On the Geometry of Lift-and-Project

Egon Balas Carnegie Mellon University

Intersection cuts (1971)

•
$$x = \bar{x} - \sum_{j \in J} \bar{a}_j s_j, \quad x \in \mathbb{Z}^q_+, s \in \mathbb{R}^n_+,$$

 $\square LP \text{ cone } C \subseteq \mathbb{R}^n_+$

• *S* : closed convex set such that

(i) $\bar{x} \in \text{ int } S$ (ii) int S contains no feasible integer point

• For $j \in J$, $s_j^* := \max\{s_j : \bar{x} - \bar{a}_j s_j \in S\}$ with bd S

Intersection cut from $S : \alpha s \ge 1$, where $\alpha_j = \frac{1}{s_j^*}$, $j \in J$, cuts off \bar{x} but no feasible integer point.

Figure: 2

Intersection cut

- Disjunctive cut \longrightarrow from $0 < x_k < 1$ from $x_k < 0 \lor x_k > 1$
- Disjunctive programming: optimization over unions of polyhedra:

$$\begin{pmatrix} \tilde{A}x \ge \tilde{b} \\ -x_k \le 0 \end{pmatrix} \lor \begin{pmatrix} \tilde{A}x \ge b \\ x_k \ge 1 \end{pmatrix}$$
(1)

- Lift-and-Project: convex hull of (1) in (2m + n)-space (CGLP) is tighter than the LP relaxation
- Optimizing CGLP through pivots in the LP tableau replaces

an intersection cut from $0 \le x_k \le 1$, where

$$x_k = a_{k0} - \sum_{j \in J} a_{kj} x_j$$

with an intersection cut from $0 \le x_k \le 1$, where

$$x_k = \tilde{a}_{k0} - \sum_{j \in \mathbf{L}} \tilde{a}_{kj} x_j$$

Lift-and-project executed in the LP tableau

• M. Perregaard	XPRESS	2003
• P. Bonami 3 variants (one v	COIN-OR with iterative disjunctive r	2006-2009 nodularization)
• F. Wesselmann	MOPS	2009
• T. Kis	extension to arbitrary 2-term disjunctions	2009

Comparison of L&P with GMI cuts

On the hardest 1/3 of instances,

- Gap closed by 10 rounds of cuts
- Time for a complete run (B&Bd)

increased by > 50%reduced by > 50%

Intersection cuts corresponding to Lift-and-Project pivot sequence

Intersection cuts from Infeasible Solutions (MIG Cuts from Infeasible Tableaus)

Theorem

Let v be the vertex corresponding to the current basic solution

$$x_i = \bar{a}_{i0} - \sum_{j \in J} \bar{a}_{ij} s_j$$
 $i \in I$

and let $\alpha x \ge 1$ be the intersection cut derived from source row k.

Let v' be the vertex corresponding to the solution obtained by a pivot on $\bar{a}_{i_*j_*}$, and let $\alpha' x \ge 1$ be the intersection cut derived from the same source row transformed by the pivot. Then

 $\alpha' x \ge 1$ strictly dominates $\alpha x \ge 1$ if and only if (i) the facet of P defined by $s_{j_*} \ge 0$ is a simplex (ii) s_j enters the basis at a negative value $(s_{j_*} = \frac{\bar{a}_{i_*0}}{\bar{a}_{i_*i_*}} < 0)$

Generalized Intersection Cuts

 Generating intersection-type cuts from non-conic polyhedra

$$\begin{split} P &:= \{x \in \mathbb{R}^n : Ax \ge b, \ x \ge 0\} \\ P_I &:= \{x \in P : x_j \in \mathbb{Z}, \ j \in N_1 \subseteq N\} \\ C_1 &- \text{ polyhedral cone with apex at } v^1, \ P \subset C_1 \\ S &- \text{ convex set, } v^1 \in \text{int } S, \ P_I \cap \text{int } S = \emptyset \\ H^+ &- \text{ halfspace, facet defining for } P, \ v^1 \in \text{int } H^+ \end{split}$$

 C_1

 $C := C_1 \cap H^+$ non-conic polyhedron

Theorem 1. If k extreme rays of C_1 , $1 \le k \le n-1$, intersect H before bd S, then C has (k+1)(n-k) extreme rays.

Let $\alpha^1 x \ge 1$ be the intersection cut from C_1 and S.

Assumption. S is bounded, $q^j \notin H$ for j = 1, ..., q, and for every edge e_h of $C_1 \cap \{x : \alpha^1 x = 1\}$ intersected by H, relint $(e_h) \cap \mathrm{bd} S = \emptyset$

Let r_j , $j \in Q$, be the extreme rays of C, and $p^j := r_j \cap \text{bd } S$, $j \in Q$. Let $Q_1 := \{j \in Q : r_j \text{ is an extreme ray of both } C_1 \text{ and } C\}$, $Q_2 = Q \setminus Q_1$

Theorem 2. Every p^j , $j \in Q$, satisfies $\alpha^1 p^j \ge 1$. Every p^j , $j \in Q_2$, satisfies $\alpha^1 p^j > 1$.

 q^1, q^2, q^3 – intersection points of extreme rays of C_1 with bd **S** p^1, p^2, p^3 – intersection points of extreme rays of **C** with bd **S**

Theorem 3. Every basic optimal solution to

$$\begin{array}{ll} \min & \alpha v^1 \\ & \alpha p^j \geq 1, \quad j \in Q \end{array}$$

defines a minimal valid inequality $\bar{\alpha}x \ge 1$ for P_I that strictly dominates $\alpha^1x \ge 1$

Proof. (a) (1) has a finite minimum (b) for every basic optimal $\bar{\alpha}$, $\bar{\alpha}x \ge 1$ is a minimum valid inequality (c) strict dominance follows from $\bar{\alpha}_j < \alpha_j^1$ for all $j \in Q_2$

New paradigm for generating cuts

- \bullet Instead of storing cuts, we can store the p^{j} and generate cuts as needed
- Non-iterative (non-recursive) way of generating higher rank cuts
- The polyhedron in α is the reverse polar of $\operatorname{conv} \{p^j : j \in Q\}$

Generating the intersection points p^{j}

 $x = \bar{a}_0 - \sum_{i \in J} \bar{a}_i s_i$ basic solution for $C_1 = C(\bar{a}_0)$ $r_i = \{x \in \mathbb{R}^n : \overline{a}_0 - \overline{a}_i s_i, s_i \ge 0\}, j \in J$ extreme rays of $C(\overline{a}_0)$ $H^+ = \{x : x_h \ge 0\}, h \text{ basic with } \bar{a}_{h0} > 0 \ (\bar{a}_0 \in \operatorname{int} H^+)$ $r_i \cap H^+ \neq \emptyset \Leftrightarrow \bar{a}_{hi} > 0$ For $j \in J^- := \{j \in J : \bar{a}_{hi} \leq 0\}, r_i \cap H = \emptyset$ hence r_i is an infinite edge of *C*: $r_i \cap \operatorname{bd} S = p^j = q^j, \ j \in J^-(=Q_1)$

(no new intersection points – no pivots)

For $j \in J^+ := \{j \in J : \bar{a}_{hj} > 0\}, r_j \cap H = \bar{a}_0 - \bar{a}_j \tilde{s}_j, \tilde{s}_j = \bar{a}_{h0}/\bar{a}_{hj}$

Pivot on
$$\bar{a}_{hj} : x = \tilde{a}_0 - \sum_{\ell \in J \setminus \{j\}} \tilde{a}_\ell s_\ell - \tilde{a}_h x_h$$

New vertex of $C : \tilde{a}_0$, new cone $C(\tilde{a}_0)$
Extreme rays of $C(\tilde{a}_0) : r_\ell := \{x \in \mathbb{R}^n : x = \tilde{a}_0 - \tilde{a}_\ell s_\ell, s_\ell \ge 0\}$
 k of these r_ℓ contain (finite) edges of C
 $n - k$ are new infinite edges of C , with $p^\ell := r_\ell \cap \mathrm{bd}\,S, \ \ell \in Q_2$

Repeating this for every $j \in J^+$ gives k(n-k) new p^{ℓ} , $\ell \in Q_2$

(at the cost of (1 + k)(n - k) pivots)

Iterate the procedure to completion

Typical iteration:

- Activate a new hyperplane H' to replace C with $C' := C \cap H'^+$
- Generate the new vertices v'_j created by intersecting H' with rays r_j of C
- Find the new extreme rays $r_{\ell(j)}$ and their intersection points $p^{\ell(j)}$ with $\operatorname{bd} S$
- Update Q by removing those p^j cut off by H' and adding the intersection points $p^{\ell(j)}$ with $\operatorname{bd} S$

The procedure is complete when all facets of P have been activated.

At that point $p^{j \in P}$ for all j in the current set.