z; # 0} : Az =y} (C)

ZERN
However: the arising combinatorial problem is intractable

=The standard recovery routine in CS is the ¢, recovery:
y = X € Argmin{|z|ly : |Az —y|| < 6}
z

e 4: properly chosen tolerance, e.g., an a priori upper bound on ||£||

ot

RS x—y=Ax+& eR™ ¢ <4
X € Argmin, {||z||1 : |[Az —y| < &}

Definition
A is s-good, if in the noiseless case (0 = 0) ¢; recovery is exact
(X = x) for every x with at most s nonzero entries.

& A necessary and sufficient condition for A to be s-good is:
75(A) = max {[|xls 1 : x € KerA, ||x[|s <1} < 1/2

[IIX]|s,1 : sum of s largest magnitudes of entries in x]
[Donoho&Huo’01, Zhang’'05, Cohen&Dahmen&DeVore’06,...]

& s(A) is difficult to compute =-the condition is unverifiable...

vs(A) == m)?x{HxHM :x € KerA, [[x[ls <1} < 1/2
< Alis s-good

Theorem [loud.&Nem.08]

The efficiently computable quantity
. g _yT
as(A) =min {lrgjaz1 |Colj[I =Y A]”S,l}
[Col;[B] : j-th column of B]
is an upper bound on ~s(A) which is exact for s = 1: 73 (A) = a1 (A).

=The verifiable condition as(A) < 1/2 is sufficient for A to be
s-good.

Remark: as(A) < saj(A) =sv1(A)
=The easily verifiable “rough” condition a1 (A) < 5= is sufficient for
A to be s-good.

What is inside: a novel (?) relaxation scheme for

maximizing convex functions over polytopes

Situation: Consider the problem

Opt = maxy {f(x) : x € Corv{g1,...,On }, AX = 0}

A:mxn

of maximizing an efficiently computable convex function f(x) over
the intersection of a polytope given by its vertices and a linear
subspace.
Note: this is a universal form of the problem of maximizing convex
function over a polytope.

Relaxation scheme: LetY € R™" and A\ € R™, and let
U(Y,A) = max {f([l - YTAlg)) + \"Agi}
I
Observation: U(Y,\) is a convex function of Y, A such that
Opt < U(Y,) V(Y,\)
=The efficiently computable quantity Opt* = \l(ni U(Y,\)is an

upper bound on Opt.
[| OnEficiently Computable Compressed Sensing |

Relaxation scheme (continued)

Claim: U(Y,) :=max; {f([- YTA]g)) + ATAg; }
>Opt := maxx {f(x) : x € Cov{gs, ...,On }, AX = 0}

Indeed, letx =), 11;0; be a convex combination of g; such that
Ax = 0. We have

U(Y,A) =max; {f([l - YTA]gi) + ATAg; }

> > i [F(I1 = YTAlgi) + AT Agi]

> f (3 mill = YTAG) + ATA[Y pigi]

=f([l - YTA]X) + ATAx = f(x)
and Claim follows.

Note: the “A-component” of the relaxation scheme is the standard
Lagrangian relaxation. The “Y —-component” seems to be new.

& To get verifiable sufficient goodness conditions, one applies the
outlined relaxation scheme to
vs(A) = max {lIx[ls1 : x € Conv{+ey,...,+e},Ax =0}

In this case, the Lagrangian component does not help...

Relations with other goodness conditions

Relation to Mutual Incoherence

& The only previously known verifiable sufficient condition for

A = [Ay,...,An] to be s-good is based on mutual incoherence
pu(A) = maxi AT Al /AT A

and states that A is s-good whenever su(A)/(1 + p(A)) < 1/2

[Donoho&Elad&Temlyuakov’'06].

Fact [loud.&Nem.08]: The easily verifiable “rough” sufficient

condition for s-goodness a3 (A) < % provably is less conservative

than the condition based on mutual incoherence.

Relation to Restricted Isometry Property

& The standard in CS unverifiable sufficient goodness condition is
based on the Restricted Isometry Property RIP(6, k):

(1 —6)lk = ATAc = (1 + 6)lg for every m x k submatrix Ay of A
o Every RIP(Z, 2s)-matrix A is s-good.
e For large m, n, a randomly generated A € R™*" with independent
N(0,m=1/2) (or £m~—1/2) entries with overwhelming probability is
RIP(0.1, 2s) with s as large as O(m/In(2n/m)).
Fact [loud.&Nem.08]: Whenever A is RIP(6, k) with § < v/2 — 1,
one has

s < =KL _ (1) vk =y (A) < L.

2V/26
=-Already rough sufficient condition can certify s-goodness of an

m x n sensing matrix for s as large as O(1)/m/In(n/m).

Fact [loud.&Nem.08]: When A is not “nearly square:” & > 6 > 1,
the condition as(A) < 1/2 can be satisfied only if s <O(1)—2—/m.

Note: So far, all explicitly defined families of s-good m x n sensing
matrices A with n/m > 6 > 1 obey the bound s < O(1)y/m.

Extension to the “signed” case

[loud.&Kil.-Karz.&Nem.09]

& The above results admit natural extension to the case of “signed”
sparse signals

XeR":x>0,jely &x<0,jel_

and associated “signed ¢, recovery”

i |Az —yll <6
[y = Ax+& [l¢] < 0] = X = argmin{ [iz]la: 27> 0,j €y
z ZjSO,jE',

ot

Upper bounding of goodness level

& In order to certify that A is not s-good, it suffices to show that
mflx{HxHSJ X[l < 1,Ax =0}
.. X€X={|x1<1,Ax =0} }
= maxqu'x:
ux { Ue€Us ={[ulloc <1, lufly <s}
This can be done by bounding ~s(A) from below via several series
of randomly initialized alternating maximizations of u' x over u € Us

% < ’YS(A) =

and x € X.

Efficiently computable goodness bounds
4-LB < a-LB < s,(A) < UB
[Goodness s, (A) of A: the largest s such that A is s-good]

Unsigned Nonnegative
|| m u-LB | a-LB [UB [B] UB
128 3 5 11 5 32
m x 256 random submatrix 178 3 7 16 7 42
of 256 x 256 Fourier matrix 242 5 11 26 11 89
128 2 5 7 5 7
m x 256 random submatrix 178 4 9 15 9 19
of 256 x 256 Hadamard matrix || 242 12 26 31 27 31
128 1 5 15 5 48
m x 256 Rademacher matrix 178 2 8 24 9 78
242 2 23 47 27 111
128 1 5 14 5 44
m x 256 Gaussian matrix 178 2 8 24 9 79
242 2 23 47 27 112

e as-based goodness bounds significantly outperform bounds
based on mutual incoherence

e Computability has its price: for random matrices, there is a
significant gap between upper and lower goodness bounds

Numerical illustration (continued)

Efficiently computable goodness bounds

LB < a-LB < s,(A) < UB
|| m || p-LB | a-LB | uB

102 2 2 8
204 2 4 18
307 2 6 30
409 3 7 44

m x 1024 Gaussian matrix 512 3 10 61
614 3 12 78
716 3 15 105
819 4 21 135
921 4 32 161

[[960 x 1024 convolutionmatrix [960 [0 | 5 [7 |

e Matrices with “personal story” seem to have smaller and easier to
estimate goodness than random matrices of the same sizes.

Application: Error bound for imperfect recovery with

uncertain-but-bounded noise

R'S Xy =AX+& € R™ ||€] <6
Opt := min {|z : Az —y|| < 6}
X [X]l2 < Opt+v & [AX —y| < u

Theorem [loud.&Nem.'08]:

Let « < 1/2, 8 > 0 be such that

Y ¢ ||Colj[ln — YTA][ls 1 < aVj & [|Coli[Y]|l. < £V
where || - || is the conjugate of || - ||. Let also x® be the bestin || - ||1
s-sparse approximation of x € R". Then

28(6 + p) + v+ 2||x — x5||1
12«

X — x|z <

Application: Recovery in the case of random

observation noise

R"S X—y=Ax+¢ €RM
{=o(+Uu, (~N(O,I),
X : s-sparse with known s

Goal and Assumptions

& Goal: Given e € (0,1) and s, to ensure with probability > 1 — ¢

“good recovery” of nearly s-sparse signals x

& Assumption A: We have in our disposal matrix Y such that
a:=s|l - YTA|x < 3

e \We set

1Y llo,s = maXag<n [31COG[Y]Il + oy/2In(n /)l [Coly Y i

Regular and Penalized ¢, recoveries

R"> x—y=Ax+¢ €¢R"
§=o(+u,(~N(O,I),
e Regular ¢, recovery:
y =X =X(y) € Argmin, {{[z]l1 : [YT(AZ = y)[loo < [IY o5}
e Penalized ¢, recovery:
y =X =X(y) € Argmin, {{|z||s + 2s[|Y T (Az — ¥l }
Note: Penalized recovery does not require knowledge of o, 6, €!

Theorem [loud.,Kil.-Karz.,Nem. 10]

Under Assumption A, there exists a set Z of “good” ¢ such that
eProb{¢ € Z} >1—¢
e When ¢ € Z, for both Regular and Penalized ¢, recovery one has
V(x € R"u, |lul| <4,y =AX +0o(+u):
X =KW)lloo < w = 2T LEl ANl
X =X(y)lls < sw
where x® is the bestin || - ||; s-sparse approximation of x.

e When ¢ € Z, for both Regular and Penalized ¢; recovery one has
V(x € R"u, |lul| <4,y =AX +0(+u):
Y -1 _yS Y o
X =Xl < w = 2Tl
1% = X(y)lla

AN

IN

Sw

REINEECS

e w < O(0 + 6+ s Yx —x%|1) is small when when ¢, § are small
and x is nearly s-sparse.

e ThesetY = {(Y,t,7) : S|l = YTAlloo <t, |Y[lss < 7} is coOnvex
=Given s, o, ¢ and an upper bound on ||x — x%||;, we can efficiently
optimize the quality of the recovery, as given by Theorem, in Y.

|
|
\
A

v

How it works

e A: Gaussian 161 x 256 with normalized columns

. V1] <1, [vo —vq| <1 }
ol -|:{u:lul| <1l = .
°c= 0.01

Convolution Setup

e A: 2D signal [xi]o<i j<15 is convolved with kernel [Kj]_7<j j<7. The
output is observed on the “deficient” grid {1 <i < 15,0 <j < 15},
which results in a linear mapping x — Ax : R?%6 — R240,

o[{u: full <1} = {Av:v eV}

e\ :all functions v € R(Z35 x Z14) with zero mean satisfying
1A%V o < 1

e A: discrete Laplacian on R(Z1s X Z15)

ec=0.01

ot

How it works (continued)

Empirical Averages of Recovery Errors, Gaussian A

Lo €rror vs. §
oc=01s=2,
a=02,x|s = 10

loo €rror vs. o
6=0.01,s =2,
a=0.2,|x]; =10

loo €rror vs. s
§=0.01,0 =0.1,
o =0.1s, ||x||1 = 5s

{4 error vs. ¢
oc=0.15s=2,
a=0.2,|x]; =10

{q errorvs. o
6=0.01,s =2,
a=0.2,[x|[; =10

{q error vs. s
§=0.01,0 =0.1,
a =0.1s,||x]l; =5s

e Winners: Lasso and Penalized ¢, Recovery

How it works (continued)

Empirical Averages of Recovery Errors, Convolution A

Lo €rror vs. §
oc=01s=2,
a=0.4,|x|: = 10

loo €rror vs. o
6=0.01,s =2,
a=0.4,]|x|; =10

loo €rror vs. s
§=0.01,0 =0.1,
o =0.2s, x| =5s

{4 error vs. ¢
oc=0.15s=2,
a=04,]|x], =10

{q errorvs. o
6=0.01,s =2,
o =04,|x|[; =10

{q error vs. s
§=0.01,0 =0.1,
a=0.2s,|x]ly =5s

e Winner: Penalized ¢, Recovery

¢, minimization via deterministic and randomized first

order algorithms

& Problems of /; minimization arising in Signal Processing
Opt = min {||z}1 : |[Az = by <4J} [p=oc0rp=2]

may have dense sensing matrices A with sizes in the range of 10* -
10° and more. Whenever this is the case, an iteration of every
known polynomial time algorithm becomes too time consuming.

v

& At present, the most attractive alternative to IP methods in the
extremely large-scale /1 minimization is offered by computationally
cheap First Order methods.

& In FOMs, the effort per iteration is dominated by computing O(1)
matrix-vector products involving A and AT, which is much easier
than solving systems of linear equations of sizes comparable with
those of A, as required in IPMs.

& One can further simplify an iteration by replacing precise
matrix-vector multiplications by their randomized versions.)

Limits of performance of FOMs

& FOMs are provably badly suited for solving large-scale problems
to high accuracy.

However: FOMs can be theoretically and practically efficient when
medium accuracy solutions are sought. In this case, FOMs under
favorable circumstances (e.g., in ¢, minimization) exhibit nearly
dimension-independent rate of convergence, which is crucial in
large-scale applications.

The approach

Opt = min {||z[|y : [Az —bllp <4} [p=ocorp=2] ({1)

The strategy

& The state-of-the-art complexity results on the first order methods
suggest the following strategy:
& The problem of interest (¢;) is reformulated as

1 .
—~— = max . O(p):= min ||AX — pbllp — &
Opt P (/)) X7HXH1§1 H Y Hp Y

= min max y'(AX — pb) — §p< 0}
x:HX\hély:HyHﬁél
e The solution is found by a Newton-type root finding routine as
applied to the master problem max {p : ®(p) < 0}
e (Approximate) information on ®(-) used by root finding is given
by the Mirror Prox FOM [Nem.04,loud.&Kil.-Karz.&Nem.10] as
applied to the bilinear saddle point problem

<D(p) - [yT (AX - pb) - (Sp} y Px= %

min
X:[x[[1 <1 y:ly [lp. <1

The approach (continued)

Acceleration by randomization

& With our approach, ¢;-minimization reduces to a “small series” of
bilinear saddle point problems
Mineex Maxyey [(a,) + (b,y) + (y, AX)] (S)

& When solving (S) by a FOM, the main effort is to compute
matrix-vector products involving A and AT. These computations are
easy to randomize: to estimate Bu, we

o treat the vector "’“Fj‘[“i] as a probability distribution on the set of
columns of B,

e draw at random a column B, of B. The vector ||u|/;sign(u,)B, is
the desired unbiased estimate of Bu.

ot

& Randomization simplifies dramatically an iteration, while
increasing the number of iterations required to get an e-solution.

In a meaningful range of problem sizes and desired accuracies, the
tradeoff between iteration complexity and iteration count is in favor
of randomization.)

Results, Deterministic case

Theorem [loud.&Nem.09]

Consider a feasible and nontrivial (||b|, > 25) ¢, minimization
problem

Opt, = min{|z|1 : [Az = bllp <5} (f)

with A € R™*" and p e {2,000}, and let
[All1,p = max; [|Col;[A][|p-
Givene, 0 < € < [|A[|1pOpt,, one can find an e-solution X, to (¢1):
[Xell2 < Opt, & [AXe —bflp <+

. Q Opt Q Opt
in no more than (pHAHl"p pp) In (pHAHl’p pp) steps, where

In(m)In(n
% =00) { i b

Computational effort per step is dominated by the necessity to
multiply O(1) vectors by A and AT.

How it works: ¢; minimization by Deterministic MP

A: random m x n submatrix of n x n D.ET. matrix

X[l <1lyll<1

X ~ argmin {||AX — bl : [[X]l1 < 1}
X

min max y' (Ax —b)

b: ||AX, — blles < § = 5.e-3 with 16-sparse X, [[X«||1 = 1

Errors

CPU

| m xn | Method | [[x. —X[J1 | X« —X][2 [[[x« —=X[l« | sec

512 x 2048 DMP 0.005 0.002 0.001 3.3

IP 0.039 0.006 0.002 321.6

1024 x 4096 | DMP 0.010 | 0.003 0.002 35
IP Out of space (2GB RAM)

4096 x 16384 | DMP 0.006 | 0.003 | 0.002 | 46.4

IP not tested

e DMP: Deterministic Mirror Prox utilizing FFT
e |[P: Commercial Interior Point LP solver nosekopt

How it works (continued)

512 x 2048 1024 x 4096 4096 x 16384

£1-recovery: o: true signal, +: DMP recovery

How it works (continued)
Situation and Goal

We observe randomly selected pixels in a 256 x 256 image X at
sampllng rate 33% and want to recover the image.

IMMﬁﬁIllIIIIIIIIIIIIIIIIIIIIIIII

e The underlying signal is the vector x of coefficients of X in a 2D
wavelet basis: X = Ux, with n x n orthogonal U, n = 65, 536.
e Observed part of the image isy = Ax withthe m = 21,789 ~ n/3
rows of A selected at random from rows of U.
Note: A is rather dense (3.4% ~ 5.3 - 10’ nonzeros).
e The recovery is X. = Ux,

X:{H&hémmwwyA2=ﬂ

[AXe = yl2 < €lly]l2

e Multiplication by A and AT takes time linear in n
=-we are in an ideal position to apply deterministic first order
methods

100 150 200

Observations

50 200 250 0 100 150 200 250 50 100 150 200 250

X(0.0271) X (0.0075)

X(0.0647)
Steps: 328 Callst:918 Steps: 947 Calls: 2,682 Steps: 4,746 Calls: 13,469
CPU= 99 sec CPU= 290 sec CPU= 1460 sec

t Call: a pair of matrix-vector multiplications (x,y) + (Ax,ATy).

Acceleration by Randomization

Theorem [loud.&Kil.-Karz.&Nem.'10]

Consider a feasible problem
Opt, = min {[|z]}1 : [Az = bllp <4} (f1)

with A € R™*"and p € {2,00}, and let e € (0, ||Al|1,Opt,] be given.
Then, for every x € (0,1/2],
() In the case of p = oo, assuming 6 small enough (namely,
24 < ||bl|0), @n e-solution to (¢;) can be found, with confidence
> 1 — y, in at most

) | o/I(myin(n) AL Ot , <\/ m) IN(n)|A 11,0 Opt..,

€x
steps of a randomlzed algorithm, with effort per step dominated by
the necessity to extract from A O(1) columns and rows.

Note: Setting w = €/(||/Al|1,0,0pt.,) and modulo logarithmic factors,
randomization rises the iteration count from O(w=') to O(w™?),
while reducing the effort per iteration from O(mn) to O(m + n) a.o.

Acceleration by Randomization (continued)

Opt, = min {[|z][1 : [Az = bllp <4} (f1)

Theorem (continued)

(i) In the case of p = 2, assuming ¢ small enough (namely,
2v/mé < ||b||2), an e-solution to (¢1) can be found with confidence
> 1 — x in at most

VIn(n)r(A |AH1 20pt, - (+/In()T(A) Al ZOptz)
€X
() = Vm[All1,c0/|All1,2
steps of a randomized algorithm with the same as in (i) effort per
step.
e With randomized preprocessing
[A,b] — [UDiag{¢}A, UDiag{¢}b]

(U is an appropriate orthogonal matrix f is a random +1 vector),
with confidence > 1 — x one has I'(A 1)+/In(mn/x). The cost
of this preprocessing does not exceed O()mn In(m) a.o.

Acceleration by Randomization: how it works

opt, = min {|lzl|1 < [Az ~bll, <5} (&)

e A: randomly drawn m x n matrix with i.i.d. entries taking values
+m~1/P with probabilities 1/2

e b = Ax, + £ with randomly selected sparse (|v/n| nonzeros)
VECtor X,, ||X«||1 = 1, and randomly generated &, |||, = 0 = 0.005.

Acceleration by Randomization: how it works

& Uniform fit p = oo, e = 0.0025

I DMP I SMP I

| sizeofn | | calis | cpu || Fealls | cpu || SEERME |

min 811 32.5 88.8 22.5 1.238
1000 x 2000 || mean || 1500 61.0 130.0 | 31.6 1.975
max 2339 98.1 188.2 | 44.7 3.325
min 963 142.3 84.8 77.1 1.846
2000 x 4000 || mean || 2340 | 346.2 121.0 | 105.2 3.243
max 4217 | 622.4 158.8 | 135.9 5.747
min 1697 | 992.3 69.2 | 2713 2.565
4000 x 8000 || mean || 2570 | 1470.7 90.2 | 348.0 4.368
max 4380 | 2516.6 || 104.4 | 394.5 7.324

Deterministic algorithm DMP vs. randomized algorithm SMP
5 experiments per each size.
e Calls: # of matrix-vector multiplications in DMP run
e FCalls: equivalent # of full matrix-vector multiplications
in SMP run

Acceleration via Randomization: how it works

A/ fitp =2, e =0.0025

DMP SMP

H Size of A H H Calls‘ CPU H FCaIIs‘ CPU H gﬁ,ggmg H
min || 321 | 125 || 1022 | 29.9 0374
1000 x 2000 || mean || 719 | 28.3 || 139.3 | 43.2 0.703
max || 916 | 355 || 194.9 | 60.0 1.187
min 515 74.2 54.1 68.4 0.763
2000 x 4000 || mean || 616 | 89.0 || 63.6 | 80.9 1.136
max || 720 | 1045 || 71.0 | 97.3 1.528
min || 526 | 293.3 | 42.6 | 1956 || 1.257
4000x 8000 || mean || 756 | 424.6 || 452 | 2107 | 2.045
max || 935 | 526.8 | 48.6 | 233.3 | 2.625

Deterministic algorithm DMP vs. randomized algorithm SMP

5 experiments per each size.

e Calls: # of matrix-vector multiplications in DMP run

e FCalls: equivalent # of full matrix-vector multiplications
in SMP run

Acceleration by Randomization: how it works

& Uniform and /5 fits

[X = X Ir |

[[p [Steps [Calls [FCalls [CPU | JIAX—=b[[, [r=1 [r=2 [r=o0 |
DMP 2 21 45 45 7229 g%?"ﬁﬁ‘? féi;ﬂ %gsf (;202/5)
SMP | 2 | 9104 | 13648 | 294 | 7252 g'_olﬁﬁﬂi Ol'%f/z Ol'gol/f 01'8303
ow [= | o | | o] oute | | o |
SMP | oo | 12006 | 17816 | 19.3 | 6050 g'ggﬁﬁ 05?,20 06[3)27 06[3)22

Experiments with 32,000 x 64,000 matrix
~ 7,200 sec CPU limit
Percents: [|X — X.||/|X«]|r

Acceleration by Randomization: how it works

DMP, p = o SMP, p = oo

DMP-based (left) and SMP-based (right) recovery of sparse

signals in the 32,000 x 64,000 experiments.
Circles: true signal Crosses: recovery

