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Intro

Introduction

A Mixed-Integer Quadratic Program with Box Constraints
(MIQPB) is a problem of the form:

min{cTac+:cTQa:: <z <u, ;,€R(GE€C), 5, €Z(icl)},

where c€ Z", Q € Z"", 1 € Z" and u € Z".

We consider the (very difficult) case in which the objective is
permitted to be non-convex.
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Introduction (cont.)

MIQPB has two well-known (and AN'P-hard) special cases:

@ When all variables are constrained to be binary, we have
Unconstrained Boolean Quadratic Programming (UBQP).

@ When all variables are continuous, we have Non-Convex
Quadratic Programming with Box Constraints (QPB).

UBQP is a classical problem in combinatorial optimization, but
QPB is a classical problem in global optimization.
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Introduction (cont.)

Why look at (non-convex) MIQPB?
@ Most papers on MINLP focus on the convex case.

e Existing software for non-convex MINLP (e.g., BARON) can
cope only with tiny instances.

@ To tackle non-convex MINLP properly, we will need to
combine MIP techniques with global optimization techniques.

@ Non-convex MIQPB is a good place to start.
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Introduction (cont.)

What am | actually doing?
@ | started by taking known polyhedral results for UBQP and
adapting them to QPB (joint work with Sam Burer).
@ The convex sets associated with QPB turned out to be much
more complicated than the polytopes associated with UBQP.
@ Now I'm looking at the general mixed-integer case, and things
are even more complicated!



UBQP
The all-binary case: UBQP

There is a huge literature on UBQP. Some selected facts:
e Equivalent to max-cut problem (folklore).
@ Thus, strongly N'P-hard (Garey et al., 1976).
@ A few polynomial cases known.
@ People have looked at LP, CQP, SOCP and SDP relaxations.
e SDP approach is current winner (Rendl et al., 2007).



UBQP

The all-binary case (cont.)

The associated family of polytopes was introduced by Padberg:
Definition (Padberg, 1989)

The boolean quadric polytope BQP, is:

conv {(x,y) € {0, 1}n+(’2’) cyj =iz (1<i<j< n)} .

Here, y;; is a new binary variable representing the product z;x;.
(No need to define y;;, since :c? = 0 when z; binary.)



UBQP

The all-binary case (cont.)
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UBQP

The all-binary case (cont.)

o Padberg (1989) introduced facet-inducing inequalities, called
triangle, clique and cut inequalities.

@ Other inequalities were found by Sherali et al. (1995), Boros
& Hammer (1991,1993)...

@ Even more can be derived from known results on the cut
polytope (Deza & Laurent, 1997).

@ But a complete description is known only for n < 7.



QPB

The all-continuous case: QPB

There is also a huge literature on QPB. Some facts:

e UBQP can be reduced to concave QPB (folklore).

@ So QPB (continuous) is ‘harder’ than UBQP (discrete)!

@ People have looked at LP and SDP relaxations.

e Traditional method is ‘branch-and-reduce’ (Tawarmalani &
Sahinidis).

@ But there are SDP approaches (Burer & Vandenbussche,
2007).



QPB

The all-continuous case (cont.)

We can assume [; = 0 and u; = 1 for all 7. So the associated
convex set is:

QPB, = conv{(z,9) € 0,113+ yyy =iy (1 <i < j <m)}.

As before, y;; represents x;x;. (We now need to define y;; as well.)



QPB

The all-continuous case (cont.)
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QPB

The all-continuous case (cont.)

@ Some simple inequalities can be derived from the
Reformulation-Linearization Technique of Sherali & Adams.

@ More inequalities can be derived from fact that (i) (alj)T is psd
(Shor).

e Yajima & Fujie (1998) showed that Padberg's clique and cut
inequalities are valid for QPB,,.

@ Anstreicher & Burer (2007) showed that the RLT and psd
inequalities give a complete description for n = 2 (not trivial!).
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The all-continuous case (cont.)

Burer & L. (2008) give several new results:
@ RLT, clique and cut inequalities induce facets.
@ Psd inequalities induce maximal faces.
@ All valid inequalities for BQ P, are valid for QPB,,.
@ But not every BQP facet yields a QPB facet.

Yet we still couldn’t get a complete description for n = 3!



The all-integer case: IQPB

Now let's move on to the all-integer case (C' = 0).
@ There is no literature.

@ Strongly N'P-hard even in convex, unconstrained case. (Easy
reduction from UBQP or CVP)

e Complexity status unknown even when n = 2. (But trivial to
solve in pseudo-polynomial time.)

@ Can assume [; = 0 for all 3.



The all-integer case (cont.)

If Zazl'z + Z ﬂz]yw <7

1<i<j<n

is valid for QP B,,, then the ‘stretched’ inequality

L Bii
Z%wiﬁ‘ Z u'zhyijgf}’

U
i=1 " 1<i<j<n 7

is valid for IQPB(n,u).




The all-integer case (cont.)

If an inequality induces a facet of QPB,,, then the stretched
inequality induces a facet of [QPB(n,u).

(Easy to prove if the inequality induces a facet of BQP,, as well.)

In any case, stretched inequalities are not enough even when
n=1..



The all-integer case (cont.)
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The all-integer case (cont.)

To make progress, we use split disjunctions of the form:
(wTe <s)v@le>s+1)

where v € Z" and s € Z. These imply:
(vTe —s)(v e —s—1)>0.

From this we obtain ‘split’ inequalities of the form:

n

szyu + Z vy — (28)vT x4 s(s +1) > 0.

i=1 1<i<j<n

Gives complete description for n = 1. But not for n = 2!



IQPB
The all-integer case: standard ‘split’
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IQPB

The all-integer case: non-standard ‘split’
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The all-integer case (cont.)

These non-standard splits yield expressions of the form:
(aTx —b)(cTz—d) > 0.
Linearising, we obtain new facets of IQPB(n,u).

According to PORTA, there are even more facets when n = 2!



The general case: MIQPB

Finally, we have the MIQPB itself.
@ We get all of the 'stretched’ inequalities.
@ The ‘split’ inequalities are still valid provided v; = 0 for all
ieC.
@ The ‘non-standard split’ inequalities are still valid provided
a; =0 foralli e C.



The general case: standard ‘split’
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MIQPB
The general case: non-standard ‘split’
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Conclusion

Summary

@ We understand BQ P, quite well, and QP B,, reasonably well.

e But IQPB(n,u) and MIQPDB(n,u) are extremely complex,
even for n = 2.

@ An important open question: can IQPB or MIQPB be solved
in polynomial time when n = 27

@ If so, can we get a complete description for n = 27



Conclusion

One Last Remark

Results on MIQPB can be applied to general MIQPs! Here's how:
@ Suppose our constraints are Az < b, | <z < u.
@ Add slack variables to yield Ax + Is = b.
e Compute upper bounds s < v (e.g., by solving LPs or IPs).
@ Decide whether slacks are continuous or integer.
°

Derive valid inequalities for [ <z <wu, 0 < s < /.

Project back to original space.

Does this give a new (stronger) version of the Sherali-Adams and
Lovasz-Schrijver operators?
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