On Efficiently Computable Compressed Sensing

A. Nemirovski

nemirovs@isye.gatech.edu, ISyE GaTech

Joint Research with

A. louditski

Anatoli.louditski@imag.fr, Fourier University, Grenoble, France

F Kiling Karzan

fkilinc@gatech.edu, ISyE GaTech

MOPTA, August 18 – 20, 2010

Overview

- Compressed Sensing: What is it?
- Verifiable sufficient conditions in Compressed Sensing
 - Verifiable sufficient conditions for goodness of a sensing matrix
 - the relaxation scheme
 - limits of performance
- Applying the goodness conditions: Error bounds for imperfect
 recovery
 - uncertain-but-bounded observation error
 - random observation error
- ♣ ℓ₁ minimization via First Order algorithms
 - Strategy
 - Performance in deterministic case
 - Acceleration by randomization

Compressed Sensing: what it is?

Compressed Sensing is about recovery of a high-dimensional signal *x* from its relatively low-dimensional projection

$$y = Ax + \xi$$

- y: observation ξ : observation noise A: $m \times n$ sensing matrix, $m \ll n$
- \clubsuit It is assumed that x is sparse possesses at most a known number $s \ll m$ nonzero entries.
- \spadesuit Sparsity makes the recovery problem solvable, at least in the noiseless case $\xi=0$. In this case, for a "general position" sensing matrix A, one has

$$x = \underset{z \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \operatorname{Card} \{ i : z_i \neq 0 \} : Az = y \right\} \tag{C}$$

However: the arising combinatorial problem is intractable \Rightarrow **The** standard recovery routine in CS is the ℓ_1 recovery:

$$y \mapsto \widehat{x} \in \underset{z}{\operatorname{Argmin}} \{ \|z\|_1 : \|Az - y\| \le \delta \}$$

• δ : properly chosen tolerance, e.g., an a priori upper bound on $\|\xi\|$

s-good sensing matrices

$$\mathbb{R}^{n} \ni \mathbf{x} \mapsto \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{\xi} \in \mathbb{R}^{m}, \|\mathbf{\xi}\| \le \delta$$
$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{z}} \{ \|\mathbf{z}\|_{1} : \|\mathbf{A}\mathbf{z} - \mathbf{y}\| \le \delta \}$$

Definition

A is s-good, if in the noiseless case ($\delta = 0$) ℓ_1 recovery is exact ($\hat{x} = x$) for every x with at most s nonzero entries.

- ♣ A necessary and sufficient condition for A to be s-good is: $\gamma_s(A) := \max_x \{ \|x\|_{s,1} : x \in \text{Ker}A, \|x\|_1 \le 1 \} < 1/2$ [$\|x\|_{s,1}$: sum of s largest magnitudes of entries in x]
- [Donoho&Huo'01, Zhang'05, Cohen&Dahmen&DeVore'06,...]
- $\spadesuit \gamma_s(A)$ is difficult to compute \Rightarrow the condition is unverifiable...

Verifiable sufficient condition for s-goodness

$$\gamma_{\mathcal{S}}(A) := \max_{x} \left\{ \|x\|_{s,1} : x \in \operatorname{Ker} A, \|x\|_{1} \le 1 \right\} < 1/2$$

$$\Leftrightarrow A \text{ is s-good}$$

Theorem [loud.&Nem.'08]

The efficiently computable quantity

$$\alpha_{s}(A) = \min_{\mathbf{Y}} \left\{ \max_{1 \le j \le n} \| \operatorname{Col}_{j}[I - \mathbf{Y}^{T} A] \|_{s,1} \right\}$$

 $[\operatorname{Col}_j[B]: j\text{-th column of } B]$

is an upper bound on $\gamma_s(A)$ which is exact for s = 1: $\gamma_1(A) = \alpha_1(A)$.

 \Rightarrow The verifiable condition $\alpha_s(A) < 1/2$ is sufficient for A to be s-good.

Remark: $\alpha_s(A) \leq s\alpha_1(A) = s\gamma_1(A)$

 \Rightarrow The easily verifiable "rough" condition $\alpha_1(A) < \frac{1}{2s}$ is sufficient for A to be s-good.

What is inside: a novel (?) relaxation scheme for maximizing convex functions over polytopes

Situation: Consider the problem

Opt =
$$\max_{\mathbf{x}} \{ f(\mathbf{x}) : \mathbf{x} \in \text{Conv}\{g_1, ..., g_N\}, A\mathbf{x} = \mathbf{0} \}$$

 $A : m \times n$

of maximizing an efficiently computable convex function f(x) over the intersection of a polytope given by its vertices and a linear subspace.

Note: this is a universal form of the problem of maximizing convex function over a polytope.

Relaxation scheme: Let
$$Y \in \mathbb{R}^{m \times n}$$
 and $\lambda \in \mathbb{R}^m$, and let $U(Y, \lambda) = \max_{1 \le i \le N} \left\{ f([I - Y^T A]g_i) + \lambda^T Ag_i \right\}$

Observation: $U(Y, \lambda)$ *is a convex function of* Y, λ *such that* $Opt < U(Y, \lambda) \ \forall (Y, \lambda)$

 \Rightarrow The efficiently computable quantity $\operatorname{Opt}^+ = \inf_{Y,\lambda} U(Y,\lambda)$ is an upper bound on Opt .

Relaxation scheme (continued)

Claim:
$$U(Y, \lambda) := \max_i \left\{ f([I - Y^T A]g_i) + \lambda^T Ag_i \right\}$$

 $\geq \text{Opt} := \max_x \left\{ f(x) : x \in \text{Conv} \left\{ g_1, ..., g_N \right\}, Ax = 0 \right\}$
Indeed, let $x = \sum_i \mu_i g_i$ be a convex combination of g_i such that $Ax = 0$. We have
$$U(Y, \lambda) = \max_i \left\{ f([I - Y^T A]g_i) + \lambda^T Ag_i \right\}$$
$$\geq \sum_i \mu_i \left[f([I - Y^T A]g_i) + \lambda^T Ag_i \right]$$
$$\geq f\left(\sum_i \mu_i [I - Y^T A]g_i\right) + \lambda^T A\left[\sum_i \mu_i g_i \right]$$
$$= f([I - Y^T A]x) + \lambda^T Ax = f(x)$$

and Claim follows.

Note: the " λ -component" of the relaxation scheme is the standard Lagrangian relaxation. The "Y-component" seems to be new.

♠ To get verifiable sufficient goodness conditions, one applies the outlined relaxation scheme to

$$\gamma_{s}(A) = \max_{x} \{ \|x\|_{s,1} : x \in \text{Conv}\{\pm e_{1}, ..., \pm e_{n}\}, Ax = 0 \}$$

In this case, the Lagrangian component does not help...

Relations with other goodness conditions

Relation to Mutual Incoherence

♣ The only previously known verifiable sufficient condition for $A = [A_1, ..., A_n]$ to be s-good is based on mutual incoherence $\mu(A) = \max_{i \neq j} |A_i^T A_i| / A_i^T A_i$

and states that A is s-good whenever $s\mu(A)/(1 + \mu(A)) < 1/2$ [Donoho&Elad&Temlyuakov'06].

Fact [loud.&Nem.'08]: The easily verifiable "rough" sufficient condition for s-goodness $\alpha_1(A) < \frac{1}{2s}$ provably is less conservative than the condition based on mutual incoherence.

Relation to Restricted Isometry Property

- \spadesuit The standard in CS unverifiable sufficient goodness condition is based on the Restricted Isometry Property RIP(δ, k):
 - $(1-\delta)I_k \leq A_k^T A_k \leq (1+\delta)I_k$ for every $m \times k$ submatrix A_k of A
- Every RIP($\frac{2}{5}$, 2s)-matrix A is s-good.
- For large m, n, a randomly generated $A \in \mathbb{R}^{m \times n}$ with independent $\mathcal{N}(0, m^{-1/2})$ (or $\pm m^{-1/2}$) entries with overwhelming probability is RIP(0.1,2s) with s as large as $O(m/\ln(2n/m))$.

Fact [loud.&Nem.'08]: Whenever A is RIP(δ , k) with $\delta < \sqrt{2} - 1$, one has

$$s < \frac{(1-\delta)\sqrt{k-1}}{2\sqrt{2}\delta} = O(1)\sqrt{k} \Rightarrow \alpha_1(A) < \frac{1}{2s}.$$

 \Rightarrow Already rough sufficient condition can certify s-goodness of an $m \times n$ sensing matrix for s as large as $O(1)\sqrt{m/\ln(n/m)}$.

Fact [loud.&Nem.'08]: When A is not "nearly square:" $\frac{n}{m} \ge \theta > 1$, the condition $\alpha_s(A) < 1/2$ can be satisfied only if $s \le O(1) \frac{\theta}{\sqrt{\theta-1}} \sqrt{m}$. Note: So far, all explicitly defined families of s-good $m \times n$ sensing matrices A with $n/m \ge \theta > 1$ obey the bound $s \le O(1) \sqrt{m}$.

Extension to the "signed" case [loud.&Kil.-Karz.&Nem.'09]

The above results admit natural extension to the case of "signed" sparse signals

$$x \in \mathbb{R}^n : x_i \ge 0, j \in I_+ \& x_i \le 0, j \in I_-$$

and associated "signed \(\ell_1 \) recovery"

$$[y = Ax + \xi, \ \|\xi\| \le \delta] \mapsto \widehat{x} := \underset{z}{\operatorname{argmin}} \left\{ \begin{aligned} \|Az - y\| \le \delta \\ \|z\|_1 : \ z_j \ge 0, \ j \in I_+ \\ z_j \le 0, \ j \in I_- \end{aligned} \right\}$$

Upper bounding of goodness level

♣ In order to certify that *A* is not *s*-good, it suffices to show that $\frac{1}{2} \le \gamma_s(A) := \max_{x} \left\{ \|x\|_{s,1} : \|x\|_1 \le 1, Ax = 0 \right\}$ $= \max_{u,x} \left\{ u^T x : \begin{array}{l} x \in X = \{\|x\|_1 \le 1, Ax = 0\} \\ u \in U_s = \{\|u\|_{\infty} \le 1, \|u\|_1 \le s\} \end{array} \right\}$

This can be done by bounding $\gamma_s(A)$ from below via several series of randomly initialized alternating maximizations of $u^T x$ over $u \in U_s$ and $x \in X$.

Efficiently computable goodness bounds

$$\mu$$
-LB $\leq \alpha$ -LB $\leq s_*(A) \leq UB$

[Goodness $s_*(A)$ of A: the largest s such that A is s-good]

		Unsigned			Nonnegative	
	m	μ -LB	α -LB	UB	LB	UB
	128	3	5	11	5	32
$m \times 256$ random submatrix	178	3	7	16	7	42
of 256 × 256 Fourier matrix	242	5	11	26	11	89
	128	2	5	7	5	7
$m \times 256$ random submatrix	178	4	9	15	9	19
of 256 $ imes$ 256 Hadamard matrix	242	12	26	31	27	31
	128	1	5	15	5	48
$m \times 256$ Rademacher matrix	178	2	8	24	9	78
	242	2	23	47	27	111
	128	1	5	14	5	44
$m \times 256$ Gaussian matrix	178	2	8	24	9	79
	242	2	23	47	27	112

- α_s -based goodness bounds significantly outperform bounds based on mutual incoherence
- Computability has its price: for random matrices, there is a significant gap between upper and lower goodness bounds

Numerical illustration (continued)

Efficiently computable goodness bounds

$$\mu$$
-LB $\leq \alpha$ -LB $\leq s_*(A) \leq UB$

	m	μ -LB	α -LB	UB
	102	2	2	8
	204	2	4	18
	307	2	6	30
	409	3	7	44
$m \times 1024$ Gaussian matrix	512	3	10	61
	614	3	12	78
	716	3	15	105
	819	4	21	135
	921	4	32	161
960 × 1024 convolution matrix	960	0	5	7

• Matrices with "personal story" seem to have smaller and easier to estimate goodness than random matrices of the same sizes.

Application: Error bound for imperfect recovery with uncertain-but-bounded noise

$$\mathbb{R}^{n} \ni \mathbf{x} \mapsto \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{\xi} \in \mathbb{R}^{m}, \|\mathbf{\xi}\| \leq \delta$$
$$\operatorname{Opt} := \min_{\mathbf{z}} \{\|\mathbf{z}\|_{1} : \|\mathbf{A}\mathbf{z} - \mathbf{y}\| \leq \delta\}$$
$$\widetilde{\mathbf{x}} : \|\widetilde{\mathbf{x}}\|_{1} \leq \operatorname{Opt} + \nu \& \|\mathbf{A}\widetilde{\mathbf{x}} - \mathbf{y}\| \leq \mu$$

___ Theorem [loud.&Nem.'08]:

Let $\alpha < 1/2$, $\beta > 0$ be such that $\exists Y: \| \operatorname{Col}_j[I_n - Y^T A] \|_{s,1} \leq \alpha \, \forall j \, \& \, \| \operatorname{Col}_j[Y] \|_* \leq \frac{\beta}{s} \, \forall j$ where $\| \cdot \|_*$ is the conjugate of $\| \cdot \|_*$. Let also x^s be the best in $\| \cdot \|_1$ s-sparse approximation of $x \in \mathbb{R}^n$. Then

$$\|\widetilde{x} - x\|_1 \le \frac{2\beta(\delta + \mu) + \nu + 2\|x - x^s\|_1}{1 - 2\alpha}$$

Application: Recovery in the case of random observation noise

$$\mathbb{R}^{n} \ni \mathbf{x} \mapsto \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{\xi} \in \mathbb{R}^{m}$$
$$\mathbf{\xi} = \sigma \zeta + \mathbf{u}, \ \zeta \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \ \|\mathbf{u}\| \leq \delta$$
$$\mathbf{x} : \text{ s-sparse with known } \mathbf{s}$$

Goal and Assumptions

- ♠ Goal: Given $\epsilon \in (0,1)$ and s, to ensure with probability $\geq 1 \epsilon$ "good recovery" of nearly s-sparse signals x
- **Assumption A:** We have in our disposal matrix Y such that $\alpha := s\|I Y^T A\|_{\infty} < \frac{1}{2}$
- We set

$$\|\mathbf{Y}\|_{\sigma,\delta} = \max_{1 \le j \le n} \left[\delta \|\mathrm{Col}_j[\mathbf{Y}]\|_* + \sigma \sqrt{2 \ln(n/\epsilon)} \|\mathrm{Col}_j[\mathbf{Y}]\|_2 \right]$$

Regular and Penalized ℓ_1 recoveries

$$\mathbb{R}^n \ni \mathbf{x} \mapsto \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{\xi} \in \mathbb{R}^m$$
$$\mathbf{\xi} = \sigma \mathbf{\zeta} + \mathbf{u}, \ \mathbf{\zeta} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \ \|\mathbf{u}\| \le \delta$$

Regular ℓ₁ recovery:

$$y \mapsto \widehat{x} = \widehat{x}(y) \in \operatorname{Argmin}_{z} \{ \|z\|_{1} : \|Y^{T}(Az - y)\|_{\infty} \le \|Y\|_{\sigma, \delta} \}$$

• Penalized ℓ_1 recovery:

$$y \mapsto \widehat{x} = \widehat{x}(y) \in \operatorname{Argmin}_{z} \{ \|z\|_{1} + 2s \|Y^{T}(Az - y)\|_{\infty} \}$$

Note: Penalized recovery does not require knowledge of σ , δ , ϵ !

Theorem [loud.,Kil.-Karz.,Nem.'10]

Under Assumption A, there exists a set $\mathcal Z$ of "good" ζ such that

- $\operatorname{Prob}\{\zeta \in \mathcal{Z}\} \geq 1 \epsilon$
- When $\zeta \in \mathcal{Z}$, for both Regular and Penalized ℓ_1 recovery one has $\forall (x \in \mathbb{R}^n, u, ||u|| \le \delta, y = Ax + \sigma \zeta + u)$:

$$\begin{cases} \|\mathbf{x} - \widehat{\mathbf{x}}(\mathbf{y})\|_{\infty} & \leq \omega := 2 \frac{\mathbf{s}^{-1} \|\mathbf{x} - \mathbf{x}^{\mathbf{s}}\|_{1} + 2\|\mathbf{Y}\|_{\sigma, \delta}}{1 - 2\alpha} \\ \|\mathbf{x} - \widehat{\mathbf{x}}(\mathbf{y})\|_{1} & \leq \mathbf{s}\omega \end{cases}$$

where x^s is the best in $\|\cdot\|_1$ s-sparse approximation of x.

• When $\zeta \in \mathcal{Z}$, for both Regular and Penalized ℓ_1 recovery one has $\forall (x \in \mathbb{R}^n, u, ||u|| < \delta, y = Ax + \sigma\zeta + u)$:

$$\forall (x \in \mathbb{R}^n, u, ||u|| \le \delta, y = Ax + \sigma\zeta + u) :$$

$$\begin{cases} ||x - \widehat{x}(y)||_{\infty} \le \omega := 2\frac{s^{-1}||x - x^s||_1 + ||Y||_{\sigma, \delta}}{1 - 2\alpha} \\ ||x - \widehat{x}(y)||_1 \le s\omega \end{cases}$$

Remarks:

- $\omega \le O(\sigma + \delta + s^{-1}||x x^s||_1)$ is small when when σ , δ are small and x is nearly s-sparse.
- The set $\mathcal{Y} = \{(Y, t, \tau) : s || I Y^T A||_{\infty} \le t, ||Y||_{\sigma, \delta} \le \tau\}$ is convex \Rightarrow Given s, σ, δ and an upper bound on $||x x^s||_1$, we can efficiently optimize the quality of the recovery, as given by Theorem, in Y.

How it works

🐥 Gaussian Setup

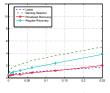
- A: Gaussian 161 × 256 with normalized columns
- $\|\cdot\|$: $\{u: \|u\| \le 1\} = \left\{ Av: \begin{array}{l} |v_1| \le 1, \ |v_2 v_1| \le 1 \\ |v_{j+1} 2v_j + v_{j-1}| \le 1 \ \forall j \end{array} \right\}$
- \bullet $\epsilon = 0.01$

Convolution Setup

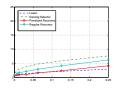
- A: 2D signal $[x_{ij}]_{0 \le i,j \le 15}$ is convolved with kernel $[K_{ij}]_{-7 \le i,j \le 7}$. The output is observed on the "deficient" grid $\{1 \le i \le 15, 0 \le j \le 15\}$, which results in a linear mapping $x \mapsto Ax : \mathbb{R}^{256} \to \mathbb{R}^{240}$.
- $\|\cdot\|$: $\{u: \|u\| \le 1\} = \{Av: v \in V\}$
- V : all functions $v \in \mathbb{R}(\mathbf{Z}_{16} \times \mathbf{Z}_{16})$ with zero mean satisfying $\|\Delta^2 v\|_{\infty} \leq 1$
- ∆: discrete Laplacian on ℝ(Z₁₆ × Z₁₆)
- \bullet $\epsilon = 0.01$

How it works (continued)

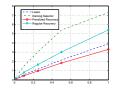
Empirical Averages of Recovery Errors, Gaussian A



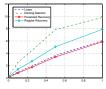
$$\ell_{\infty}$$
 error vs. δ
 $\sigma = 0.1, s = 2,$
 $\alpha = 0.2, ||x||_1 = 10$



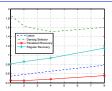
 ℓ_1 error vs. δ $\sigma = 0.1, s = 2,$ $\alpha = 0.2, ||x||_1 = 10$



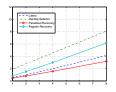
$$\ell_{\infty}$$
 error vs. σ
 $\delta = 0.01, s = 2,$
 $\alpha = 0.2, ||x||_1 = 10$



$$\ell_1$$
 error vs. σ
 $\delta = 0.01, s = 2,$
 $\alpha = 0.2, ||x||_1 = 10$



 ℓ_{∞} error vs. s $\delta = 0.01, \sigma = 0.1,$ $\alpha = 0.1s, ||x||_1 = 5s$

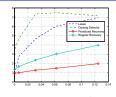


 ℓ_1 error vs. s $\delta = 0.01, \sigma = 0.1,$ $\alpha = 0.1s, ||x||_1 = 5s$

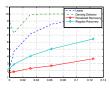
Winners: Lasso and Penalized ℓ₁ Recovery

How it works (continued)

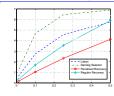
Empirical Averages of Recovery Errors, Convolution A



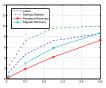
$$\ell_{\infty}$$
 error vs. δ
 $\sigma = 0.1, s = 2,$
 $\alpha = 0.4, ||x||_1 = 10$



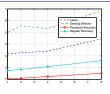
 $\ell_1 \text{ error vs. } \delta$ $\sigma = 0.1, s = 2,$ $\alpha = 0.4, \|x\|_1 = 10$



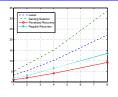
$$\ell_{\infty}$$
 error vs. σ
 $\delta = 0.01, s = 2,$
 $\alpha = 0.4, ||x||_1 = 10$



$$\ell_1$$
 error vs. σ
 $\delta = 0.01, s = 2,$
 $\alpha = 0.4, ||x||_1 = 10$



$$\ell_{\infty}$$
 error vs. s
 $\delta = 0.01, \sigma = 0.1,$
 $\alpha = 0.2s, \|\mathbf{x}\|_{1} = 5s$



$$\ell_1$$
 error vs. s
 $\delta = 0.01, \sigma = 0.1,$
 $\alpha = 0.2s, ||x||_1 = 5s$

Winner: Penalized ℓ₁ Recovery

ℓ_1 minimization via deterministic and randomized first order algorithms

 \clubsuit Problems of ℓ_1 minimization arising in Signal Processing

Opt =
$$\min_{z} \{ \|z\|_{1} : \|Az - b\|_{p} \le \delta \}$$
 [$p = \infty$ or $p = 2$]

may have dense sensing matrices *A* with sizes in the range of 10⁴ - 10⁵ and more. Whenever this is the case, an iteration of every known polynomial time algorithm becomes too time consuming.

- \spadesuit At present, the most attractive alternative to IP methods in the extremely large-scale ℓ_1 minimization is offered by computationally cheap First Order methods.
- ♠ In FOMs, the effort per iteration is dominated by computing O(1) matrix-vector products involving A and A^T , which is much easier than solving systems of linear equations of sizes comparable with those of A, as required in IPMs.
- ♠ One can further simplify an iteration by replacing precise matrix-vector multiplications by their randomized versions.

Limits of performance of FOMs

♠ FOMs are provably badly suited for solving large-scale problems to high accuracy.

However: FOMs can be theoretically and practically efficient when medium accuracy solutions are sought. In this case, *FOMs under favorable circumstances* (e.g., in ℓ_1 minimization) exhibit nearly dimension-independent rate of convergence, which is crucial in large-scale applications.

The approach

Opt =
$$\min_{z} \{ \|z\|_{1} : \|Az - b\|_{p} \le \delta \}$$
 [$p = \infty$ or $p = 2$] (ℓ_{1})

The strategy

- ♣ The state-of-the-art complexity results on the first order methods suggest the following strategy:
 - \spadesuit The problem of interest (ℓ_1) is reformulated as

$$\frac{1}{\text{Opt}} = \max \left\{ \rho : \quad \Phi(\rho) := \min_{\substack{x, ||x||_1 \le 1}} ||Ax - \rho b||_{\rho} - \delta \rho \\
= \min_{\substack{x: ||x||_1 \le 1}} \max_{\substack{y: ||y||_{\frac{\rho}{\rho-1}} \le 1}} y^T (Ax - \rho b) - \delta \rho \le 0 \right\}$$

- The solution is found by a Newton-type root finding routine as applied to the master problem $\max{\{\rho: \Phi(\rho) \leq 0\}}$
- (Approximate) information on $\Phi(\cdot)$ used by root finding is given by the *Mirror Prox FOM* [Nem.'04,loud.&Kil.-Karz.&Nem.'10] as applied to the bilinear saddle point problem

$$\Phi(\rho) = \min_{\mathbf{x}: \|\mathbf{x}\|_1 \le 1} \max_{\mathbf{y}: \|\mathbf{y}\|_{p_*} \le 1} \left[\mathbf{y}^T (\mathbf{A}\mathbf{x} - \rho \mathbf{b}) - \delta \rho \right], \quad \mathbf{p}_* = \frac{p}{p-1}$$

The approach (continued)

Acceleration by randomization

 \clubsuit With our approach, $\ell_1\text{-minimization}$ reduces to a "small series" of bilinear saddle point problems

$$\min_{x \in X} \max_{y \in Y} \left[\langle a, x \rangle + \langle b, y \rangle + \langle y, Ax \rangle \right]$$
 (S)

- \spadesuit When solving (S) by a FOM, the main effort is to compute matrix-vector products involving A and A^T . These computations are easy to randomize: to estimate Bu, we
- treat the vector $\frac{\mathsf{abs}[u]}{\|u\|_1}$ as a probability distribution on the set of columns of B,
- draw at random a column B_j of B. The vector $\|u\|_1 \operatorname{sign}(u_j) B_j$ is the desired unbiased estimate of Bu.
- \clubsuit Randomization simplifies dramatically an iteration, while increasing the number of iterations required to get an ϵ -solution. In a meaningful range of problem sizes and desired accuracies, the tradeoff between iteration complexity and iteration count is in favor of randomization.

Results, Deterministic case

Theorem [loud.&Nem.'09]

Consider a feasible and nontrivial ($\|\mathbf{b}\|_p \ge 2\delta$) ℓ_1 minimization problem

$$\operatorname{Opt}_{p} = \min_{z} \{ \|z\|_{1} : \|Az - b\|_{p} \le \delta \}$$
 (\ell_{1})

with $A \in \mathbb{R}^{m \times n}$ and $p \in \{2, \infty\}$, and let

$$||A||_{1,p} = \max_{j} ||\operatorname{Col}_{j}[A]||_{p}.$$

Given ϵ , $0 < \epsilon < \|A\|_{1,p} \mathrm{Opt}_p$, one can find an ϵ -solution x_{ϵ} to (ℓ_1) :

$$\|\mathbf{x}_{\epsilon}\|_{1} \leq \operatorname{Opt}_{p} \& \|\mathbf{A}\mathbf{x}_{\epsilon} - \mathbf{b}\|_{p} \leq \delta + \epsilon$$

in no more than $\left(\frac{\Omega_p \|A\|_{1,p} \mathrm{Opt}_p}{\epsilon}\right) \ln \left(\frac{\Omega_p \|A\|_{1,p} \mathrm{Opt}_p}{\epsilon}\right)$ steps, where

$$\Omega_p = O(1) \cdot \left\{ \begin{array}{ll} \sqrt{\ln(m) \ln(n)}, & p = \infty \\ \sqrt{\ln(n)}, & p = 2 \end{array} \right.$$

Computational effort per step is dominated by the necessity to multiply O(1) vectors by A and A^T .

How it works: ℓ_1 minimization by Deterministic MP

$$\widehat{x} \approx \underset{x}{\operatorname{argmin}} \left\{ \|Ax - b\|_{\infty} : \|x\|_{1} \le 1 \right\}$$

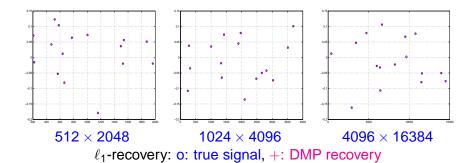
$$\Leftrightarrow \underset{\|x\|_{1} \le 1}{\min} \max_{\|y\|_{1} \le 1} y^{T} (Ax - b)$$

A: random $m \times n$ submatrix of $n \times n$ D.F.T. matrix b: $||Ax_* - b||_{\infty} \le \delta = 5$.e-3 with 16-sparse x_* , $||x_*||_1 = 1$

			CPU			
$m \times n$	Method	$\ \mathbf{x}_* - \widehat{\mathbf{x}}\ _1$	$\ \mathbf{X}_* - \widehat{\mathbf{X}}\ _2$	$\ \mathbf{x}_* - \widehat{\mathbf{x}}\ _{\infty}$	sec	
512 × 2048	DMP	0.005	0.002	0.001	3.3	
	IP	0.039	0.006	0.002	321.6	
1024 × 4096	DMP	0.010	0.003	0.002	3.5	
	IP	Out of space (2GB RAM)				
4096 × 16384	DMP	0.006	0.003	0.002	46.4	
	IP	not tested				

- DMP: Deterministic Mirror Prox utilizing FFT
- IP: Commercial Interior Point LP solver mosekopt

How it works (continued)



How it works (continued)

Situation and Goal

We observe randomly selected pixels in a 256 \times 256 image X at sampling rate 33% and want to recover the image.

Approach

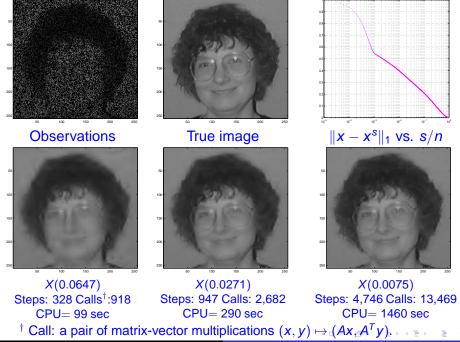
- The underlying signal is the vector x of coefficients of X in a 2D wavelet basis: X = Ux, with $n \times n$ orthogonal U, n = 65,536.
- Observed part of the image is y = Ax with the $m = 21,789 \approx n/3$ rows of A selected at random from rows of U.

Note: A is rather dense $(3.4\% \approx 5.3 \cdot 10^7 \text{ nonzeros})$.

• The recovery is $X_{\epsilon} = Ux_{\epsilon}$,

$$X_{\epsilon}: \left\{ \begin{array}{l} \|X_{\epsilon}\|_{1} \leq \min\{\|z\|_{1} : Az = y\} \\ \|AX_{\epsilon} - y\|_{2} \leq \epsilon \|y\|_{2} \end{array} \right.$$

Multiplication by A and A^T takes time linear in n
 ⇒ we are in an ideal position to apply deterministic first order methods



Acceleration by Randomization

Theorem [loud.&Kil.-Karz.&Nem.'10]

Consider a feasible problem

$$\operatorname{Opt}_{p} = \min_{z} \{ \|z\|_{1} : \|Az - b\|_{p} \le \delta \}$$
 (ℓ_{1})

with $A \in \mathbb{R}^{m \times n}$ and $p \in \{2, \infty\}$, and let $\epsilon \in (0, ||A||_{1,p} \operatorname{Opt}_p]$ be given. Then, for every $\chi \in (0, 1/2]$,

(i) In the case of $p=\infty$, assuming δ small enough (namely, $2\delta \leq \|b\|_{\infty}$), an ϵ -solution to (ℓ_1) can be found, with confidence $> 1 - \chi$, in at most

$$O(1) \left[\frac{\sqrt{\ln(m)\ln(n)} \|A\|_{1,\infty} \operatorname{Opt}_{\infty}}{\epsilon} \ln \left(\frac{\sqrt{\ln(m)\ln(n)} \|A\|_{1,\infty} \operatorname{Opt}_{\infty}}{\epsilon \chi} \right) \right]^{2}$$
was of a randomized algorithm, with effort per step dominated to

steps of a randomized algorithm, with effort per step dominated by the necessity to extract from A O(1) columns and rows.

Note: Setting $\omega = \epsilon/(\|A\|_{1,\infty} \operatorname{Opt}_{\infty})$ and modulo logarithmic factors, randomization rises the iteration count from $O(\omega^{-1})$ to $O(\omega^{-2})$, while reducing the effort per iteration from O(mn) to O(m+n) a.o.

Acceleration by Randomization (continued)

$$\operatorname{Opt}_{p} = \min_{z} \{ \|z\|_{1} : \|Az - b\|_{p} \le \delta \}$$
 (\ell_{1})

Theorem (continued)

(ii) In the case of p=2, assuming δ small enough (namely, $2\sqrt{m}\delta \leq \|b\|_2$), an ϵ -solution to (ℓ_1) can be found with confidence $\geq 1-\chi$ in at most

$$O(1) \left[\frac{\sqrt{\ln(n)}\Gamma(A)\|A\|_{1,2}\text{Opt}_2}{\epsilon} \ln \left(\frac{\sqrt{\ln(n)}\Gamma(A)\|A\|_{1,2}\text{Opt}_2}{\epsilon\chi} \right) \right]^2,$$

$$\Gamma(A) = \sqrt{m}\|A\|_{1,\infty}/\|A\|_{1,2}$$

steps of a randomized algorithm with the same as in (i) effort per step.

With randomized preprocessing

$$[A, b] \leftarrow [U \operatorname{Diag}\{\xi\}A, U \operatorname{Diag}\{\xi\}b]$$

(*U* is an appropriate orthogonal matrix, ξ is a random ± 1 vector), with confidence $\geq 1 - \chi$ one has $\Gamma(A) \leq O(1) \sqrt{\ln(mn/\chi)}$. The cost of this preprocessing does not exceed $O(1)mn\ln(m)$ a.o.

Acceleration by Randomization: how it works

$$\operatorname{Opt}_{p} = \min_{z} \{ \|z\|_{1} : \|Az - b\|_{p} \le \delta \}$$
 (\ell_{1})

- A: randomly drawn $m \times n$ matrix with i.i.d. entries taking values $\pm m^{-1/p}$ with probabilities 1/2
- $b = Ax_* + \xi$ with randomly selected sparse ($\lfloor \sqrt{n} \rfloor$ nonzeros) vector x_* , $||x_*||_1 = 1$, and randomly generated ξ , $||\xi||_p = \delta = 0.005$.

Acceleration by Randomization: how it works

 \spadesuit Uniform fit $p = \infty$, $\epsilon = 0.0025$

		DMP		SMP		
Size of A	e of A		Calls CPU		CPU	CPU,DMP CPU,SMP
	min	811	32.5	88.8	22.5	1.238
1000 x 2000	mean	1500	61.0	130.0	31.6	1.975
	max	2339	98.1	188.2	44.7	3.325
	min	963	142.3	84.8	77.1	1.846
2000 x 4000	mean	2340	346.2	121.0	105.2	3.243
	max	4217	622.4	158.8	135.9	5.747
	min	1697	992.3	69.2	271.3	2.565
4000 x 8000	mean	2570	1470.7	90.2	348.0	4.368
	max	4380	2516.6	104.4	394.5	7.324

Deterministic algorithm DMP vs. randomized algorithm SMP 5 experiments per each size.

• Calls: # of matrix-vector multiplications in DMP run

• FCalls: equivalent # of full matrix-vector multiplications

in SMP run

Acceleration via Randomization: how it works

		DMP		SMP		
Size of A		Calls	CPU	FCalls	CPU	CPU,DMP CPU,SMP
	min	321	12.5	102.2	29.9	0.374
1000 x 2000	mean	719	28.3	139.3	43.2	0.703
	max	916	35.5	194.9	60.0	1.187
	min	515	74.2	54.1	68.4	0.763
2000 x 4000	mean	616	89.0	63.6	80.9	1.136
	max	720	104.5	71.0	97.3	1.528
	min	526	293.3	42.6	195.6	1.257
4000 x 8000	mean	756	424.6	45.2	210.7	2.045
	max	935	526.8	48.6	233.3	2.625

Deterministic algorithm DMP vs. randomized algorithm SMP 5 experiments per each size.

• Calls: # of matrix-vector multiplications in DMP run

• FCalls: equivalent # of full matrix-vector multiplications

in SMP run

Acceleration by Randomization: how it works

\spadesuit Uniform and ℓ_2 fits

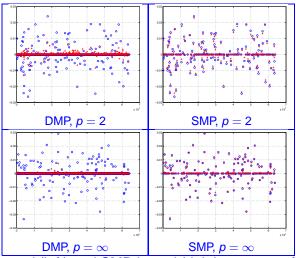
								$\ \widetilde{x} - x_*\ _r$	
	р	Steps	Calls	FCalls	CPU	$\ A\widehat{\mathbf{x}} - \mathbf{b}\ _p$	<i>r</i> = 1	r=2	$r=\infty$
DMP	2	21	45	45	7229	$0.0350 \approx 0.6 \ b\ _{p}$	1.21 121%	0.095 86%	0.020 76%
SMP	2	9104	13,648	29.4	7252	$0.0080 \approx 0.1 \ b\ _{p}$	0.167 17%	0.015 13%	0.003 10%
DMP	∞	19	40	40	7364	$0.1638 \approx 0.6 \ b\ _{p}$	1.25 125%	0.113 97%	0.033 98%
SMP	∞	12006	17816	19.3	6050	0.0075≈ 0.03∥ <i>b</i> ∥ _p	0.090 9%	0.007 6%	0.002 6%

Experiments with 32,000 \times 64,000 matrix

≥ 7,200 sec CPU limit

Percents: $\|\widehat{\mathbf{x}} - \mathbf{x}_*\|/\|\mathbf{x}_*\|_r$

Acceleration by Randomization: how it works



DMP-based (left) and SMP-based (right) recovery of sparse signals in the $32,000 \times 64,000$ experiments.

Circles: true signal Crosses: recovery