Planning Activities with Start-Time Dependent Variable Costs

Jim Luedtke George Nemhauser

Department of Industrial and Systems Engineering Georgia Institute of Technology

June 5, 2006

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Multiple Period Planning Model

Time Horizon: Activities to Plan: Decision Variables:

Tnoriada

Feasible Region:

$$\min\sum_{a\in A} h_a(x_a) + \sum_k d_k u_k \tag{1}$$

s.t.
$$x_a \in X_a \ \forall a \in A$$
 (2)

$$(u,x)\in C.$$
 (3)

The Cost Function for Each Activity is Non-convex

c_{at} : Variable cost of activity *a* over the entire horizon if the activity *begins* in period *t*

Assumption (improving technology): $c_{a1} \ge c_{a2} \ge \cdots \ge c_{aT}$

The Cost Function

$$h_a(x) = \sum_{s=1}^{T} \mathbf{1} \left(\min \left\{ k : x_k > 0 \right\} = s \right) c_{as} \sum_{t=s}^{T} x_t$$

Note: h_a is concave over \mathbb{R}^T_+ and discontinuous.

Our Approach: Develop strong formulations for single activity; that is, for fixed *a*, consider formulation with cost function $h_a(x)$ and $x \in X_a$.

Example Cost Function h(x) for T = 2

$$c_1 = 1, c_2 = \frac{1}{2}, \ h(x_1, x_2) = \mathbf{1} (x_1 > 0) (x_1 + x_2) + \mathbf{1} (x_1 = 0) \frac{1}{2} x_2$$

Compact Formulation and Specialized Branching

- Introduce no auxiliary modeling variables.
- Linear lower bound on objective function:

$$h(x) \geq \sum_{t=1}^{T} c_t x_t$$

- Branching on start-time s:
 - Left branch: $s \le k$. Update objective lower bound.
 - Right branch: s > k. Fix $x_t = 0, t = 1, \dots, k$.
- Requires implementation of branching.
- Cuts can be used to get stronger objective lower bound.

Formulation Inspired by Lot Sizing

Introduce auxiliary variables

z_t : Amount of activity that is charged at rate *c_t*; i.e. amount "produced" in period *t* that can be used in periods $s \ge t$

All activity must be charged at rate in period activity starts $\Rightarrow z_t$ positive in at most one period (SOS1)

Replace h(x) with $\sum_{t=1}^{T} c_t z_t$ in objective, and add constraints:

$$\sum_{s=1}^{t} z_s \ge \sum_{s=1}^{t} x_s \qquad t = 1, \dots, T$$

$$\{z_t : 1 \le t \le T\} SOS1$$
(5)

Note: (5) can also be enforced by adding binary variables.

Extended Formulation Inspired by Lot Sizing

Introduce auxiliary variables w_{st} : Amount of activity that is charged at rate c_s and performed in period $t \ge s$ Replace h(x) with $\sum_{s=1}^{T} c_s \sum_{t=s}^{T} w_{st}$ in objective, and add:

$$\sum_{s=1}^{t} w_{st} = x_t \qquad t = 1, \dots, T$$
(6)

$$w_{st} \leq Mb_s$$
 $s = 1, \ldots, T$ (7)

$$\sum_{t=1}^{T} b_t \le 1 \tag{8}$$

$$b_t \in \{0, 1\}$$
 $t = 1, \dots, T$ (9)

Note: For a single activity, this formulation is integral.

Strengthening the Formulations: A Special Case

•
$$X = \{x : 0 \le x_1 \le x_2 \le \cdots \le x_T \le M\}.$$

- The nondecreasing constraint was present in the motivating application.
- Compact formulation: Improved lower bound

$$h(x) \geq \sum_{t=1}^{T} c_t x_t + \sum_{t=1}^{T-1} (T-t)(c_t - c_{t+1}) x_t$$
(10)

Lot sizing inspired formulation: Strengthen inequalities (4)

$$\sum_{s=1}^{t} z_s \ge \sum_{s=1}^{t} x_s + (T-t)x_t \qquad t = 1, \dots, T$$
 (11)

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Strengthening the Formulations: A Special Case

Theorem

$$conv(F) = E = Proj_{(\mu,x)}(P)$$

where $F = \{(\mu, x) \in \mathbb{R} \times X : \mu \ge h(x)\}$ is the non-convex feasible region (the epigraph of non-convex function *h*),

$$E = \{(\mu, x) \in \mathbb{R} \times X : \mu \ge \sum_{t=1}^{T} c_t x_t + \sum_{t=1}^{T-1} (T-t)(c_t - c_{t+1})x_t\}$$

is the strengthened compact formulation, and

$$m{P} = \{(\mu, x, z) \in \mathbb{R} imes X imes \mathbb{R}_+^T : \mu = \sum_{t=1}^T c_t z_t, (x, z) ext{ satsify (11)} \}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

is the strengthened lot sizing inspired formulation.

Select Computational Results: Production and Distribution Planning

- Minimize costs to meet demand over the planning horizon.
 Production and distribution costs are start-time dependent.
- Instances randomly generated, with characteristics similar to real data.

Results for lot sizing formulation with binary variables: strengthening the formulation with (11) is crucial.

		Time(s)	or * Gap	Nodes		
<i>A</i>	Т	Ineqs (4)	Ineqs (11)	Ineqs (4)	Ineqs (11)	
100	10	50.3	8.2	451	5	
150	10	* 0.08%	13.4	75488	76	
200	10	* 0.09%	45.2	35951	242	
75	15	992.6	9.9	29738	39	

* Did not finish after limit of 1 hour.

Good Solutions Can be Found for Large Instances

		Time(s) or * Gap			Nodes		
<i>A</i>	Т	No-A	LS-S	LS-B	No-A	LS-S	LS-B
300	10	129.4	1786.8	293.0	4410	8683	1651
400	10	24.8	209.3	106.2	454	873	268
500	10	27.7	748.5	270.3	1296	2567	779
200	15	699.9	* 0.05%	* 0.10%	6775	3432	1302
300	15	1335.5	* 0.07%	* 0.02%	12606	1545	8750
400	15	234.5	* 0.06%	2294.6	5612	736	3828
500	20	* 0.02%	* 0.07%	* 0.06%	40128	482	903
1000	20	* 0.08%	* 0.38%	* 0.18%	6891	20	0

* Did not finish after limit of 1 hour.

No-A = Compact formulation, LS-S = Lot sizing with SOS1,

LS-B = Lot sizing with binaries

Compact formulation has significantly faster LP solve times.

The Approach Can Also Handle Side Constraints

- Add semi-continuous restrictions on activities:
 x_t ∈ {0} ∪ [*I*, *M*]
- For compact and lot sizing with SOS1, binaries added only to model this restriction

		Time(s) or * Gap			Nodes		
<i>A</i>	T	No-Aux	LS-S	LS-B	No-Aux	LS-S	LS-B
100	10	4.6	20.0	46.2	77	18	165
200	10	455.7	397.9	1585.0	2822	1058	5129
300	10	* 0.79%	* 0.48%	* 0.57%	5760	1868	5229
400	10	* 0.26%	* 0.20%	* 0.18%	7828	1840	5196
200	15	* 0.97%	* 1.01%	* 0.95%	2640	725	960
300	15	* 0.49%	* 0.56%	* 0.44%	5078	1601	899
400	15	* 0.20%	* 0.29%	* 0.12%	6331	733	2051

For larger instances, formulation with binaries yields better gap within time limit.

Extensions and Ongoing Research

Remove the non-decreasing constraint on activities. That is, let

$$X = \left\{ x \in \mathbb{R}_+^T : x_t \leq M, \ t = 1, \dots, T \right\}.$$

Single activity convex hull defined by exponential family of inequalities in all formulations (except extended).

- Incorporate fixed cost for installing technology. Motivates further study of models with binary variables present.
- Consider more complicated sets *X*. For example, time-dependent upper bounds, or production ramping constraints.