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Intersection cuts (1971)

• x = x̄ −
∑

j∈J

āj sj , x ∈ Z
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LP cone C ⊆ R
n
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• S : closed convex set such that

(i) x̄ ∈ int S
(ii) int S contains no feasible integer point

• For j ∈ J, s∗j := max{sj : x̄ − āj sj ∈ S}
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Intersect
extreme rays of C

with bd S

Intersection cut from S : αs ≥ 1, where αj =
1
s∗
j

, j ∈ J, cuts off x̄ but

no feasible integer point.
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•
Intersection cut
from 0 ≤ xk ≤ 1

−→
Disjunctive cut
from xk ≤ 0 ∨ xk ≥ 1

• Disjunctive programming: optimization over unions of polyhedra:
(

Ãx ≥ b̃

−xk ≤ 0

)

∨

(

Ãx ≥ b

xk ≥ 1

)

(1)

• Lift-and-Project:
convex hull of (1) in (2m + n)-space (CGLP)
is tighter than the LP relaxation

• Optimizing CGLP through pivots in the LP tableau
replaces

an intersection cut from 0 ≤ xk ≤ 1, where

xk = ak0 −
∑

j∈J

akjxj

with an intersection cut from 0 ≤ xk ≤ 1, where

xk = ãk0 −
∑

j∈L

ãkjxj



Lift-and-project executed in the LP tableau

• M. Perregaard XPRESS 2003

• P. Bonami COIN-OR 2006-2009
3 variants (one with iterative disjunctive modularization)

• F. Wesselmann MOPS 2009

• T. Kis extension to arbitrary
2-term disjunctions

2009

Comparison of L&P with GMI cuts

On the hardest 1/3 of instances,

• Gap closed by 10 rounds of cuts increased by > 50%
• Time for a complete run (B&Bd) reduced by > 50%



Intersection cuts corresponding to Lift-and-Project pivot
sequence

v1

cut 1



Intersection cuts from Infeasible Solutions
(MIG Cuts from Infeasible Tableaus)

v1

v2

cut 2



Intersection cuts from Infeasible Solutions
(MIG Cuts from Infeasible Tableaus)

v3

v1

v2

cut 3



Theorem

Let v be the vertex corresponding to the current basic solution

xi = āi0 −
∑

j∈J

āijsj i ∈ I

and let αx ≥ 1 be the intersection cut derived from source row k .

Let v ′ be the vertex corresponding to the solution obtained by a
pivot on āi∗j∗ , and let α′x ≥ 1 be the intersection cut derived from
the same source row transformed by the pivot. Then

α′x ≥ 1 strictly dominates αx ≥ 1 if and only if

(i) the facet of P defined by sj∗ ≥ 0 is a simplex

(ii) sj enters the basis at a negative value (sj∗ =
āi∗0
āi∗j∗

< 0)



v1

v2

cut 1



v1

v2

cut 1

cut 2



v1

v2

cut 1

cut 2

new cut



Generalized Intersection Cuts

• Generating intersection-type cuts
from non-conic polyhedra

P := {x ∈ R
n : Ax ≥ b, x ≥ 0}

PI := {x ∈ P : xj ∈ Z, j ∈ N1 ⊆ N}

C1 - polyhedral cone with apex at v1, P ⊂ C1

S - convex set, v1 ∈ intS , PI ∩ int S = ∅

H+ - halfspace, facet defining for P , v1 ∈ intH+

C := C1 ∩ H+ non-conic polyhedron



cone C1

Hyperplane H



cone C1

Hyperplane H



Theorem 1. If k extreme rays of C1, 1 ≤ k ≤ n − 1, intersect H
before bdS , then C has (k + 1)(n − k) extreme rays.

Let α1x ≥ 1 be the intersection cut from C1 and S .

Assumption. S is bounded, qj 6∈ H for j = 1, . . . , q, and for every
edge eh of C1 ∩ {x : α1x = 1} intersected by H,
relint (eh) ∩ bdS = ∅



Let rj , j ∈ Q, be the extreme rays of C , and

pj := rj ∩ bdS , j ∈ Q.

Let Q1 := {j ∈ Q : rj is an extreme ray of both C1 and C},
Q2 = Q \Q1

Theorem 2. Every pj , j ∈ Q, satisfies α1pj ≥ 1.

Every pj , j ∈ Q2, satisfies α
1pj > 1.
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q1, q2, q3 – intersection points of extreme rays of C1 with bdS

p1, p2, p3 – intersection points of extreme rays of C with bdS



Theorem 3. Every basic optimal solution to

min αv1

αpj ≥ 1, j ∈ Q

defines a minimal valid inequality ᾱx ≥ 1 for PI that strictly
dominates α1x ≥ 1

Proof. (a) (1) has a finite minimum

(b) for every basic optimal ᾱ, ᾱx ≥ 1 is a minimum valid inequality

(c) strict dominance follows from ᾱj < α1
j for all j ∈ Q2



New paradigm for generating cuts

• Instead of storing cuts, we can store the pj and generate cuts
as needed

• Non-iterative (non-recursive) way of generating higher rank cuts

• The polyhedron in α is the reverse polar of conv {pj : j ∈ Q}



Generating the intersection points pj

x = ā0 −
∑

j∈J

ājsj basic solution for C1 = C (ā0)

rj = {x ∈ R
n : ā0 − ājsj , sj ≥ 0}, j ∈ J extreme rays of C (ā0)

H+ = {x : xh ≥ 0}, h basic with āh0 > 0 (ā0 ∈ intH+)

rj ∩ H+ 6= ∅ ⇔ āhj > 0

For j ∈ J− := {j ∈ J : āhj ≤ 0}, rj ∩ H = ∅ hence rj is an infinite
edge of C :

rj ∩ bdS = pj = qj , j ∈ J−(= Q1)

(no new intersection points – no pivots)



For j ∈ J+ := {j ∈ J : āhj > 0}, rj ∩ H = ā0 − āj s̃j , s̃j = āh0/āhj

Pivot on āhj : x = ã0 −
∑

ℓ∈J\{j}

ãℓsℓ − ãhxh

New vertex of C : ã0, new cone C (ã0)

Extreme rays of C (ã0) : rℓ := {x ∈ R
n : x = ã0 − ãℓsℓ, sℓ ≥ 0}

k of these rℓ contain (finite) edges of C

n− k are new infinite edges of C , with pℓ := rℓ ∩ bdS , ℓ ∈ Q2

Repeating this for every j ∈ J+ gives k(n − k) new pℓ, ℓ ∈ Q2

(at the cost of (1 + k)(n − k) pivots)



Iterate the procedure to completion

Typical iteration:

• Activate a new hyperplane H ′ to replace C with
C ′ := C ∩ H ′+

• Generate the new vertices v ′j created by intersecting H ′ with
rays rj of C

• Find the new extreme rays rℓ(j) and their intersection points

pℓ(j) with bdS

• Update Q by removing those pj cut off by H ′ and adding the
intersection points pℓ(j) with bdS

The procedure is complete when all facets of P have been
activated.

At that point pj∈P for all j in the current set.


