Non-Cyclic Train Timetabling and Comparability Graphs

Valentina Cacchiani, Alberto Caprara, Paolo Toth

DEIS, University of Bologna

Non-Cyclic Train Timetabling Problem

<u>INPUT</u>:

• Single Line with a one-way track (approach easy to extend to railway network)

• List T of Trains with "ideal timetables"

EUROSTAR 1811:

BO 7:35 - MI 9:10

REGIONAL 2187:

BO 7:30 - MO 7:52 MO 7:54 - RE 8:12 RE 8:14 - PR 8:26 PR 8:28 - PC 8:55

Ideal Timetables are

No-Conflict Constraints (in the basic version of the problem):

- no overtaking between stations (allowed only within stations)
- min time between consecutive departures from each station
- min time between consecutive arrivals at each station

OUTPUT:

• "Adjusted" non-conflicting timetables with maximum total profit:

Train Adjustments:

- **shift** departure time from initial station
- stretch increase stop time in intermediate stations

Train Profit:
$$\pi_{j} - \phi_{j}(shift_{j}) - \sum_{i} \phi_{ij}(stretch_{ij})$$
 Ideal profit Arbitrary monotone functions

If profit is negative cancel the train

Representation on Time-Space GRAPH

ILP Formulation

 \mathcal{X}_p Variables associated with feasible paths of the Time-Space Graph

- P_{j} Collection of paths for train j
- p_p Profit of path $p \in P_j$

$$S = S_1 \cup S_2 \cup \dots$$

 S_l Maximal Stable Set of G_l

Path Compatibility Graph G_l

compatible paths:

- associated with different trains
- contain compatible arcs on line segment *l*

Satisfy no-conflict constraints

Transitive relation

Line segment *l* between two consecutive stations on the line:

has vertex set:
$$P_1 \cup P_2 \cup ... \cup P_{|T|}$$

and is the edge intersection of:

• complete multipartite graph:

• comparability graph associated with the transitive relation

$\sum x_p \le 1, \quad S \in S$ **Separation Problem for**

Max-weight Stable Set on G_i

First Solution Approach (heuristic method): "transitivization" of G_{ij}

Replace the graph with its transitive closure

comparability graph

Compute the max-weight stable set on the comparability graph (heuristic method)

Second Solution Approach (exact method): dynamic programming

Simplified case: find max-weight set of crossing arcs

- consider arcs by decreasing slope
- for each pair of nodes (u,v) store maximum weighted set of crossing arcs having departure node $>= \mathbf{u}$ and arrival node $<= \mathbf{v}$.

Can be extended to G_i

Computational Results

Tests on real-world instances provided by Italian Railways (Rete Ferroviaria Italiana)

- LP upper bound up to 10% better than Lagrangian upper bounds
- Heuristic solutions improved by up to 5%
- Provably optimal solutions in some cases

Future work

- Extension to the Railway Network
- Local search