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Overview

♣ Compressed Sensing: What is it?

♣ Verifiable sufficient conditions in Compressed Sensing
• Verifiable sufficient conditions for goodness of a sensing matrix

— the relaxation scheme
— limits of performance

• Applying the goodness conditions: Error bounds for imperfect
ℓ1 recovery

— uncertain-but-bounded observation error
— random observation error

♣ ℓ1 minimization via First Order algorithms
• Strategy
• Performance in deterministic case
• Acceleration by randomization
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Compressed Sensing: what it is?

♣ Compressed Sensing is about recovery of a high-dimensional
signal x from its relatively low-dimensional projection

y = Ax + ξ
• y : observation • ξ: observation noise • A: m × n sensing matrix, m ≪ n

♣ It is assumed that x is sparse — possesses at most a known
number s ≪ m nonzero entries.
♠ Sparsity makes the recovery problem solvable, at least in the
noiseless case ξ = 0. In this case, for a “general position” sensing
matrix A, one has

x = argmin
z∈Rn

{Card{i : zi 6= 0} : Az = y} (C)

However: the arising combinatorial problem is intractable
⇒The standard recovery routine in CS is the ℓ1 recovery:

y 7→ x̂ ∈ Argmin
z

{‖z‖1 : ‖Az − y‖ ≤ δ}
• δ: properly chosen tolerance, e.g., an a priori upper bound on ‖ξ‖
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s-good sensing matrices

R
n ∋ x 7→ y = Ax + ξ ∈ R

m, ‖ξ‖ ≤ δ
x̂ ∈ Argminz {‖z‖1 : ‖Az − y‖ ≤ δ}

Definition

A is s-good, if in the noiseless case (δ = 0) ℓ1 recovery is exact
(x̂ = x) for every x with at most s nonzero entries.

♣ A necessary and sufficient condition for A to be s-good is:
γs(A) := max

x

{
‖x‖s,1 : x ∈ KerA, ‖x‖1 ≤ 1

}
< 1/2

[‖x‖s,1 : sum of s largest magnitudes of entries in x ]
[Donoho&Huo’01, Zhang’05, Cohen&Dahmen&DeVore’06,...]

♠ γs(A) is difficult to compute ⇒the condition is unverifiable...
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Verifiable sufficient condition for s-goodness

γs(A) := max
x

{
‖x‖s,1 : x ∈ KerA, ‖x‖1 ≤ 1

}
< 1/2

⇔ A is s-good

♣ Theorem [Ioud.&Nem.’08]

The efficiently computable quantity

αs(A) =min
Y

{
max
1≤j≤n

‖Colj [I − Y T A]‖s,1

}

[Colj [B] : j -th column of B]
is an upper bound on γs(A) which is exact for s = 1: γ1(A) = α1(A).

⇒The verifiable condition αs(A) < 1/2 is sufficient for A to be
s-good.

Remark: αs(A) ≤ sα1(A) = sγ1(A)
⇒The easily verifiable “rough” condition α1(A) < 1

2s is sufficient for
A to be s-good.
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What is inside: a novel (?) relaxation scheme for
maximizing convex functions over polytopes

Situation: Consider the problem
Opt = maxx {f (x) : x ∈ Conv{g1, ...,gN},Ax = 0}

A : m × n
of maximizing an efficiently computable convex function f (x) over
the intersection of a polytope given by its vertices and a linear
subspace.
Note: this is a universal form of the problem of maximizing convex
function over a polytope.

Relaxation scheme: Let Y ∈ R
m×n and λ ∈ R

m, and let
U(Y , λ) = max

1≤i≤N

{
f ([I − Y T A]gi) + λT Agi

}

Observation: U(Y , λ) is a convex function of Y , λ such that
Opt ≤ U(Y , λ) ∀(Y , λ)

⇒The efficiently computable quantity Opt+ = inf
Y ,λ

U(Y , λ) is an

upper bound on Opt.
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Relaxation scheme (continued)

Claim: U(Y , λ) := maxi
{

f ([I − Y T A]gi) + λT Agi
}

≥Opt := maxx {f (x) : x ∈ Conv{g1, ...,gN},Ax = 0}
Indeed, let x =

∑
i µigi be a convex combination of gi such that

Ax = 0. We have
U(Y , λ) = maxi

{
f ([I − Y T A]gi) + λT Agi

}

≥∑i µi
[
f ([I − Y T A]gi) + λT Agi

]

≥ f
(∑

i µi [I − Y T A]gi
)
+ λT A [

∑
i µigi ]

= f ([I − Y T A]x) + λT Ax = f (x)
and Claim follows.

Note: the “λ-component” of the relaxation scheme is the standard
Lagrangian relaxation. The “Y –component” seems to be new.

♠ To get verifiable sufficient goodness conditions, one applies the
outlined relaxation scheme to

γs(A) = max
x

{
‖x‖s,1 : x ∈ Conv{±e1, ...,±en},Ax = 0

}

In this case, the Lagrangian component does not help...
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Relations with other goodness conditions

Relation to Mutual Incoherence

♣ The only previously known verifiable sufficient condition for
A = [A1, ...,An] to be s-good is based on mutual incoherence

µ(A) = maxi 6=j |AT
i Aj |/AT

i Ai

and states that A is s-good whenever sµ(A)/(1 + µ(A)) < 1/2
[Donoho&Elad&Temlyuakov’06].
Fact [Ioud.&Nem.’08]: The easily verifiable “rough” sufficient
condition for s-goodness α1(A) < 1

2s provably is less conservative
than the condition based on mutual incoherence.
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Relation to Restricted Isometry Property

♠ The standard in CS unverifiable sufficient goodness condition is
based on the Restricted Isometry Property RIP(δ, k):

(1 − δ)Ik � AT
k Ak � (1 + δ)Ik for every m × k submatrix Ak of A

• Every RIP(2
5 ,2s)-matrix A is s-good.

• For large m,n, a randomly generated A ∈ R
m×n with independent

N (0,m−1/2) (or ±m−1/2) entries with overwhelming probability is
RIP(0.1,2s) with s as large as O(m/ ln(2n/m)).
Fact [Ioud.&Nem.’08]: Whenever A is RIP(δ, k) with δ <

√
2 − 1,

one has
s < (1−δ)

√
k−1

2
√

2δ
= O(1)

√
k ⇒ α1(A) < 1

2s .
⇒Already rough sufficient condition can certify s-goodness of an
m × n sensing matrix for s as large as O(1)

√
m/ ln(n/m).

Fact [Ioud.&Nem.’08]: When A is not “nearly square:” n
m ≥ θ > 1,

the condition αs(A) < 1/2 can be satisfied only if s ≤O(1) θ√
θ−1

√
m.

Note: So far, all explicitly defined families of s-good m × n sensing
matrices A with n/m ≥ θ > 1 obey the bound s ≤ O(1)

√
m.
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Extension to the “signed” case
[Ioud.&Kil.-Karz.&Nem.’09]

♣ The above results admit natural extension to the case of “signed”
sparse signals

x ∈ R
n : xj ≥ 0, j ∈ I+ & xj ≤ 0, j ∈ I−

and associated “signed ℓ1 recovery”

[y = Ax + ξ, ‖ξ‖ ≤ δ] 7→ x̂ := argmin
z



‖z‖1 :

‖Az − y‖ ≤ δ
zj ≥ 0, j ∈ I+
zj ≤ 0, j ∈ I−




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Upper bounding of goodness level

♣ In order to certify that A is not s-good, it suffices to show that
1
2 ≤ γs(A) := max

x

{
‖x‖s,1 : ‖x‖1 ≤ 1,Ax = 0

}

= max
u,x

{
uT x :

x ∈ X = {‖x‖1 ≤ 1,Ax = 0}
u ∈ Us = {‖u‖∞ ≤ 1, ‖u‖1 ≤ s}

}

This can be done by bounding γs(A) from below via several series
of randomly initialized alternating maximizations of uT x over u ∈ Us

and x ∈ X .
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Efficiently computable goodness bounds
µ-LB ≤ α-LB ≤ s∗(A) ≤ UB

[Goodness s∗(A) of A: the largest s such that A is s-good]
Unsigned Nonnegative

m µ-LB α-LB UB LB UB

128 3 5 11 5 32
m × 256 random submatrix 178 3 7 16 7 42
of 256 × 256 Fourier matrix 242 5 11 26 11 89

128 2 5 7 5 7
m × 256 random submatrix 178 4 9 15 9 19
of 256 × 256 Hadamard matrix 242 12 26 31 27 31

128 1 5 15 5 48
m × 256 Rademacher matrix 178 2 8 24 9 78

242 2 23 47 27 111

128 1 5 14 5 44
m × 256 Gaussian matrix 178 2 8 24 9 79

242 2 23 47 27 112

• αs-based goodness bounds significantly outperform bounds
based on mutual incoherence
• Computability has its price: for random matrices, there is a
significant gap between upper and lower goodness bounds
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Numerical illustration (continued)

Efficiently computable goodness bounds
µ-LB ≤ α-LB ≤ s∗(A) ≤ UB

m µ-LB α-LB UB

102 2 2 8
204 2 4 18
307 2 6 30
409 3 7 44

m × 1024 Gaussian matrix 512 3 10 61
614 3 12 78
716 3 15 105
819 4 21 135
921 4 32 161

960 × 1024 convolution matrix 960 0 5 7

• Matrices with “personal story” seem to have smaller and easier to
estimate goodness than random matrices of the same sizes.
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Application: Error bound for imperfect recovery with
uncertain-but-bounded noise

R
n ∋ x 7→ y = Ax + ξ ∈ R

m, ‖ξ‖ ≤ δ
Opt := min

z
{‖z‖1 : ‖Az − y‖ ≤ δ}

x̃ : ‖x̃‖1 ≤ Opt + ν & ‖Ax̃ − y‖ ≤ µ

♣ Theorem [Ioud.&Nem.’08]:

Let α < 1/2, β > 0 be such that
∃Y : ‖Colj [In − Y T A]‖s,1 ≤ α ∀j & ‖Colj [Y ]‖∗ ≤ β

s ∀j
where ‖ · ‖∗ is the conjugate of ‖ · ‖. Let also xs be the best in ‖ · ‖1

s-sparse approximation of x ∈ R
n. Then

‖x̃ − x‖1 ≤ 2β(δ + µ) + ν + 2‖x − xs‖1

1 − 2α

On Efficiently Computable Compressed Sensing



Application: Recovery in the case of random
observation noise

R
n ∋ x 7→ y = Ax + ξ ∈ R

m

ξ = σζ + u, ζ ∼ N (0, I), ‖u‖ ≤ δ
x : s-sparse with known s

Goal and Assumptions

♠ Goal: Given ǫ ∈ (0,1) and s, to ensure with probability ≥ 1 − ǫ
“good recovery” of nearly s-sparse signals x
♠ Assumption A: We have in our disposal matrix Y such that

α := s‖I − Y T A‖∞ < 1
2

• We set
‖Y‖σ,δ = max1≤j≤n

[
δ‖Colj [Y ]‖∗ + σ

√
2 ln(n/ǫ)‖Colj [Y ]‖2

]
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Regular and Penalized ℓ1 recoveries

R
n ∋ x 7→ y = Ax + ξ ∈ R

m

ξ = σζ + u, ζ ∼ N (0, I), ‖u‖ ≤ δ
• Regular ℓ1 recovery:

y 7→x̂ = x̂(y) ∈ Argminz

{
‖z‖1 : ‖Y T (Az − y)‖∞ ≤ ‖Y‖σ,δ

}

• Penalized ℓ1 recovery:
y 7→x̂ = x̂(y) ∈ Argminz

{
‖z‖1 + 2s‖Y T (Az − y)‖∞

}

Note: Penalized recovery does not require knowledge of σ, δ, ǫ!

Theorem [Ioud.,Kil.-Karz.,Nem.’10]

Under Assumption A, there exists a set Z of “good” ζ such that
• Prob{ζ ∈ Z} ≥ 1 − ǫ
• When ζ ∈ Z, for both Regular and Penalized ℓ1 recovery one has

∀(x ∈ R
n,u, ‖u‖ ≤ δ, y = Ax + σζ + u) :{

‖x − x̂(y)‖∞ ≤ ω := 2 s−1‖x−xs‖1+2‖Y‖σ,δ
1−2α

‖x − x̂(y)‖1 ≤ sω
where xs is the best in ‖ · ‖1 s-sparse approximation of x.
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• When ζ ∈ Z, for both Regular and Penalized ℓ1 recovery one has
∀(x ∈ R

n,u, ‖u‖ ≤ δ, y = Ax + σζ + u) :{
‖x − x̂(y)‖∞ ≤ ω := 2 s−1‖x−xs‖1+‖Y‖σ,δ

1−2α
‖x − x̂(y)‖1 ≤ sω

Remarks:

• ω ≤ O(σ + δ + s−1‖x − xs‖1) is small when when σ, δ are small
and x is nearly s-sparse.
• The set Y = {(Y , t , τ) : s‖I − Y T A‖∞ ≤ t , ‖Y‖σ,δ ≤ τ} is convex
⇒Given s, σ, δ and an upper bound on ‖x − xs‖1, we can efficiently
optimize the quality of the recovery, as given by Theorem, in Y .
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How it works

♣ Gaussian Setup

• A: Gaussian 161 × 256 with normalized columns

• ‖ · ‖: {u : ‖u‖ ≤ 1} =

{
Av :

|v1| ≤ 1, |v2 − v1| ≤ 1
|vj+1 − 2vj + vj−1| ≤ 1 ∀j

}

• ǫ = 0.01

♣ Convolution Setup

• A: 2D signal [xij ]0≤i ,j≤15 is convolved with kernel [Kij ]−7≤i ,j≤7. The
output is observed on the “deficient” grid {1 ≤ i ≤ 15,0 ≤ j ≤ 15},
which results in a linear mapping x 7→ Ax : R256 → R

240.
• ‖ · ‖: {u : ‖u‖ ≤ 1} = {Av : v ∈ V}
• V : all functions v ∈ R(Z16 × Z16) with zero mean satisfying
‖∆2v‖∞ ≤ 1
• ∆: discrete Laplacian on R(Z16 × Z16)
• ǫ = 0.01
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How it works (continued)

Empirical Averages of Recovery Errors, Gaussian A

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

 

 

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

 

 

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

1 2 3 4 5 6 7 8
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

ℓ∞ error vs. δ
σ = 0.1, s = 2,

α = 0.2, ‖x‖1 = 10

ℓ∞ error vs. σ
δ = 0.01, s = 2,

α = 0.2, ‖x‖1 = 10

ℓ∞ error vs. s
δ = 0.01, σ = 0.1,

α = 0.1s, ‖x‖1 = 5s

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

 

 

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

 

 

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

 

 

Lasso
Dantzig Selector
Penalized Recovery
Regular Recovery

ℓ1 error vs. δ
σ = 0.1, s = 2,

α = 0.2, ‖x‖1 = 10

ℓ1 error vs. σ
δ = 0.01, s = 2,

α = 0.2, ‖x‖1 = 10

ℓ1 error vs. s
δ = 0.01, σ = 0.1,

α = 0.1s, ‖x‖1 = 5s

• Winners: Lasso and Penalized ℓ1 Recovery
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How it works (continued)

Empirical Averages of Recovery Errors, Convolution A
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• Winner: Penalized ℓ1 Recovery
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ℓ1 minimization via deterministic and randomized first
order algorithms

♣ Problems of ℓ1 minimization arising in Signal Processing

Opt = min
z

{‖z‖1 : ‖Az − b‖p ≤ δ} [p = ∞ or p = 2]

may have dense sensing matrices A with sizes in the range of 104 -
105 and more. Whenever this is the case, an iteration of every
known polynomial time algorithm becomes too time consuming.

♠ At present, the most attractive alternative to IP methods in the
extremely large-scale ℓ1 minimization is offered by computationally
cheap First Order methods.
♠ In FOMs, the effort per iteration is dominated by computing O(1)
matrix-vector products involving A and AT , which is much easier
than solving systems of linear equations of sizes comparable with
those of A, as required in IPMs.
♠ One can further simplify an iteration by replacing precise
matrix-vector multiplications by their randomized versions.
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Limits of performance of FOMs

♠ FOMs are provably badly suited for solving large-scale problems
to high accuracy.
However: FOMs can be theoretically and practically efficient when
medium accuracy solutions are sought. In this case, FOMs under
favorable circumstances (e.g., in ℓ1 minimization) exhibit nearly
dimension-independent rate of convergence, which is crucial in
large-scale applications.
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The approach

Opt = minz {‖z‖1 : ‖Az − b‖p ≤ δ} [p = ∞ or p = 2] (ℓ1)

The strategy

♣ The state-of-the-art complexity results on the first order methods
suggest the following strategy:

♠ The problem of interest (ℓ1) is reformulated as
1

Opt = max
{
ρ : Φ(ρ) := min

x,‖x‖1≤1
‖Ax − ρb‖p − δρ

= min
x:‖x‖1≤1

max
y :‖y‖ p

p−1
≤1

yT (Ax − ρb)− δρ≤ 0
}

• The solution is found by a Newton-type root finding routine as
applied to the master problem max {ρ : Φ(ρ) ≤ 0}

• (Approximate) information on Φ(·) used by root finding is given
by the Mirror Prox FOM [Nem.’04,Ioud.&Kil.-Karz.&Nem.’10] as
applied to the bilinear saddle point problem

Φ(ρ) = min
x:‖x‖1≤1

max
y :‖y‖p∗≤1

[
yT (Ax − ρb)− δρ

]
, p∗ =

p
p−1
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The approach (continued)

Acceleration by randomization

♣ With our approach, ℓ1-minimization reduces to a “small series” of
bilinear saddle point problems

minx∈X maxy∈Y [〈a, x〉+ 〈b, y〉+ 〈y ,Ax〉] (S)
♠ When solving (S) by a FOM, the main effort is to compute
matrix-vector products involving A and AT . These computations are
easy to randomize: to estimate Bu, we

• treat the vector abs[u]
‖u‖1

as a probability distribution on the set of
columns of B,

• draw at random a column B of B. The vector ‖u‖1sign(u)B is
the desired unbiased estimate of Bu.

♣ Randomization simplifies dramatically an iteration, while
increasing the number of iterations required to get an ǫ-solution.
In a meaningful range of problem sizes and desired accuracies, the
tradeoff between iteration complexity and iteration count is in favor
of randomization.
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Results, Deterministic case

Theorem [Ioud.&Nem.’09]

Consider a feasible and nontrivial (‖b‖p ≥ 2δ) ℓ1 minimization
problem

Optp = min
z

{‖z‖1 : ‖Az − b‖p ≤ δ} (ℓ1)

with A ∈ R
m×n and p ∈ {2,∞}, and let

‖A‖1,p = maxj ‖Colj [A]‖p.
Given ǫ, 0 < ǫ < ‖A‖1,pOptp, one can find an ǫ-solution xǫ to (ℓ1):

‖xǫ‖1 ≤ Optp & ‖Axǫ − b‖p ≤ δ + ǫ

in no more than
(

Ωp‖A‖1,pOptp
ǫ

)
ln
(

Ωp‖A‖1,pOptp
ǫ

)
steps, where

Ωp = O(1) ·
{ √

ln(m) ln(n), p = ∞√
ln(n), p = 2

.

Computational effort per step is dominated by the necessity to
multiply O(1) vectors by A and AT .
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How it works: ℓ1 minimization by Deterministic MP

x̂ ≈ argmin
x

{‖Ax − b‖∞ : ‖x‖1 ≤ 1}
⇔ min

‖x‖1≤1
max
‖y‖1≤1

yT (Ax − b)
[

A: random m × n submatrix of n × n D.F.T. matrix
b: ‖Ax∗ − b‖∞ ≤ δ = 5.e-3 with 16-sparse x∗, ‖x∗‖1 = 1

]

Errors CPU
m × n Method ‖x∗ − x̂‖1 ‖x∗ − x̂‖2 ‖x∗ − x̂‖∞ sec

512 × 2048 DMP 0.005 0.002 0.001 3.3
IP 0.039 0.006 0.002 321.6

1024 × 4096 DMP 0.010 0.003 0.002 3.5
IP Out of space (2GB RAM)

4096 × 16384 DMP 0.006 0.003 0.002 46.4
IP not tested

• DMP: Deterministic Mirror Prox utilizing FFT
• IP: Commercial Interior Point LP solver mosekopt
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How it works (continued)
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How it works (continued)

Situation and Goal
We observe randomly selected pixels in a 256 × 256 image X at
sampling rate 33% and want to recover the image.

Approach

• The underlying signal is the vector x of coefficients of X in a 2D
wavelet basis: X = Ux , with n × n orthogonal U, n = 65,536.
• Observed part of the image is y = Ax with the m = 21,789 ≈ n/3
rows of A selected at random from rows of U.
Note: A is rather dense (3.4% ≈ 5.3 · 107 nonzeros).
• The recovery is Xǫ = Uxǫ,

xǫ :
{

‖xǫ‖1 ≤ min{‖z‖1 : Az = y}
‖Axǫ − y‖2 ≤ ǫ‖y‖2

• Multiplication by A and AT takes time linear in n
⇒we are in an ideal position to apply deterministic first order
methods
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X (0.0647)
Steps: 328 Calls†:918

CPU= 99 sec

X (0.0271)
Steps: 947 Calls: 2,682

CPU= 290 sec

X (0.0075)
Steps: 4,746 Calls: 13,469

CPU= 1460 sec
† Call: a pair of matrix-vector multiplications (x , y) 7→ (Ax ,AT y).
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Acceleration by Randomization

Theorem [Ioud.&Kil.-Karz.&Nem.’10]

Consider a feasible problem
Optp = min

z
{‖z‖1 : ‖Az − b‖p ≤ δ} (ℓ1)

with A ∈ R
m×n and p ∈ {2,∞}, and let ǫ ∈ (0, ‖A‖1,pOptp] be given.

Then, for every χ ∈ (0,1/2],
(i) In the case of p = ∞, assuming δ small enough (namely,

2δ ≤ ‖b‖∞), an ǫ-solution to (ℓ1) can be found, with confidence
≥ 1 − χ, in at most

O(1)

[√
ln(m) ln(n)‖A‖1,∞Opt∞

ǫ
ln

(√
ln(m) ln(n)‖A‖1,∞Opt∞

ǫχ

)]2

steps of a randomized algorithm, with effort per step dominated by
the necessity to extract from A O(1) columns and rows.

Note: Setting ω = ǫ/(‖A‖1,∞Opt∞) and modulo logarithmic factors,
randomization rises the iteration count from O(ω−1) to O(ω−2),
while reducing the effort per iteration from O(mn) to O(m + n) a.o.
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Acceleration by Randomization (continued)

Optp = min
z

{‖z‖1 : ‖Az − b‖p ≤ δ} (ℓ1)

Theorem (continued)

(ii) In the case of p = 2, assuming δ small enough (namely,
2
√

mδ ≤ ‖b‖2), an ǫ-solution to (ℓ1) can be found with confidence
≥ 1 − χ in at most

O(1)

[√
ln(n)Γ(A)‖A‖1,2Opt2

ǫ
ln

(√
ln(n)Γ(A)‖A‖1,2Opt2

ǫχ

)]2

,

Γ(A) =
√

m‖A‖1,∞/‖A‖1,2

steps of a randomized algorithm with the same as in (i) effort per
step.
• With randomized preprocessing

[A,b] ֋ [UDiag{ξ}A,UDiag{ξ}b]
(U is an appropriate orthogonal matrix, ξ is a random ±1 vector),
with confidence ≥ 1 − χ one has Γ(A) ≤ O(1)

√
ln(mn/χ). The cost

of this preprocessing does not exceed O(1)mn ln(m) a.o.
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Acceleration by Randomization: how it works

Optp = min
z

{‖z‖1 : ‖Az − b‖p ≤ δ} (ℓ1)

• A: randomly drawn m × n matrix with i.i.d. entries taking values
±m−1/p with probabilities 1/2
• b = Ax∗ + ξ with randomly selected sparse (⌊√n⌋ nonzeros)
vector x∗, ‖x∗‖1 = 1, and randomly generated ξ, ‖ξ‖p = δ = 0.005.
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Acceleration by Randomization: how it works

♠ Uniform fit p = ∞, ǫ = 0.0025

DMP SMP

Size of A Calls CPU FCalls CPU CPU,DMP
CPU,SMP

min 811 32.5 88.8 22.5 1.238
1000 x 2000 mean 1500 61.0 130.0 31.6 1.975

max 2339 98.1 188.2 44.7 3.325
min 963 142.3 84.8 77.1 1.846

2000 x 4000 mean 2340 346.2 121.0 105.2 3.243
max 4217 622.4 158.8 135.9 5.747
min 1697 992.3 69.2 271.3 2.565

4000 x 8000 mean 2570 1470.7 90.2 348.0 4.368
max 4380 2516.6 104.4 394.5 7.324

Deterministic algorithm DMP vs. randomized algorithm SMP
5 experiments per each size.

• Calls: # of matrix-vector multiplications in DMP run
• FCalls: equivalent # of full matrix-vector multiplications

in SMP run
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Acceleration via Randomization: how it works

♠ ℓ2 fit p = 2, ǫ = 0.0025

DMP SMP

Size of A Calls CPU FCalls CPU CPU,DMP
CPU,SMP

min 321 12.5 102.2 29.9 0.374
1000 x 2000 mean 719 28.3 139.3 43.2 0.703

max 916 35.5 194.9 60.0 1.187
min 515 74.2 54.1 68.4 0.763

2000 x 4000 mean 616 89.0 63.6 80.9 1.136
max 720 104.5 71.0 97.3 1.528
min 526 293.3 42.6 195.6 1.257

4000 x 8000 mean 756 424.6 45.2 210.7 2.045
max 935 526.8 48.6 233.3 2.625

Deterministic algorithm DMP vs. randomized algorithm SMP
5 experiments per each size.

• Calls: # of matrix-vector multiplications in DMP run
• FCalls: equivalent # of full matrix-vector multiplications

in SMP run
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Acceleration by Randomization: how it works

♠ Uniform and ℓ2 fits

‖x̂ − x∗‖r
p Steps Calls FCalls CPU ‖Ax̂ − b‖p r = 1 r = 2 r = ∞

DMP 2 21 45 45 7229
0.0350≈
0.6‖b‖p

1.21
121%

0.095
86%

0.020
76%

SMP 2 9104 13,648 29.4 7252
0.0080≈
0.1‖b‖p

0.167
17%

0.015
13%

0.003
10%

DMP ∞ 19 40 40 7364
0.1638≈
0.6‖b‖p

1.25
125%

0.113
97%

0.033
98%

SMP ∞ 12006 17816 19.3 6050
0.0075≈
0.03‖b‖p

0.090
9%

0.007
6%

0.002
6%

Experiments with 32,000 × 64,000 matrix
≈ 7,200 sec CPU limit

Percents: ‖x̂ − x∗‖/‖x∗‖r
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Acceleration by Randomization: how it works
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DMP-based (left) and SMP-based (right) recovery of sparse
signals in the 32,000 × 64,000 experiments.

Circles: true signal Crosses: recovery
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