A Constructive Characterization of the Split Closure of a Mixed Integer Linear Program

Juan Pablo Vielma

June 26, 2006

Review: MIP and Relaxation

We study the MIP feasible region

$$
P_{I}:=\left\{x \in P \subseteq \mathbb{R}^{n}: x_{j} \in \mathbb{Z} \quad \forall j \in N_{I}\right\}
$$

where $N=\{1, \ldots, n\}, N_{I} \subseteq N$ and

$$
P:=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\} \neq \emptyset
$$

where $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, M=\{1, \ldots, m\}$.

Let

$$
\begin{array}{r}
\mathcal{B}_{r}^{*}:=\left\{B \subseteq M:|B|=r \text { and }\left\{a_{i}\right\}_{i \in B}\right. \text { are linearly } \\
\text { independent }\} .
\end{array}
$$

where $r=\operatorname{rank}(A)$ and a_{i}. corresponds to row i of A. For $B \in \mathcal{B}_{r}^{*}$ let \bar{B} be the sub-matrix of A induced by B and \bar{b} the sub-vector of b induced by B.

For $B \in \mathcal{B}_{r}^{*}$ let

$$
P(B):=\left\{x \in \mathbb{R}^{n}: \bar{B} x \leq \bar{b} \quad \forall i \in B\right\} \subseteq P .
$$

and $x(B)$ a particular, but arbitrarily selected, solution to $\bar{B} x=\bar{b}$.

Review: Valid Split Disjunctions for MIP

For $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{n+1}$ we have the split disjunction

$$
D\left(\pi, \pi_{0}\right):=\pi^{T} x \leq \pi_{0} \vee \pi^{T} x \geq \pi_{0}+1
$$

and associated feasible region

$$
F_{D\left(\pi, \pi_{0}\right)}:=\left\{x \in \mathbb{R}^{n}: \pi^{T} x \leq \pi_{0} \vee \pi^{T} x \geq \pi_{0}+1\right\}
$$

We are interested in $D\left(\pi, \pi_{0}\right)$ such that

$$
P_{I} \subseteq F_{D\left(\pi, \pi_{0}\right)} \subsetneq \mathbb{R}^{n}
$$

so we study
$\Pi_{0}^{n}\left(N_{I}\right):=\left\{\left(\pi, \pi_{0}\right) \in\left(\mathbb{Z}^{n} \backslash\{0\}\right) \times \mathbb{Z}: \pi_{j}=0, j \notin N_{I}\right\}$ and its projection into the π variables

$$
\Pi^{n}\left(N_{I}\right):=\left\{\pi \in \mathbb{Z}^{n} \backslash\{0\}: \pi_{j}=0, j \notin N_{I}\right\}
$$

Review: Split Closure

The split closure [6] of P_{I} is

$$
S C:=\bigcap_{\left(\pi, \cap^{n}\right)} \operatorname{conv}\left(P \cap F_{D\left(\pi, \pi_{0}\right)}\right) .
$$

Theorem 1. [6] SC is a polyhedron

For $B \in \mathcal{B}_{k}^{*}$ let

$$
S C(B):=\bigcap_{\left(\pi, \pi_{0}\right) \in \Pi_{0}^{n}\left(N_{I}\right)} \operatorname{conv}\left(P(B) \cap F_{D\left(\pi, \pi_{0}\right)}\right) .
$$

Theorem 2. [1] $S C=\bigcap_{B \in \mathcal{B}_{r}^{*}} S C(B)$
Theorem 3. [1] $S C(B)$ is a polyhedron for all $B \in \mathcal{B}_{k}^{*}$.
Corollary 1. [1] SC is a polyhedron

Neither [1] nor [6] give constructive proofs.

Review: Characterization of Split Cuts Proposition 1. [1,3,5] All non-dominated valid inequalities for $\operatorname{conv}\left(P \cap F_{D\left(\pi, \pi_{0}\right)}\right)$ are of the form $\delta\left(\mu, \pi, \pi_{0}\right)^{T} x \leq \delta_{0}\left(\mu, \pi, \pi_{0}\right)$ where

$$
\begin{aligned}
\delta\left(\mu, \pi, \pi_{0}\right):=\mu_{0}^{1} \pi+\sum_{i \in M} \mu_{i}^{1} a_{i} .= & -\mu_{0}^{2} \pi+\sum_{i \in M} \mu_{i}^{2} a_{i} \\
\delta_{0}\left(\mu, \pi, \pi_{0}\right):=\mu_{0}^{1} \pi_{0}+\sum_{i \in M} \mu_{i}^{1} b_{i}= & -\mu_{0}^{2}\left(\pi_{0}+1\right) \\
& +\sum_{i \in M} \mu_{i}^{2} b_{i}
\end{aligned}
$$

for $\mu_{0}^{1}, \mu_{0}^{2} \in \mathbb{R}_{+}$and $\mu^{1}, \mu^{2} \in \mathbb{R}_{+}^{m}$ solutions to

$$
\begin{align*}
\sum_{i \in M} \mu_{i}^{2} a_{i .}-\sum_{i \in M} \mu_{i}^{1} a_{i} & =\pi \tag{1}\\
\sum_{i \in M} \mu_{i}^{2} b_{i}-\sum_{i \in M} \mu_{i}^{1} b_{i}-\mu_{0}^{2} & =\pi_{0} \tag{2}\\
\mu_{0}^{1}+\mu_{0}^{2} & =1 \tag{3}\\
\mu_{0}^{2} & \in(0,1) \tag{4}\\
\mu_{i}^{1} \cdot \mu_{i}^{2} & =0
\end{align*}
$$

(5)

Applying Proposition 1 to $P(B)$

Proposition 2. For any $B \in \mathcal{B}_{r}^{*}$ if

$$
\begin{array}{ll}
\bar{B}^{T} \mu=\pi & \mu \in \mathbb{R}^{r} \\
\mu^{T} \bar{b} \notin \mathbb{Z} & \pi_{0}=\left\lfloor\mu^{T} \bar{b}\right\rfloor \tag{6}
\end{array}
$$

has no solution then $\operatorname{conv}\left(P(B) \cap F_{D\left(\pi, \pi_{0}\right)}\right)=P(B)$. If (6) has a (unique) solution $\bar{\mu}$ then $\operatorname{conv}\left(P(B) \cap F_{D\left(\pi, \pi_{0}\right)}\right)=\left\{x \in P(B): \delta(\bar{\mu}, B) x \leq \delta_{0}(\bar{\mu}, B)\right\}$ $\subsetneq P(B)$.
where $\delta(\bar{\mu}, B) x \leq \delta_{0}(\bar{\mu}, B)$ is defined in any of the following equivalent ways

$$
\begin{align*}
& \left(\bar{\mu}^{-}\right)^{T}(\bar{B} x-\bar{b})+\left(1-f\left(\bar{\mu}^{T} \bar{b}\right)\right)\left(\bar{\mu}^{T} \bar{B} x-\left\lfloor\bar{\mu}^{T} \bar{b}\right\rfloor\right) \leq 0 \tag{7}\\
& \left(\bar{\mu}^{+}\right)^{T}(\bar{B} x-\bar{b})-f\left(\bar{\mu}^{T} \bar{b}\right)\left(\bar{\mu}^{T} \bar{B} x-\left\lfloor\bar{\mu}^{T} \bar{b}\right\rfloor\right)+f\left(\bar{\mu}^{T} \bar{b}\right) \leq 0 \tag{8}\\
& |\bar{\mu}|^{T}(\bar{B} x-\bar{b})+\left(1-2 f\left(\bar{\mu}^{T} \bar{b}\right)\right)\left(\bar{\mu}^{T} \bar{B} x-\left\lfloor\bar{\mu}^{T} \bar{b}\right\rfloor\right)+f\left(\bar{\mu}^{T} \bar{b}\right) \leq 0^{*} \tag{9}
\end{align*}
$$

$\left(y^{-}=\max \{-y, 0\}, y^{+}=\max \{y, 0\}, f(y)=y-\lfloor y\rfloor\right.$ and operations over vectors are componentwise).

Proof. Apply Proposition 1 to " $P=P(B)$ ".

Just a convenient re-write of known properties of intersection cuts $[1,2,3]$.

Integer Lattices and Cuts from a Mixed Integer Farkas Lemma

Definition 1. Let $\left\{v^{i}\right\}_{i \in \mathcal{V}} \subseteq \mathbb{R}^{r}$ be a finite set of linear independent vectors. The lattice generated by $\left\{v^{i}\right\}_{i \in \mathcal{V}}$ is

$$
\begin{equation*}
\mathcal{L}:=\left\{\mu \in \mathbb{R}^{r}: \mu=\sum_{i \in \mathcal{V}} k_{i} v^{i} \quad k_{i} \in \mathbb{Z}\right\} \tag{10}
\end{equation*}
$$

Let $\bar{B}_{I} \in \mathbb{R}^{r \times\left|N_{I}\right|}$ and $\bar{B}_{C} \in \mathbb{R}^{r \times\left(n-\left|N_{I}\right|\right)}$ be the sub-matrices of \bar{B} corresponding to the integer and the continuous variables of P_{I}, then

Proposition 3. [8]For every $B \in \mathcal{B}_{r}^{*}$

$$
\begin{equation*}
\mathcal{L}(B):=\left\{\bar{\mu} \in \mathbb{R}^{r}: \bar{B}_{I}^{T} \bar{\mu} \in \mathbb{Z}^{\left|N_{I}\right|}, \quad \bar{B}_{C}^{T} \bar{\mu}=0\right\} \tag{11}
\end{equation*}
$$

is a lattice. If $\bar{\mu} \in \mathcal{L}(B)$ is such that $\bar{\mu}^{T} b \notin \mathbb{Z}$ then the inequality defined by

$$
\begin{equation*}
\left\lceil\bar{\mu}^{-}\right\rceil^{T}(\bar{B} x-\bar{b})+\left(1-f\left(\bar{\mu}^{T} \bar{b}\right)\right)\left(\bar{\mu}^{T} \bar{B} x-\left\lfloor\bar{\mu}^{T} \bar{b}\right\rfloor\right) \leq 0 \tag{12}
\end{equation*}
$$

is valid for $\left\{x \in P(B): x_{j} \in \mathbb{Z} \forall j \in N_{I}\right\}$.
Furthermore this inequality is not satisfied by $x(B)$.

Integer Lattices, Cuts from a Mixed Integer Farkas Lemma and Split Cuts

Every $\bar{\mu} \in \mathcal{L}(B)$ such that $\bar{\mu}^{T} \bar{b} \notin \mathbb{Z}$ induces a split disjunction. [4]

More precisely
Proposition 4.

$$
S C(B)=\bigcap_{\substack{\bar{\mu} \in \mathcal{L}(B) \\ \bar{\mu}^{T} \bar{b} \notin \mathbb{Z}}}\left\{x \in P(B): \delta(\bar{\mu}, B)^{T} x \leq \delta_{0}(\bar{\mu}, B)\right\} .
$$

Proof. Direct from Proposition 2 and definition of $S C(B)$.
and
Proposition 5. Let $\bar{\mu} \in \mathcal{L}(B)$ be such that $\bar{\mu}^{T} \bar{b} \notin \mathbb{Z}$ then cut (12) for $\bar{\mu}$ is dominated by split cut $\delta(\bar{\mu}, B)^{T} x \leq \delta_{0}(\bar{\mu}, B)$.

Proof. From (7), $\bar{B} x-\bar{b} \leq 0$ for all $x \in P(B)$ and $\left\lceil\bar{\mu}^{-}\right\rceil \geq \bar{\mu}^{-}$.

Polyhedrality of $S C(B)$: Preliminaries

For any $\sigma \in\{0,1\}^{r}$ let

$$
\mathcal{L}(B, \sigma):=\left\{\mu \in \mathcal{L}(B):(-1)^{\sigma_{i}} \mu_{i} \geq 0, \quad \forall i \in\{1, \ldots, r\}\right\}
$$

be the intersection of $\mathcal{L}(B)$ with the orthant defined by σ, so that

$$
\mathcal{L}(B)=\bigcup_{\sigma \in\{0,1\}^{r}} \mathcal{L}(B, \sigma)
$$

Lemma 1. Let $\sigma \in\{0,1\}^{r}$ and let $\bar{\mu} \in \mathcal{L}(B, \sigma)$ with $\bar{\mu}=\alpha+\beta$ for $\alpha, \beta \in \mathcal{L}(B, \sigma)$ such that $\beta^{T} \bar{b} \in \mathbb{Z}$. Then $\delta(\bar{\mu}, B)^{T} x \leq \delta_{0}(\bar{\mu}, B)$ is dominated by $\delta(\alpha, B)^{T} x \leq \delta_{0}(\alpha, B)$.

Proof. Noting that $\left\lfloor\bar{\mu}^{T} \bar{b}\right\rfloor=\left\lfloor\alpha^{T} \bar{b}\right\rfloor+\beta^{T} \bar{b}$, $f\left(\bar{\mu}^{T} \bar{b}\right)=f\left(\alpha^{T} \bar{b}\right),|\alpha+\beta|=|\alpha|+|\beta|$ for α, β in the same orthant and using representation (9) we have that

$$
\begin{gathered}
\delta(\bar{\mu}, B)^{T} x-\delta_{0}(\bar{\mu}, B)=\delta(\alpha, B)^{T} x-\delta_{0}(\alpha, B)+f\left(\alpha^{T} \bar{b}\right) \beta^{-T}(\bar{B} x-\bar{b}) \\
+\left(1-f\left(\alpha^{T} \bar{b}\right)\right) \beta^{+T}(\bar{B} x-\bar{b}) .
\end{gathered}
$$

Polyhedrality of $S C(B)$: Preliminaries

Let $\left\{v^{i}\right\}_{i \in \mathcal{V}(\sigma)} \subseteq \mathcal{L}(B, \sigma)$ be a finite integral generating set of $\mathcal{L}(B, \sigma)$. That is, a finite set $\left\{v^{i}\right\}_{i \in \mathcal{V}(\sigma)}$ such that

$$
\mathcal{L}(B, \sigma)=\left\{\mu \in \mathbb{R}^{r}: \mu=\sum_{i \in \mathcal{V}(\sigma)} k_{i} v^{i} \quad k_{i} \in \mathbb{Z}_{+}\right\}
$$

For $i \in \mathcal{V}(\sigma)$ let

$$
m_{i}=\min \left\{m \in \mathbb{Z}_{+} \backslash\{0\}: m \bar{b}^{T} v^{i} \in \mathbb{Z}\right\}
$$

For every $\sigma \in\{0,1\}^{r}$ define the following finite subset of $\mathcal{L}(B, \sigma)$.

$$
\begin{aligned}
\mathcal{L}^{0}(B, \sigma):=\{\mu \in \mathcal{L}(B, \sigma): & \mu
\end{aligned}=\sum_{i \in \mathcal{V}(\sigma)} r_{i} v^{i} .
$$

Also define the following finite subset of $\mathcal{L}(B)$.

$$
\mathcal{L}^{0}(B):=\bigcup_{\sigma \in\{0,1\}^{r}} \mathcal{L}^{0}(B, \sigma)
$$

Polyhedrality of $S C(B)$

Theorem 4. For any $B \in B_{r}^{*}$ we have that $S C(B)$ is a polyhedron defined by the original inequalities of $P(B)$ and the following finite set of inequalities
$\delta(\bar{\mu}, B)^{T} x \leq \delta_{0}(\bar{\mu}, B) \quad \forall \bar{\mu} \in \mathcal{L}^{0}(B)$ s.t. $\bar{\mu}^{T} b \notin \mathbb{Z}$.
Proof. For $\bar{\mu} \in \mathcal{L}(B)$, let $\sigma \in\{0,1\}^{r}$ be such that $\bar{\mu} \in \mathcal{L}(B, \sigma)$ and $\left\{k_{i}\right\}_{i \in \mathcal{V}(\sigma)} \subseteq \mathbb{Z}_{+}$be such that $\bar{\mu}=\sum_{i \in \mathcal{V}(\sigma)} k_{i} v^{i}$. For all $i \in \mathcal{V}(\sigma)$ $k_{i}=n_{i} m_{i}+r_{i}$ for some $n_{i}, r_{i} \in \mathbb{Z}_{+}, 0 \leq r_{i}<m_{i}$. Let

$$
\alpha=\sum_{i \in \mathcal{V}(\sigma)} r_{i} v^{i} \quad \text { and } \quad \beta=\sum_{i \in \mathcal{V}(\sigma)} n_{i} m_{i} v^{i}
$$

We have $\bar{\mu}=\alpha+\beta, \bar{b}^{T} \beta$ and $\bar{\mu}, \alpha, \beta \in \mathcal{L}(B, \sigma)$ so by Lemma $1 \delta(\bar{\mu}, B)^{T} x \leq \delta_{0}(\bar{\mu}, B)$ is dominated by $\delta(\alpha, B)^{T} x \leq \delta_{0}(\alpha, B)$. The result follows from $\alpha \in \mathcal{L}^{0}(B, \sigma) \subseteq \mathcal{L}^{0}(B)$ and Proposition 4

Corollary 2. $S C$ is a polyhedron.

Final Remarks

Set of inequalities in Theorem 4 is not minimal for the description of $S C$ or $S C(B)$. We can further require r_{i} 's to be relatively prime.

Another constructive proof of the polyhedrality of $S C$ based on MIR inequalities is presented in [7].

References

[1] K. Andersen, G. Cornuejols, Y. Li, Split Closure and Intersection Cuts, Mathematical Programming A 102, 2005, pp. 457-493.
[2] E. Balas, Intersection cuts - a new type of cutting planes for integer programming, Operations Research 19, 1971, pp. 19-39.
[3] E. Balas, M. Perregaard. A precise correspondence between lift-and-project cuts, simple disjunctive cuts and mixed integer Gomory cuts for 01 programming. Mathematical Programming B 94, 2003, pp. 221-245.
[4] D. Bertsimas, R. Weismantel. Optimization over Integers, Dynamic Ideas, Belmont, 2005.
[5] A. Caprara, A.N. Letchford. On the separation of split cuts and related inequalities. Mathematical Programming 94, 2003, pp. 279-294.
[6] W. Cook, R. Kannan, A. Schrijver. Chvátal closures for mixed integer programming problems. Mathematical Programming 47, 1990, pp. 155-174.
[7] S. Dash, O. Günlük, A. Lodi, On the MIR closure of polyhedra. Working Paper.
[8] M. Köppe, R. Weismantel, Cutting planes from a mixed integer Farkas lemma, Operations Research Letters 32, 2004, pp. 207-211.

