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Review: MIP and Relaxation

We study the MIP feasible region

PI := {x ∈ P ⊆ Rn : xj ∈ Z ∀ j ∈ NI}
where N = {1, . . . , n}, NI ⊆ N and

P := {x ∈ Rn : Ax ≤ b} 6= ∅
where A ∈ Qm×n, b ∈ Qm, M = {1, . . . , m}.

Let

B∗r := {B ⊆ M : |B| = r and {ai·}i∈B are linearly

independent}.
where r = rank(A) and ai· corresponds to row
i of A. For B ∈ B∗r let B̄ be the sub-matrix
of A induced by B and b̄ the sub-vector of b

induced by B.

For B ∈ B∗r let

P (B) := {x ∈ Rn : B̄x ≤ b̄ ∀ i ∈ B} ⊆ P.

and x(B) a particular, but arbitrarily selected,
solution to B̄x = b̄.
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Review: Valid Split Disjunctions for MIP

For (π, π0) ∈ Zn+1 we have the split disjunction

D(π, π0) := πTx ≤ π0 ∨ πTx ≥ π0 + 1

and associated feasible region

FD(π,π0)
:= {x ∈ Rn : πTx ≤ π0 ∨ πTx ≥ π0 +1}

We are interested in D(π, π0) such that

PI ⊆ FD(π,π0)
( Rn

so we study

Πn
0(NI) := {(π, π0) ∈ (Zn \ {0})× Z : πj = 0, j /∈ NI}

and its projection into the π variables

Πn(NI) := {π ∈ Zn \ {0} : πj = 0, j /∈ NI}.
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Review: Split Closure

The split closure [6] of PI is

SC :=
⋂

(π,π0)∈Πn
0(NI)

conv(P ∩ FD(π,π0)
).

Theorem 1. [6] SC is a polyhedron

For B ∈ B∗k let

SC(B) :=
⋂

(π,π0)∈Πn
0(NI)

conv(P (B) ∩ FD(π,π0)
).

Theorem 2. [1] SC =
⋂

B∈B∗r
SC(B)

Theorem 3. [1] SC(B) is a polyhedron for all

B ∈ B∗k.
Corollary 1. [1] SC is a polyhedron

Neither [1] nor [6] give constructive proofs.
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Review: Characterization of Split Cuts

Proposition 1. [1,3,5] All non-dominated valid

inequalities for conv(P ∩ FD(π,π0)
) are of the

form δ(µ, π, π0)
Tx ≤ δ0(µ, π, π0) where

δ(µ, π, π0) := µ1
0π +

∑
i∈M

µ1
i ai· = −µ2

0π +
∑

i∈M

µ2
i ai·

δ0(µ, π, π0) := µ1
0π0 +

∑
i∈M

µ1
i bi = −µ2

0(π0 + 1)

+
∑

i∈M

µ2
i bi

for µ1
0, µ2

0 ∈ R+ and µ1, µ2 ∈ Rm
+ solutions to∑

i∈M

µ2
i ai· −

∑
i∈M

µ1
i ai· = π (1)

∑
i∈M

µ2
i bi −

∑
i∈M

µ1
i bi − µ2

0 = π0 (2)

µ1
0 + µ2

0 = 1 (3)

µ2
0 ∈ (0,1) (4)

µ1
i · µ

2
i = 0 ∀i ∈ M.

(5)

4



Applying Proposition 1 to P (B)

Proposition 2. For any B ∈ B∗r if

B̄Tµ = π µ ∈ Rr

µT b̄ /∈ Z π0 = bµT b̄c
(6)

has no solution then conv(P (B) ∩ FD(π,π0)) = P (B).
If (6) has a (unique) solution µ̄ then

conv(P (B) ∩ FD(π,π0)) = {x ∈ P (B) : δ(µ̄, B)x ≤ δ0(µ̄, B)}
( P (B).

where δ(µ̄, B)x ≤ δ0(µ̄, B) is defined in any of
the following equivalent ways

(µ̄−)T(B̄x− b̄) + (1− f(µ̄T b̄))(µ̄T B̄x− bµ̄T b̄c) ≤ 0 (7)

(µ̄+)T(B̄x− b̄)− f(µ̄T b̄)(µ̄T B̄x− bµ̄T b̄c) + f(µ̄T b̄) ≤ 0 (8)

|µ̄|T(B̄x− b̄) + (1− 2f(µ̄T b̄))(µ̄T B̄x− bµ̄T b̄c) + f(µ̄T b̄) ≤ 0∗ (9)

(y− = max{−y,0}, y+ = max{y,0}, f(y) = y − byc and operations

over vectors are componentwise).

Proof. Apply Proposition 1 to “P = P (B)”.

Just a convenient re-write of known properties
of intersection cuts [1,2,3].
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Integer Lattices and Cuts from a Mixed

Integer Farkas Lemma

Definition 1. Let {vi}i∈V ⊆ Rr be a finite set
of linear independent vectors. The lattice gen-
erated by {vi}i∈V is

L := {µ ∈ Rr : µ =
∑
i∈V

kiv
i ki ∈ Z} (10)

Let B̄I ∈ Rr×|NI | and B̄C ∈ Rr×(n−|NI |) be the

sub-matrices of B̄ corresponding to the integer

and the continuous variables of PI, then

Proposition 3. [8]For every B ∈ B∗r
L(B) := {µ̄ ∈ Rr : B̄I

T µ̄ ∈ Z|NI|, B̄C
T µ̄ = 0} (11)

is a lattice. If µ̄ ∈ L(B) is such that µ̄T b /∈ Z
then the inequality defined by

dµ̄−eT(B̄x− b̄) + (1− f(µ̄T b̄))(µ̄T B̄x− bµ̄T b̄c) ≤ 0 (12)

is valid for {x ∈ P (B) : xj ∈ Z ∀ j ∈ NI}.
Furthermore this inequality is not satisfied by

x(B).
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Integer Lattices, Cuts from a Mixed Inte-
ger Farkas Lemma and Split Cuts

Every µ̄ ∈ L(B) such that µ̄T b̄ /∈ Z induces a
split disjunction. [4]

More precisely
Proposition 4.

SC(B) =
⋂

µ̄∈L(B)
µ̄T b̄ /∈Z

{x ∈ P (B) : δ(µ̄, B)Tx ≤ δ0(µ̄, B)}.

Proof. Direct from Proposition 2 and defini-
tion of SC(B).

and
Proposition 5. Let µ̄ ∈ L(B) be such that
µ̄T b̄ /∈ Z then cut (12) for µ̄ is dominated by
split cut δ(µ̄, B)Tx ≤ δ0(µ̄, B).

Proof. From (7), B̄x − b̄ ≤ 0 for all x ∈ P (B)
and dµ̄−e ≥ µ̄−.
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Polyhedrality of SC(B): Preliminaries

For any σ ∈ {0,1}r let

L(B, σ) := {µ ∈ L(B) : (−1)σiµi ≥ 0, ∀ i ∈ {1, . . . , r}}

be the intersection of L(B) with the orthant
defined by σ, so that

L(B) =
⋃

σ∈{0,1}r

L(B, σ)

Lemma 1. Let σ ∈ {0,1}r and let µ̄ ∈ L(B, σ)
with µ̄ = α + β for α, β ∈ L(B, σ) such that
βT b̄ ∈ Z. Then δ(µ̄, B)Tx ≤ δ0(µ̄, B) is domi-
nated by δ(α, B)Tx ≤ δ0(α, B).

Proof. Noting that bµ̄T b̄c = bαT b̄c + βT b̄,
f(µ̄T b̄) = f(αT b̄), |α + β| = |α| + |β| for α, β
in the same orthant and using representation
(9) we have that

δ(µ̄, B)Tx−δ0(µ̄, B) = δ(α, B)Tx−δ0(α, B)+f(αT b̄)β−T
(B̄x−b̄)

+ (1− f(αT b̄))β+T
(B̄x− b̄).
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Polyhedrality of SC(B): Preliminaries

Let {vi}i∈V(σ) ⊆ L(B, σ) be a finite integral
generating set of L(B, σ). That is, a finite
set {vi}i∈V(σ) such that

L(B, σ) = {µ ∈ Rr : µ =
∑

i∈V(σ)

kiv
i ki ∈ Z+}

For i ∈ V(σ) let

mi = min{m ∈ Z+ \ {0} : m b̄Tvi ∈ Z}

For every σ ∈ {0,1}r define the following finite
subset of L(B, σ).

L0(B, σ) := {µ ∈ L(B, σ) : µ =
∑

i∈V(σ)

riv
i

ri ∈ {0, . . . , mi − 1}}

Also define the following finite subset of L(B).

L0(B) :=
⋃

σ∈{0,1}r

L0(B, σ)
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Polyhedrality of SC(B)

Theorem 4. For any B ∈ B∗
r we have that

SC(B) is a polyhedron defined by the original
inequalities of P (B) and the following finite set
of inequalities

δ(µ̄, B)Tx ≤ δ0(µ̄, B) ∀ µ̄ ∈ L0(B) s.t. µ̄T b /∈ Z.

Proof. For µ̄ ∈ L(B), let σ ∈ {0,1}r be such
that µ̄ ∈ L(B, σ) and {ki}i∈V(σ) ⊆ Z+ be such
that µ̄ =

∑
i∈V(σ) kiv

i. For all i ∈ V(σ)
ki = nimi + ri for some ni, ri ∈ Z+, 0 ≤ ri < mi.
Let

α =
∑

i∈V(σ)

riv
i and β =

∑
i∈V(σ)

nimiv
i

We have µ̄ = α + β, b̄Tβ and µ̄, α, β ∈ L(B, σ)
so by Lemma 1 δ(µ̄, B)Tx ≤ δ0(µ̄, B) is domi-
nated by δ(α, B)Tx ≤ δ0(α, B). The result fol-
lows from α ∈ L0(B, σ) ⊆ L0(B) and Proposi-
tion 4

Corollary 2. SC is a polyhedron.
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Final Remarks

Set of inequalities in Theorem 4 is not minimal

for the description of SC or SC(B). We can

further require ri’s to be relatively prime.

Another constructive proof of the polyhedrality

of SC based on MIR inequalities is presented

in [7].
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