Decomposition Methods for Integer Linear Programming

Matthew Galati¹ Ted Ralphs²

¹SAS Institute, Advanced Analytics, Operations Research R & D

²COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

Ph.D. Defense Industrial and Systems Engineering Lehigh University, Bethlehem, PA

The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{\text{IP}} = \min_{x \in \mathbb{Z}^{n}} \left\{ c^{\top} x \mid A' x \ge b', A'' x \ge b'' \right\}$$

$$z_{\text{IP}} = \min_{x \in \mathbb{Z}^{n}} \left\{ c^{\top} x \mid A' x \ge b', A'' x \ge b'' \right\}$$

$$z_{\text{IP}} \ge z_{\text{D}} \ge z_{\text{DP}}$$

Assumptions:

- $\operatorname{OPT}(\mathcal{P}, c)$ and $\operatorname{SEP}(\mathcal{P}, x)$ are "hard"
- $\operatorname{OPT}(\mathcal{P}', c)$ and $\operatorname{SEP}(\mathcal{P}', x)$ are "easy"
- \mathcal{Q}'' can be represented explicitly (description has polynomial size
- \mathcal{P}' must be represented implicitly (description has exponential size)

 $\mathcal{P} = \operatorname{conv} \{ x \in \mathbb{Z}^n \mid A'x > b', A''x > b'' \}$

The Decomposition Principle in Integer Programming

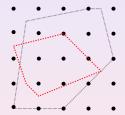
Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{\text{IP}} = \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A'x \ge b', A''x \ge b'' \right\}$$
$$z_{\text{LP}} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A'x \ge b', A''x \ge b'' \right\}$$
$$z_{\text{D}} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A''x \ge b'' \right\}$$

 $z_{
m IP} \geq z_{
m D} \geq z_{
m LP}$

Assumptions:

- $OPT(\mathcal{P}, c)$ and $SEP(\mathcal{P}, x)$ are *"hard"*
- $\operatorname{OPT}(\mathcal{P}',c)$ and $\operatorname{SEP}(\mathcal{P}',x)$ are "easy"
- Q" can be represented explicitly (description has polynomial size)
- \mathcal{P}' must be represented implicitly (description has exponential size



$$\mathcal{Q}' = \{ x \in \mathbb{R}^n \mid A'x \ge b' \}$$
$$\mathcal{Q}'' = \{ x \in \mathbb{R}^n \mid A''x \ge b'' \}$$

The Decomposition Principle in Integer Programming

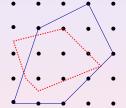
Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$\begin{split} z_{\mathrm{IP}} &= \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\} \\ z_{\mathrm{LP}} &= \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\} \\ z_{\mathrm{D}} &= \min_{x \in \mathcal{P}'} \left\{ c^\top x \mid A'' x \ge b'' \right\} \end{split}$$

 $z_{
m IP} \geq z_{
m D} \geq z_{
m LP}$

Assumptions:

- $OPT(\mathcal{P}, c)$ and $SEP(\mathcal{P}, x)$ are "hard"
- $\operatorname{OPT}(\mathcal{P}',c)$ and $\operatorname{SEP}(\mathcal{P}',x)$ are "easy"
- Q" can be represented explicitly (description has polynomial size)
- \mathcal{P}' must be represented implicitly (description has exponential size



 $\mathcal{P}' = \operatorname{conv} \{ x \in \mathbb{Z}^n \mid A'x \ge b' \}$ $\mathcal{Q}'' = \{ x \in \mathbb{R}^n \mid A''x \ge b'' \}$

The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

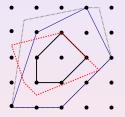
$$\begin{split} z_{\mathrm{IP}} &= \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\} \\ z_{\mathrm{LP}} &= \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\} \\ z_{\mathrm{D}} &= \min_{x \in \mathcal{P}'} \left\{ c^\top x \mid A'' x \ge b'' \right\} \end{split}$$

 $z_{
m IP} \geq z_{
m D} \geq z_{
m LP}$

Assumptions:

- $OPT(\mathcal{P}, c)$ and $SEP(\mathcal{P}, x)$ are "hard"
- $\operatorname{OPT}(\mathcal{P}',c)$ and $\operatorname{SEP}(\mathcal{P}',x)$ are "easy"

• \mathcal{P}' must be represented implicitly (description has exponential size



 $\begin{array}{c} \hline \mathcal{P} = \operatorname{conv} \{ x \in \mathbb{Z}^n \mid A'x \ge b', A''x \ge b'' \} \\ \hline \mathcal{P}' = \operatorname{conv} \{ x \in \mathbb{Z}^n \mid A'x \ge b' \} \\ \hline \mathcal{Q}' = \{ x \in \mathbb{R}^n \mid A'x \ge b' \} \\ \hline \mathcal{Q}'' = \{ x \in \mathbb{R}^n \mid A''x \ge b'' \} \end{array}$

The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

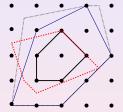
$$\begin{aligned} z_{\mathrm{IP}} &= \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\} \\ z_{\mathrm{LP}} &= \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\} \end{aligned}$$

$$z_{\mathrm{D}} = \min_{x \in \mathcal{P}'} \left\{ c^{\top} x \mid A'' x \ge b'' \right\}$$

 $z_{\mathrm{IP}} \geq z_{\mathrm{D}} \geq z_{\mathrm{LP}}$

Assumptions:

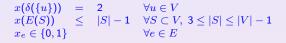
- $OPT(\mathcal{P}, c)$ and $SEP(\mathcal{P}, x)$ are "hard"
- $OPT(\mathcal{P}', c)$ and $SEP(\mathcal{P}', x)$ are "easy"
- Q'' can be represented explicitly (description has polynomial size)
- \mathcal{P}' must be represented implicitly (description has exponential size)

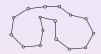


$$\mathcal{P} = \operatorname{conv} \{ x \in \mathbb{Z}^n \mid A'x \ge b', A''x \ge b'' \}$$
$$\mathcal{P}' = \operatorname{conv} \{ x \in \mathbb{Z}^n \mid A'x \ge b' \}$$
$$\mathcal{Q}' = \{ x \in \mathbb{R}^n \mid A'x \ge b' \}$$
$$\mathcal{Q}'' = \{ x \in \mathbb{R}^n \mid A''x \ge b'' \}$$

Example - Traveling Salesman Problem (TSP)

Traveling Salesman Problem Formulation

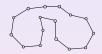




Example - Traveling Salesman Problem (TSP)

Traveling Salesman Problem Formulation

$$egin{array}{rl} x(\delta(\{u\}))&=&2&orall u\in V\ x(E(S))&\leq&|S|-1&orall S\subset V,\ 3\leq |S|\leq |V|-1\ x_e\in\{0,1\}&orall e\in E\end{array}$$



Two possible decompositions

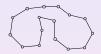
Find a spanning subgraph with |V| edges that satisfies the 2-degree constraints ($\mathcal{P}' = 1$ -Tree)

$$\begin{array}{lll} x(\delta(\{0\})) &=& 2\\ x(E(V)) &=& |V|\\ x(E(S)) &\leq& |S|-1 & \forall S \subset V \setminus \{0\}, 3 \leq |S| \leq |V|-1\\ x_e \in \{0,1\} & \forall e \in E \end{array}$$

Example - Traveling Salesman Problem (TSP)

Traveling Salesman Problem Formulation

$$egin{array}{rl} x(\delta(\{u\}))&=&2&orall u\in V\ x(E(S))&\leq&|S|-1&orall S\subset V,\ 3\leq |S|\leq |V|-1\ x_e\in\{0,1\}&orall e\in E\end{array}$$



Two possible decompositions

Find a spanning subgraph with |V| edges that satisfies the 2-degree constraints ($\mathcal{P}' = 1$ -Tree)

 $egin{array}{rll} x(\delta(\{0\})) &=& 2 \ x(E(V)) &=& |V| \ x(E(S)) &\leq& |S|-1 & orall S \subset V \setminus \{0\}, 3 \leq |S| \leq |V|-1 \ x_e \in \{0,1\} & & orall e \in E \end{array}$

Find a 2-matching that satisfies the subtour constraints ($\mathcal{P}' = 2$ -Matching)

$$\begin{array}{rcl} x(\delta(\{u\})) &=& 2 & \forall u \in V \\ x_e \in \{0,1\} & & \forall e \in E \end{array}$$

Outline

Thesis Contributions

2 Decomposition Methods

- Traditional Methods
- Integrated Methods
- Structured Separation
- Decompose-and-Cut Method
- Algorithmic Details

3 DIP Framework

Applications

- Multi-Choice Multi-Dimensional Knapsack Problem
- ATM Cash Management Problem
- Generic Black-box Solver for Block-Angular MILP

Future Research

Outline

Thesis Contributions

2 Decomposition Methods

- Traditional Methods
- Integrated Methods
- Structured Separation
- Decompose-and-Cut Method
- Algorithmic Details
- 3 DIP Framework
- Applications
 - Multi-Choice Multi-Dimensional Knapsack Problem
 - ATM Cash Management Problem
 - Generic Black-box Solver for Block-Angular MILP

5 Future Research

- Conceptual framework tying together numerous decomposition-based methods for generating approximations of the convex hull of feasible solutions.
 - Traditional method for outer approximation: cutting plane method
 - Traditional methods for inner approximations: Dantzig-Wolfe method and Lagrangian method
 - Integrated methods: price-and-cut and relax-and-cut
- Introduction to a relatively new integrated method called decompose-and-cut, an associated class of cutting planes called decomposition cuts, and the concept of structured separation.
- Descriptions of numerous implementation considerations for branch-and-price-and-cut, including an introduction to a relatively unknown idea of using nested polyhedra for generating inner approximations.
- DIP (Decomposition for Integer Programming), an extensible open-source software framework for implementing decomposition-based methods with minimal user burden.
- MILPBlock, a DIP application and generic black-box solver for block-diagonal MILPs that fully automates the branch-and-price-and-cut algorithm with no additional user input.
- Computational results using DIP on three real-world applications coming from the marketing, banking, and retail industries.

- Conceptual framework tying together numerous decomposition-based methods for generating approximations of the convex hull of feasible solutions.
 - Traditional method for outer approximation: cutting plane method
 - Traditional methods for inner approximations: Dantzig-Wolfe method and Lagrangian method
 - Integrated methods: price-and-cut and relax-and-cut
- Introduction to a relatively new integrated method called decompose-and-cut, an associated class of cutting planes called decomposition cuts, and the concept of structured separation.
- Descriptions of numerous implementation considerations for branch-and-price-and-cut, including an introduction to a relatively unknown idea of using nested polyhedra for generating inner approximations.
- DIP (Decomposition for Integer Programming), an extensible open-source software framework for implementing decomposition-based methods with minimal user burden.
- MILPBlock, a DIP application and generic black-box solver for block-diagonal MILPs that fully automates the branch-and-price-and-cut algorithm with no additional user input.
- Computational results using DIP on three real-world applications coming from the marketing, banking, and retail industries.

- Conceptual framework tying together numerous decomposition-based methods for generating approximations of the convex hull of feasible solutions.
 - Traditional method for outer approximation: cutting plane method
 - Traditional methods for inner approximations: Dantzig-Wolfe method and Lagrangian method
 - Integrated methods: price-and-cut and relax-and-cut
- Introduction to a relatively new integrated method called decompose-and-cut, an associated class of cutting planes called decomposition cuts, and the concept of structured separation.
- Descriptions of numerous implementation considerations for branch-and-price-and-cut, including an introduction to a relatively unknown idea of using **nested polyhedra** for generating inner approximations.
- DIP (Decomposition for Integer Programming), an extensible open-source software framework for implementing decomposition-based methods with minimal user burden.
- MILPBlock, a DIP application and generic black-box solver for block-diagonal MILPs that fully automates the branch-and-price-and-cut algorithm with no additional user input.
- Computational results using DIP on three real-world applications coming from the marketing, banking, and retail industries.

- Conceptual framework tying together numerous decomposition-based methods for generating approximations of the convex hull of feasible solutions.
 - Traditional method for outer approximation: cutting plane method
 - Traditional methods for inner approximations: Dantzig-Wolfe method and Lagrangian method
 - Integrated methods: price-and-cut and relax-and-cut
- Introduction to a relatively new integrated method called decompose-and-cut, an associated class of cutting planes called decomposition cuts, and the concept of structured separation.
- Descriptions of numerous implementation considerations for branch-and-price-and-cut, including an introduction to a relatively unknown idea of using **nested polyhedra** for generating inner approximations.
- DIP (Decomposition for Integer Programming), an extensible open-source software framework for implementing decomposition-based methods with minimal user burden.
- MILPBlock, a DIP application and generic black-box solver for block-diagonal MILPs that fully automates the branch-and-price-and-cut algorithm with no additional user input.
- Computational results using DIP on three real-world applications coming from the marketing, banking, and retail industries.

- Conceptual framework tying together numerous decomposition-based methods for generating approximations of the convex hull of feasible solutions.
 - Traditional method for outer approximation: cutting plane method
 - Traditional methods for inner approximations: Dantzig-Wolfe method and Lagrangian method
 - Integrated methods: price-and-cut and relax-and-cut
- Introduction to a relatively new integrated method called decompose-and-cut, an associated class of cutting planes called decomposition cuts, and the concept of structured separation.
- Descriptions of numerous implementation considerations for branch-and-price-and-cut, including an introduction to a relatively unknown idea of using **nested polyhedra** for generating inner approximations.
- DIP (Decomposition for Integer Programming), an extensible open-source software framework for implementing decomposition-based methods with minimal user burden.
- MILPBlock, a DIP application and generic black-box solver for **block-diagonal** MILPs that fully automates the branch-and-price-and-cut algorithm with no additional user input.
- Computational results using DIP on three real-world applications coming from the marketing, banking, and retail industries.

- Conceptual framework tying together numerous decomposition-based methods for generating approximations of the convex hull of feasible solutions.
 - Traditional method for outer approximation: cutting plane method
 - Traditional methods for inner approximations: Dantzig-Wolfe method and Lagrangian method
 - Integrated methods: price-and-cut and relax-and-cut
- Introduction to a relatively new integrated method called decompose-and-cut, an associated class of cutting planes called decomposition cuts, and the concept of structured separation.
- Descriptions of numerous implementation considerations for branch-and-price-and-cut, including an introduction to a relatively unknown idea of using **nested polyhedra** for generating inner approximations.
- DIP (Decomposition for Integer Programming), an extensible open-source software framework for implementing decomposition-based methods with minimal user burden.
- MILPBlock, a DIP application and generic black-box solver for **block-diagonal** MILPs that fully automates the branch-and-price-and-cut algorithm with no additional user input.
- Computational results using DIP on three real-world applications coming from the marketing, banking, and retail industries.

Thesis Contributions Traditional Methods Decomposition Methods Integrated Methods DIP Framework Structured Separation Applications Decompose-and-Cut Method Future Research Algorithmic Details

Outline

Thesis Contributions

Decomposition Methods

- Traditional Methods
- Integrated Methods
- Structured Separation
- Decompose-and-Cut Method
- Algorithmic Details

3 DIP Framework

- Applications
 - Multi-Choice Multi-Dimensional Knapsack Problem
 - ATM Cash Management Problem
 - Generic Black-box Solver for Block-Angular MILP

5 Future Research

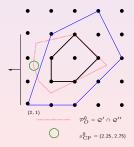
Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Cutting Plane Method (CPM)

CPM builds an *outer* approximation of \mathcal{P}' intersected with \mathcal{Q}''

- Master: $z_{CP} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid Dx \ge d, A''x \ge b'' \right\}$
- Subproblem: $SEP(\mathcal{P}', x_{CP})$

 $\mathcal{P}' = \{ x \in \mathbb{R}^n \mid Dx \ge d \, \}$



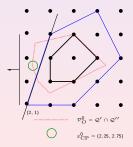
Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Cutting Plane Method (CPM)

CPM builds an *outer* approximation of \mathcal{P}' intersected with \mathcal{Q}''

- Master: $z_{CP} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid Dx \ge d, A''x \ge b'' \right\}$
- Subproblem: $SEP(\mathcal{P}', x_{CP})$

 $\mathcal{P}' = \{ x \in \mathbb{R}^n \mid Dx \ge d \, \}$



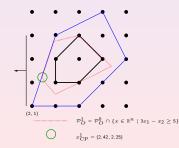
Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Cutting Plane Method (CPM)

CPM builds an *outer* approximation of \mathcal{P}' intersected with \mathcal{Q}''

- Master: $z_{CP} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid Dx \ge d, A''x \ge b'' \right\}$
- Subproblem: $SEP(\mathcal{P}', x_{CP})$

 $\mathcal{P}' = \{ x \in \mathbb{R}^n \mid Dx \ge d \, \}$



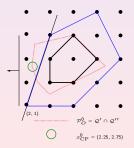
Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

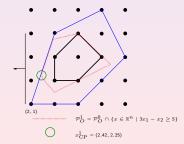
Cutting Plane Method (CPM)

CPM builds an *outer* approximation of \mathcal{P}' intersected with \mathcal{Q}''

- Master: $z_{CP} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid Dx \ge d, A''x \ge b'' \right\}$
- Subproblem: $SEP(\mathcal{P}', x_{CP})$

 $\mathcal{P}' = \{ x \in \mathbb{R}^n \mid Dx \ge d \}$





Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

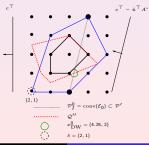
Dantzig-Wolfe Method (DW)

DW builds an *inner* approximation of \mathcal{P}' intersected with \mathcal{Q}''

- Master: $z_{\text{DW}} = \min_{\lambda \in \mathbb{R}^{\mathcal{E}}_{+}} \left\{ c^{\top} \left(\sum_{s \in \mathcal{E}} s \lambda_{s} \right) \ \left| \ A^{\prime \prime} \left(\sum_{s \in \mathcal{E}} s \lambda_{s} \right) \ge b^{\prime \prime}, \sum_{s \in \mathcal{E}} \lambda_{s} = 1 \right. \right\}$
- Subproblem: OPT $\left(\mathcal{P}', c^{\top} u_{\mathrm{DW}}^{\top} A''\right)$

$$\mathcal{P}' = \left\{ x \in \mathbb{R}^n \; \middle| \; x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \ge \mathsf{0} \; \forall s \in \mathcal{E}
ight\}$$

exponential number of variables



Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

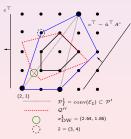
Dantzig-Wolfe Method (DW)

DW builds an *inner* approximation of \mathcal{P}' intersected with \mathcal{Q}''

- Master: $z_{\text{DW}} = \min_{\lambda \in \mathbb{R}_{+}^{\mathcal{E}}} \left\{ c^{\top} \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ \left| \ A^{\prime \prime} \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ge b^{\prime \prime}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\} \right\}$
- Subproblem: OPT $\left(\mathcal{P}', c^{\top} u_{\mathrm{DW}}^{\top} A''\right)$

$$\mathcal{P}' = \left\{ x \in \mathbb{R}^n \; \left| \; x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \ge \mathsf{0} \; orall s \in \mathcal{E}
ight.
ight\}$$

exponential number of variables



Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

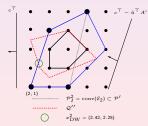
Dantzig-Wolfe Method (DW)

DW builds an *inner* approximation of \mathcal{P}' intersected with \mathcal{Q}''

- Master: $z_{\text{DW}} = \min_{\lambda \in \mathbb{R}_{+}^{\mathcal{E}}} \left\{ c^{\top} \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ \left| \ A^{\prime \prime} \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ge b^{\prime \prime}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\} \right\}$
- Subproblem: OPT $\left(\mathcal{P}', c^{\top} u_{\mathrm{DW}}^{\top} A''\right)$

$$\mathcal{P}' = \left\{ x \in \mathbb{R}^n \; \middle| \; x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \ge \mathsf{0} \; \forall s \in \mathcal{E}
ight\}$$

exponential number of variables



Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

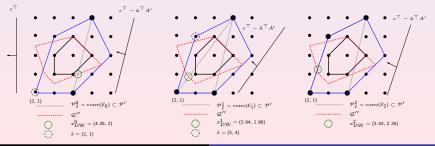
Dantzig-Wolfe Method (DW)

DW builds an *inner* approximation of \mathcal{P}' intersected with \mathcal{Q}''

- Master: $z_{\text{DW}} = \min_{\lambda \in \mathbb{R}^{\mathcal{E}}_{+}} \left\{ c^{\top} \left(\sum_{s \in \mathcal{E}} s \lambda_{s} \right) \ \left| \ A^{\prime \prime} \left(\sum_{s \in \mathcal{E}} s \lambda_{s} \right) \ge b^{\prime \prime}, \sum_{s \in \mathcal{E}} \lambda_{s} = 1 \right. \right\}$
- Subproblem: OPT $\left(\mathcal{P}', c^{\top} u_{\mathrm{DW}}^{\top} A''\right)$

$$\mathcal{P}' = \left\{ x \in \mathbb{R}^n \; \left| \; x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \geq 0 \; orall s \in \mathcal{E}
ight.
ight.
ight.$$

exponential number of variables

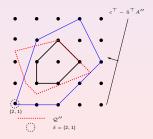


Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Lagrangian Method (LD)

- Master: $z_{\text{LD}} = \max_{u \in \mathbb{R}^{m''}_+} \left\{ \min_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (b'' A''s) \right\} \right\}$
- Subproblem: OPT $\left(\mathcal{P}', c^{\top} u_{\text{LD}}^{\top} A''\right)$

$$z_{\mathrm{LD}} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}^{m''}_+} \left\{ \alpha + b''^\top u \ \left| \ \left(c^\top - u^\top A'' \right) s - \alpha \ge \mathbf{0} \ \forall s \in \mathcal{E} \right. \right\} = z_{\mathrm{DW}}$$

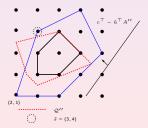


Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Lagrangian Method (LD)

- Master: $z_{\text{LD}} = \max_{u \in \mathbb{R}^{m''}_+} \left\{ \min_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (b'' A''s) \right\} \right\}$
- Subproblem: OPT $\left(\mathcal{P}', c^{\top} u_{\text{LD}}^{\top} A''\right)$

$$z_{\rm LD} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}_+^{m''}} \left\{ \alpha + b''^\top u \ \Big| \ \left(c^\top - u^\top A'' \right) s - \alpha \ge \mathbf{0} \ \forall s \in \mathcal{E} \right\} = z_{\rm DW}$$

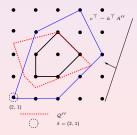


Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Lagrangian Method (LD)

- Master: $z_{\text{LD}} = \max_{u \in \mathbb{R}^{m''}_+} \left\{ \min_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (b'' A''s) \right\} \right\}$
- Subproblem: OPT $\left(\mathcal{P}', c^{\top} u_{\text{LD}}^{\top} A''\right)$

$$z_{\rm LD} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}_+^{m''}} \left\{ \alpha + b''^\top u \ \left| \ \left(c^\top - u^\top A'' \right) s - \alpha \ge \mathbf{0} \ \forall s \in \mathcal{E} \right. \right\} = z_{\rm DW}$$

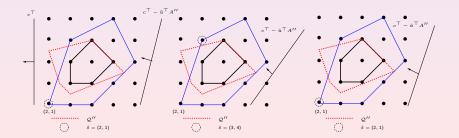


Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Lagrangian Method (LD)

- Master: $z_{\text{LD}} = \max_{u \in \mathbb{R}^{m''}_+} \left\{ \min_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (b'' A''s) \right\} \right\}$
- Subproblem: OPT $\left(\mathcal{P}', c^{\top} u_{\text{LD}}^{\top} A''\right)$

$$z_{\mathrm{LD}} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}_{+}^{m''}} \left\{ \alpha + b''^{\top} u \ \Big| \ \left(c^{\top} - u^{\top} A'' \right) s - \alpha \geq \mathsf{0} \ \forall s \in \mathcal{E} \right\} = z_{\mathrm{DW}}$$



Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Common Threads

• The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

 $z_{\rm LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$

• The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

 $z_{\mathrm{CP}} = z_{\mathrm{DW}} = z_{\mathrm{LD}} = z_{\mathrm{D}} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{P}' \cap \mathcal{Q}'' \} \ge z_{\mathrm{LP}}$

Traditional decomp-based bounding methods contain two primary steps

- Master Problem: Update the primal/dual solution information
- Subproblem: Update the approximation of \mathcal{P}' : $\operatorname{SEP}(\mathcal{P}', x)$ or $\operatorname{OPT}(\mathcal{P}', a)$
- Integrated decomposition methods further improve the bound by considering two implicitly defined polyhedra whose descriptions are iteratively refined.
 - Price-and-Cut (PC)
 - Relax-and-Cut (RC)
 - Decompose-and-Cut (DC)

Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Common Threads

• The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

 $z_{\rm LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$

• The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

 $z_{\mathrm{CP}} = z_{\mathrm{DW}} = z_{\mathrm{LD}} = z_{\mathrm{D}} = \min_{x \in \mathbb{R}^n} \{ c^{\top} x \mid x \in \mathcal{P}' \cap \mathcal{Q}'' \} \ge z_{\mathrm{LP}}$

- Traditional decomp-based bounding methods contain two primary steps
 - Master Problem: Update the primal/dual solution information
 - Subproblem: Update the approximation of \mathcal{P}' : SEP (\mathcal{P}', x) or OPT (\mathcal{P}', c)
- Integrated decomposition methods further improve the bound by considering two implicitly defined polyhedra whose descriptions are iteratively refined.
 - Price-and-Cut (PC)
 - Relax-and-Cut (RC)
 - Decompose-and-Cut (DC)

Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Common Threads

• The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

 $z_{\rm LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$

• The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

 $z_{\mathrm{CP}} = z_{\mathrm{DW}} = z_{\mathrm{LD}} = z_{\mathrm{D}} = \min_{x \in \mathbb{R}^n} \{ c^{\top} x \mid x \in \mathcal{P}' \cap \mathcal{Q}'' \} \ge z_{\mathrm{LP}}$

- Traditional decomp-based bounding methods contain two primary steps
 - Master Problem: Update the primal/dual solution information
 - Subproblem: Update the approximation of \mathcal{P}' : SEP (\mathcal{P}', x) or OPT (\mathcal{P}', c)
- Integrated decomposition methods further improve the bound by considering two implicitly defined polyhedra whose descriptions are iteratively refined.
 - Price-and-Cut (PC)
 - Relax-and-Cut (RC)
 - Decompose-and-Cut (DC)

Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Price-and-Cut Method (PC)

PC approximates \mathcal{P} by building an *inner* approximation of \mathcal{P}' (as in DW) intersected with an *outer* approximation of \mathcal{P} (as in CPM)

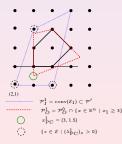
- Master: $z_{\text{PC}} = \min_{\lambda \in \mathbb{R}_{+}^{\mathcal{E}}} \left\{ c^{\top} \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ \middle| \ D \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ge d, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$
- Subproblem: OPT $\left(\mathcal{P}', c^{\top} u_{\text{PC}}^{\top}D\right)$ or SEP $\left(\mathcal{P}, x_{\text{PC}}\right)$
- As in CPM, separate $\hat{x}_{PC} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$ from \mathcal{P} and add cuts to [D, d].
- Key Idea: Cut generation takes place in the space of the compact formulation, maintaining the structure of the column generation subproblem.

Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Price-and-Cut Method (PC)

PC approximates \mathcal{P} by building an *inner* approximation of \mathcal{P}' (as in DW) intersected with an *outer* approximation of \mathcal{P} (as in CPM)

- Master: $z_{\text{PC}} = \min_{\lambda \in \mathbb{R}_{+}^{\mathcal{E}}} \left\{ c^{\top} \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ \middle| \ D \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ge d, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$
- Subproblem: OPT $\left(\mathcal{P}', c^{\top} u_{\text{PC}}^{\top}D\right)$ or SEP $\left(\mathcal{P}, x_{\text{PC}}\right)$
- As in CPM, separate $\hat{x}_{PC} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$ from \mathcal{P} and add cuts to [D, d].
- Key Idea: Cut generation takes place in the space of the compact formulation, maintaining the structure of the column generation subproblem.

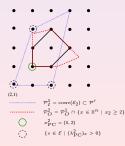


Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Price-and-Cut Method (PC)

PC approximates \mathcal{P} by building an *inner* approximation of \mathcal{P}' (as in DW) intersected with an *outer* approximation of \mathcal{P} (as in CPM)

- Master: $z_{\text{PC}} = \min_{\lambda \in \mathbb{R}_{+}^{\mathcal{E}}} \left\{ c^{\top} \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ \middle| \ D \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ge d, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$
- Subproblem: OPT $\left(\mathcal{P}', c^{\top} u_{\text{PC}}^{\top}D\right)$ or SEP $\left(\mathcal{P}, x_{\text{PC}}\right)$
- As in CPM, separate $\hat{x}_{PC} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$ from \mathcal{P} and add cuts to [D, d].
- Key Idea: Cut generation takes place in the space of the compact formulation, maintaining the structure of the column generation subproblem.



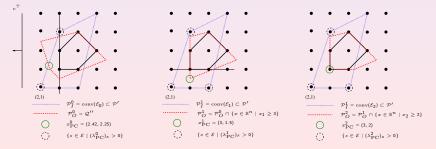
Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Price-and-Cut Method (PC)

PC approximates \mathcal{P} by building an *inner* approximation of \mathcal{P}' (as in DW) intersected with an *outer* approximation of \mathcal{P} (as in CPM)

- Master: $z_{\text{PC}} = \min_{\lambda \in \mathbb{R}_{+}^{\mathcal{E}}} \left\{ c^{\top} \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ \middle| \ D \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ge d, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$
- Subproblem: OPT $\left(\mathcal{P}', c^{\top} u_{\text{PC}}^{\top}D\right)$ or SEP $\left(\mathcal{P}, x_{\text{PC}}\right)$
- As in CPM, separate $\hat{x}_{PC} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$ from \mathcal{P} and add cuts to [D, d].

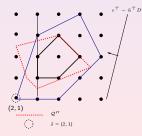
• Key Idea: Cut generation takes place in the space of the compact formulation, maintaining the structure of the column generation subproblem.



Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Relax-and-Cut Method (RC)

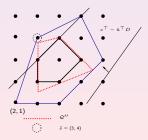
- Master: $z_{\text{LD}} = \max_{u \in \mathbb{R}^{m''}} \left\{ \min_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (d Ds) \right\} \right\}$
- Subproblem: $OPT\left(\mathcal{P}', c^{\top} u_{LD}^{\top}D\right)$ or $SEP\left(\mathcal{P}, s\right)$
- In each iteration, separate $\hat{s} \in \mathcal{E}$, a solution to the Lagrangian relaxation.
- Advantage: Often easier to separate $s \in \mathcal{E}$ from \mathcal{P} than $\hat{x} \in \mathbb{R}^n$.



Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Relax-and-Cut Method (RC)

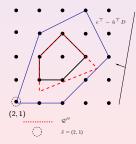
- Master: $z_{\text{LD}} = \max_{u \in \mathbb{R}^{m''}} \left\{ \min_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (d Ds) \right\} \right\}$
- Subproblem: $OPT\left(\mathcal{P}', c^{\top} u_{LD}^{\top}D\right)$ or $SEP\left(\mathcal{P}, s\right)$
- In each iteration, separate $\hat{s} \in \mathcal{E}$, a solution to the Lagrangian relaxation.
- Advantage: Often easier to separate $s \in \mathcal{E}$ from \mathcal{P} than $\hat{x} \in \mathbb{R}^n$.



Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Relax-and-Cut Method (RC)

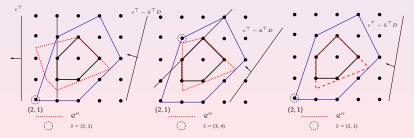
- Master: $z_{\text{LD}} = \max_{u \in \mathbb{R}^{m''}} \left\{ \min_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (d Ds) \right\} \right\}$
- Subproblem: $OPT\left(\mathcal{P}', c^{\top} u_{LD}^{\top}D\right)$ or $SEP\left(\mathcal{P}, s\right)$
- In each iteration, separate $\hat{s} \in \mathcal{E}$, a solution to the Lagrangian relaxation.
- Advantage: Often easier to separate $s \in \mathcal{E}$ from \mathcal{P} than $\hat{x} \in \mathbb{R}^n$.



Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Relax-and-Cut Method (RC)

- Master: $z_{\text{LD}} = \max_{u \in \mathbb{R}^{m''}} \left\{ \min_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (d Ds) \right\} \right\}$
- Subproblem: OPT $(\mathcal{P}', c^{\top} u_{\text{LD}}^{\top}D)$ or SEP (\mathcal{P}, s)
- In each iteration, separate $\hat{s} \in \mathcal{E}$, a solution to the Lagrangian relaxation.
- Advantage: Often easier to separate $s \in \mathcal{E}$ from \mathcal{P} than $\hat{x} \in \mathbb{R}^n$.



Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	Algorithmic Details

Structured Separation

- In general, the complexity of OPT(X, c) = SEP(X, x).
- Observation: Restrictions on input or output can change their complexity.
- Template Paradigm, restricts the *output* of SEP(X, x) to valid inequalities that conform to a certain structure. This class of inequalities forms a polyhedron $C \supset X$ (the *closure*).
- For example, let \mathcal{P} be the convex hull of solutions to the TSP.
 - $\operatorname{SEP}(\mathcal{P},x)$ is $\mathcal{NP} ext{-}\operatorname{Complete}$.
 - $\operatorname{SEP}(\mathcal{C},x)$ is polynomially solvable, for $\mathcal{C}\supset\mathcal{P}$
 - $\mathcal{P}^{\text{Subtour}}$, the Subtour Polytope (separation using Min-Cut), or
 - $\mathcal{P}^{\text{Blossom}}$, the Blossom Polytope (separation using Letchford, et al.).
- Structured Separation, restricts the *input* of SEP(X, x), such that x conforms to some structure. For example, if x is restricted to solutions to a combinatorial problem, then separation often becomes much easier.

Thesis Contributions	
Decomposition Methods	
DIP Framework	Structured Separation
Applications	
Future Research	Algorithmic Details

Structured Separation

- In general, the complexity of OPT(X, c) = SEP(X, x).
- Observation: Restrictions on input or output can change their complexity.
- Template Paradigm, restricts the *output* of SEP(X, x) to valid inequalities that conform to a certain structure. This class of inequalities forms a polyhedron $C \supset X$ (the *closure*).
- $\bullet\,$ For example, let ${\cal P}$ be the convex hull of solutions to the TSP.
 - $SEP(\mathcal{P}, x)$ is \mathcal{NP} -Complete.
 - $\operatorname{SEP}(\mathcal{C}, x)$ is polynomially solvable, for $\mathcal{C} \supset \mathcal{P}$
 - $\mathcal{P}^{\text{Subtour}}$, the Subtour Polytope (separation using Min-Cut), or
 - $\bullet ~ \mathcal{P}^{\rm Blossom}$, the Blossom Polytope (separation using Letchford, et al.).
- Structured Separation, restricts the *input* of SEP(X, x), such that x conforms to some structure. For example, if x is restricted to solutions to a combinatorial problem, then separation often becomes much easier.

Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	
Future Research	Algorithmic Details

Structured Separation

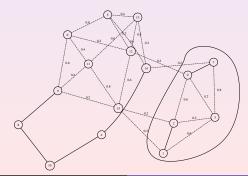
- In general, the complexity of OPT(X, c) = SEP(X, x).
- Observation: Restrictions on input or output can change their complexity.
- Template Paradigm, restricts the *output* of SEP(X, x) to valid inequalities that conform to a certain structure. This class of inequalities forms a polyhedron $C \supset X$ (the *closure*).
- $\bullet\,$ For example, let ${\cal P}$ be the convex hull of solutions to the TSP.
 - $SEP(\mathcal{P}, x)$ is \mathcal{NP} -Complete.
 - $SEP(\mathcal{C}, x)$ is polynomially solvable, for $\mathcal{C} \supset \mathcal{P}$
 - $\mathcal{P}^{\mathrm{Subtour}}$, the Subtour Polytope (separation using Min-Cut), or
 - $\bullet ~ \mathcal{P}^{\rm Blossom}$, the Blossom Polytope (separation using Letchford, et al.).
- Structured Separation, restricts the *input* of SEP(X, x), such that x conforms to some structure. For example, if x is restricted to solutions to a combinatorial problem, then separation often becomes much easier.

Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	Algorithmic Details

• Separation of Subtour Inequalities:

 $x(E(S)) \le |S| - 1$

- $SEP(\mathcal{P}^{Subtour}, x)$ for $x \in \mathbb{R}^n$ can be solved in $O(|E||V| + |V|^2 \log |V|)$ (Min-Cut)
- $\operatorname{SEP}(\mathcal{P}^{\operatorname{Subtour}},s)$ for s a 2-matching, can be solved in O(|V|)
 - Simply determine the connected components C_i , and set $S = C_i$ for each component (each gives a violation of 1).

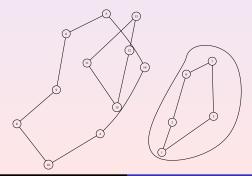


Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	
Future Research	

• Separation of Subtour Inequalities:

 $x(E(S)) \le |S| - 1$

- $\operatorname{SEP}(\mathcal{P}^{\operatorname{Subtour}},x)$ for $x\in\mathbb{R}^n$ can be solved in $O\left(|E||V|+|V|^2\log|V|
 ight)$ (Min-Cut)
- SEP($\mathcal{P}^{\text{Subtour}}, s$) for s a 2-matching, can be solved in O(|V|)
 - Simply determine the connected components C_i , and set $S = C_i$ for each component (each gives a violation of 1).

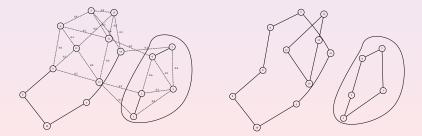


Thesis Contributions Decomposition Methods	Traditional Methods Integrated Methods
DIP Framework	Structured Separation
Applications	
Future Research	

• Separation of Subtour Inequalities:

 $x(E(S)) \le |S| - 1$

- SEP($\mathcal{P}^{\text{Subtour}}, x$) for $x \in \mathbb{R}^n$ can be solved in $O\left(|E||V| + |V|^2 \log |V|\right)$ (Min-Cut)
- SEP($\mathcal{P}^{\text{Subtour}}, s$) for s a 2-matching, can be solved in O(|V|)
 - Simply determine the connected components C_i , and set $S = C_i$ for each component (each gives a violation of 1).

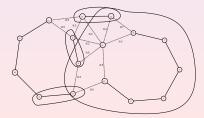


Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	Algorithmic Details

Separation of Comb Inequalities:

$$x(E(H))+\sum_{i=1}^k x(E(T_i))\leq |H|+\sum_{i=1}^k (|T_i|-1)-\lceil k/2
ceil$$

- SEP($\mathcal{P}^{\text{Blossom}}, x$), for $x \in \mathbb{R}^n$ can be solved in $O(|V|^2 |E| \log(|V|^2 / |E|))$ (Letchford, et al.)
- $\operatorname{SEP}(\mathcal{P}^{\operatorname{Blossom}},s)$, for s a 1-tree, can be solved in $O(|V|^2)$
 - Construct candidate handles H from BFS tree traversal and an odd (\geq 3) set of edges with one endpoint in H and one in $V \setminus H$ as candidate teeth (each gives a violation of $\lceil k/2 \rceil 1$).
 - This can also be used as a quick heuristic to separate 1-trees for more general comb structures, for which there is no known polynomial algorithm for separation of arbitrary vectors.

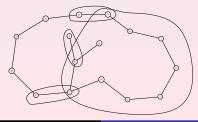


Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	
Future Research	

Separation of Comb Inequalities:

$$x(E(H))+\sum_{i=1}^k x(E(T_i))\leq |H|+\sum_{i=1}^k (|T_i|-1)-\lceil k/2
ceil$$

- SEP($\mathcal{P}^{\text{Blossom}}, x$), for $x \in \mathbb{R}^n$ can be solved in $O(|V|^2 |E| \log(|V|^2 / |E|))$ (Letchford, et al.)
- SEP($\mathcal{P}^{\text{Blossom}}, s$), for s a 1-tree, can be solved in $O(|V|^2)$
 - Construct candidate handles *H* from BFS tree traversal and an odd (≥ 3) set of edges with one endpoint in *H* and one in *V* \ *H* as candidate teeth (each gives a violation of [k/2] - 1).
 - This can also be used as a quick heuristic to separate 1-trees for more general comb structures, for which there is no known polynomial algorithm for separation of arbitrary vectors.



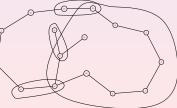
Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	
Future Research	

Separation of Comb Inequalities:

$$x(E(H)) + \sum_{i=1}^k x(E(T_i)) \le |H| + \sum_{i=1}^k (|T_i| - 1) - \lceil k/2 \rceil$$

- SEP($\mathcal{P}^{\text{Blossom}}, x$), for $x \in \mathbb{R}^n$ can be solved in $O(|V|^2 |E| \log(|V|^2 / |E|))$ (Letchford, et al.)
- SEP($\mathcal{P}^{\text{Blossom}}, s$), for s a 1-tree, can be solved in $O(|V|^2)$
 - Construct candidate handles *H* from BFS tree traversal and an odd (≥ 3) set of edges with one endpoint in *H* and one in *V* \ *H* as candidate teeth (each gives a violation of [k/2] - 1).
 - This can also be used as a quick heuristic to separate 1-trees for more general comb structures, for which there is no known polynomial algorithm for separation of arbitrary vectors.





Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	Algorithmic Details
Motivation	

- In Relax-and-Cut, solutions to the Lagrangian subproblem s ∈ E typically have some nice combinatorial structure. So, in RC, SEP(P, s), can be relatively easy as opposed to general separation.
- Question: Can we take advantage of this in other contexts?
- LP theory says in order to *improve the bound*, it is *necessary and sufficient* to cut off the entire face of optimal solutions *F*.
- This condition is difficult to verify, so we typically use the *necessary condition* that the generated inequality be violated by some member of that face, $x \in F$.
 - In CPM, we solve $\operatorname{SEP}(\mathcal{P}, x_{\operatorname{CP}}^t)$, where $x_{\operatorname{CP}}^t \in F^t$, and F^t is optimal face over $\mathcal{P}_O^t \cap \mathcal{Q}''$
 - In PC, we solve $ext{SEP}(\mathcal{P}, x_{ ext{PC}}^t)$, where $x_{ ext{PC}}^t \in F^t$, and F^t is optimal face over $\mathcal{P}_I^t \cap \mathcal{P}_O^t$

	Thesis Contributions Decomposition Methods DIP Framework Applications Future Research	Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details
Motivation		

- In Relax-and-Cut, solutions to the Lagrangian subproblem s ∈ E typically have some nice combinatorial structure. So, in RC, SEP(P, s), can be relatively easy as opposed to general separation.
- Question: Can we take advantage of this in other contexts?
- LP theory says in order to *improve the bound*, it is *necessary and sufficient* to cut off the entire face of optimal solutions *F*.
- This condition is difficult to verify, so we typically use the *necessary condition* that the generated inequality be violated by some member of that face, $x \in F$.
 - In CPM, we solve $\operatorname{SEP}(\mathcal{P}, x_{\operatorname{CP}}^t)$, where $x_{\operatorname{CP}}^t \in F^t$, and F^t is optimal face over $\mathcal{P}_O^t \cap \mathcal{Q}''$
 - In PC, we solve $ext{SEP}(\mathcal{P}, x_{ ext{PC}}^t)$, where $x_{ ext{PC}}^t \in F^t$, and F^t is optimal face over $\mathcal{P}_I^t \cap \mathcal{P}_O^t$

Thesis Contribution Decomposition Metho DIP Framewo Applicatio future Resear	ds Integrated Methods rk Structured Separation Decompose-and-Cut Method
Motivation	

- In Relax-and-Cut, solutions to the Lagrangian subproblem s ∈ E typically have some nice combinatorial structure. So, in RC, SEP(P, s), can be relatively easy as opposed to general separation.
- Question: Can we take advantage of this in other contexts?
- LP theory says in order to *improve the bound*, it is *necessary and sufficient* to cut off the entire face of optimal solutions *F*.
- This condition is difficult to verify, so we typically use the *necessary condition* that the generated inequality be violated by some member of that face, $x \in F$.
 - In CPM, we solve SEP(P, x^t_{CP}), where x^t_{CP} ∈ F^t, and F^t is optimal face over P^t_O ∩ Q^{''}
 In PC, we solve SEP(P, x^t_{PC}), where x^t_{PC} ∈ F^t, and F^t is optimal face over P^t_O ∩ P^t_O

Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	Algorithmic Details
Motivation	

- In Relax-and-Cut, solutions to the Lagrangian subproblem s ∈ E typically have some nice combinatorial structure. So, in RC, SEP(P, s), can be relatively easy as opposed to general separation.
- Question: Can we take advantage of this in other contexts?
- LP theory says in order to *improve the bound*, it is *necessary and sufficient* to cut off the entire face of optimal solutions *F*.
- This condition is difficult to verify, so we typically use the *necessary condition* that the generated inequality be violated by some member of that face, $x \in F$.
 - In CPM, we solve $\text{SEP}(\mathcal{P}, x_{\text{CP}}^t)$, where $x_{\text{CP}}^t \in F^t$, and F^t is optimal face over $\mathcal{P}_O^t \cap \mathcal{Q}''$
 - In PC, we solve $ext{SEP}(\mathcal{P}, x_{ ext{PC}}^t)$, where $x_{ ext{PC}}^t \in F^t$, and F^t is optimal face over $\mathcal{P}_I^t \cap \mathcal{P}_O^t$

Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	Algorithmic Details
Motivation	

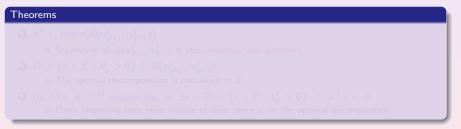
- In Relax-and-Cut, solutions to the Lagrangian subproblem s ∈ E typically have some nice combinatorial structure. So, in RC, SEP(P, s), can be relatively easy as opposed to general separation.
- Question: Can we take advantage of this in other contexts?
- LP theory says in order to *improve the bound*, it is *necessary and sufficient* to cut off the entire face of optimal solutions *F*.
- This condition is difficult to verify, so we typically use the *necessary condition* that the generated inequality be violated by some member of that face, $x \in F$.
 - In CPM, we solve $\text{SEP}(\mathcal{P}, x_{\text{CP}}^t)$, where $x_{\text{CP}}^t \in F^t$, and F^t is optimal face over $\mathcal{P}_O^t \cap \mathcal{Q}''$
 - In PC, we solve $\text{SEP}(\mathcal{P}, x_{\text{PC}}^t)$, where $x_{\text{PC}}^t \in F^t$, and F^t is optimal face over $\mathcal{P}_I^t \cap \mathcal{P}_O^t$

Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	Algorithmic Details

Consider the following set

$$\mathcal{S}(u, lpha) = \left\{ s \in \mathcal{E} \; \left| \; \left(c^{ op} - u^{ op} A^{\prime \prime}
ight) s = lpha
ight\}
ight.$$

• $S(u_{PC}^t, \alpha_{PC}^t)$ is the set of extreme points with rc(s) = 0 in the DW-LP master or the set of alternative optimal solutions to the Lagrangian subproblem.



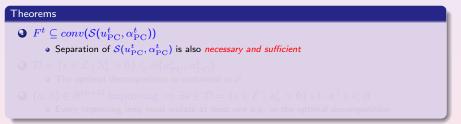
 Theorems 1-3, along with the observation that structured separation can be relatively easy, motivates the following revised Price-and-Cut method.

Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	Algorithmic Details

Consider the following set

$$\mathcal{S}(u, lpha) = \left\{ s \in \mathcal{E} \; \left| \; \left(c^{ op} - u^{ op} A^{\prime \prime}
ight) s = lpha
ight\}
ight.$$

• $S(u_{PC}^t, \alpha_{PC}^t)$ is the set of extreme points with rc(s) = 0 in the DW-LP master or the set of alternative optimal solutions to the Lagrangian subproblem.



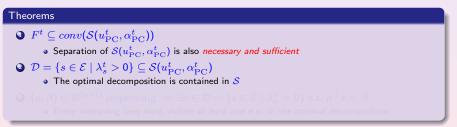
• Theorems 1-3, along with the observation that structured separation can be relatively easy, motivates the following revised Price-and-Cut method.

Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	

Consider the following set

$$\mathcal{S}(u, lpha) = \left\{ s \in \mathcal{E} \; \left| \; \left(c^{ op} - u^{ op} A^{\prime \prime}
ight) s = lpha
ight\}
ight.$$

• $S(u_{PC}^t, \alpha_{PC}^t)$ is the set of extreme points with rc(s) = 0 in the DW-LP master or the set of alternative optimal solutions to the Lagrangian subproblem.



 Theorems 1-3, along with the observation that structured separation can be relatively easy, motivates the following revised Price-and-Cut method.

Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	

Consider the following set

$$\mathcal{S}(u, lpha) = \left\{ s \in \mathcal{E} \; \left| \; \left(c^{ op} - u^{ op} A^{\prime \prime}
ight) s = lpha
ight\}
ight.$$

• $S(u_{PC}^t, \alpha_{PC}^t)$ is the set of extreme points with rc(s) = 0 in the DW-LP master or the set of alternative optimal solutions to the Lagrangian subproblem.

Theorems

- Separation of $\mathcal{S}(u_{\mathrm{PC}}^t, \alpha_{\mathrm{PC}}^t)$ is also necessary and sufficient
- - The optimal decomposition is contained in ${\cal S}$
- $(a,\beta) \in \mathbb{R}^{(n+1)} \text{ improving } \Rightarrow \exists s \in \mathcal{D} = \{s \in \mathcal{E} \mid \lambda_s^t > 0\} \text{ s.t. } a^\top s < \beta$
 - Every improving ineq must violate at least one e.p. in the optimal decomposition

 Theorems 1-3, along with the observation that structured separation can be relatively easy, motivates the following revised Price-and-Cut method.

Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	

Consider the following set

$$\mathcal{S}(u, lpha) = \left\{ s \in \mathcal{E} \; \left| \; \left(c^{ op} - u^{ op} A^{\prime \prime}
ight) s = lpha
ight\}
ight.$$

• $S(u_{PC}^t, \alpha_{PC}^t)$ is the set of extreme points with rc(s) = 0 in the DW-LP master or the set of alternative optimal solutions to the Lagrangian subproblem.

F^t ⊆ conv(S(u^t_{PC}, α^t_{PC})) Separation of S(u^t_{PC}, α^t_{PC}) is also necessary and sufficient D = {s ∈ E | λ^t_s > 0} ⊆ S(u^t_{PC}, α^t_{PC}) The optimal decomposition is contained in S (a, β) ∈ ℝ⁽ⁿ⁺¹⁾ improving ⇒ ∃s ∈ D = {s ∈ E | λ^t_s > 0} s.t. a^Ts < β Every improving ineq must violate at least one e.p. in the optimal decomposition

• Theorems 1-3, along with the observation that structured separation can be relatively easy, motivates the following revised Price-and-Cut method.

Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Price-and-Cut (Revisited)

Price-and-Cut (Revisited): As normal, use DW as the bounding method, but use the decomposition obtained in each iteration to generate improving inequalities, as in RC.

- Key Idea: Rather than (or in addition to) separating \hat{x}_{PC} , separate each member of D
- As with **RC**, often much easier to separate $s \in \mathcal{E}$ than $\hat{x}_{\mathrm{PC}} \in \mathbb{R}^n$
- RC only gives us one member of \mathcal{E} to separate, while PC gives us a set, one of which must be violated by any inequality violated by $\hat{x}_{\rm PC}$
- Provides an alternative *necessary* (but not *sufficient*) condition to find an improving inequality which is very **easy to implement and understand**.

Integrated Methods
Structured Separatic

Price-and-Cut (Revisited): As normal, use DW as the bounding method, but use the decomposition obtained in each iteration to generate improving inequalities, as in RC.

- Key Idea: Rather than (or in addition to) separating \hat{x}_{PC} , separate each member of D
- As with **RC**, often much easier to separate $s \in \mathcal{E}$ than $\hat{x}_{PC} \in \mathbb{R}^n$
- RC only gives us one member of \mathcal{E} to separate, while PC gives us a set, one of which must be violated by any inequality violated by \hat{x}_{PC}
- Provides an alternative *necessary* (but not *sufficient*) condition to find an improving inequality which is very **easy to implement and understand**.

Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	
Future Research	Algorithmic Details

Price-and-Cut (Revisited): As normal, use DW as the bounding method, but use the decomposition obtained in each iteration to generate improving inequalities, as in RC.

- Key Idea: Rather than (or in addition to) separating \hat{x}_{PC} , separate each member of D
- As with RC, often much easier to separate $s \in \mathcal{E}$ than $\hat{x}_{\mathrm{PC}} \in \mathbb{R}^n$
- RC only gives us one member of \mathcal{E} to separate, while PC gives us a set, one of which must be violated by any inequality violated by \hat{x}_{PC}
- Provides an alternative *necessary* (but not *sufficient*) condition to find an improving inequality which is very **easy to implement and understand**.

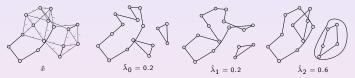
Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	Algorithmic Details

Price-and-Cut (Revisited): As normal, use DW as the bounding method, but use the decomposition obtained in each iteration to generate improving inequalities, as in RC.

- Key Idea: Rather than (or in addition to) separating \hat{x}_{PC} , separate each member of D
- As with RC, often much easier to separate $s \in \mathcal{E}$ than $\hat{x}_{\mathrm{PC}} \in \mathbb{R}^n$
- RC only gives us one member of \mathcal{E} to separate, while PC gives us a set, one of which must be violated by any inequality violated by \hat{x}_{PC}
- Provides an alternative *necessary* (but not *sufficient*) condition to find an improving inequality which is very **easy to implement and understand**.

|--|

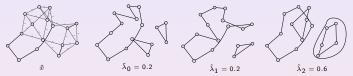
• The violated subtour found by separating the 2-matching *also* violates the fractional point, but was found at little cost.



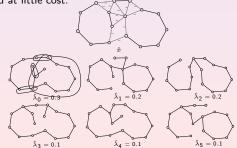
 Similarly, the violated blossom found by separating the 1-tree also violates the fractional point, but was found at little cost.

Thesis Contributions Traditional Methods Decomposition Methods Integrated Methods DIP Framework Structured Separation Applications Euture Research Algorithmic Details
--

• The violated subtour found by separating the 2-matching *also* violates the fractional point, but was found at little cost.



• Similarly, the violated blossom found by separating the 1-tree *also* violates the fractional point, but was found at little cost.



Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Decompose-and-Cut Method (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.'s of \mathcal{P}'

$$\min_{\lambda \in \mathbb{R}^{\mathcal{E}}_+, (x^+, x^-) \in \mathbb{R}^n_+} \left\{ x^+ + x^- \ \left| \ \sum_{s \in \mathcal{E}} s\lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right. \right\}$$

Iraditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Decompose-and-Cut Method (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.'s of \mathcal{P}'

$$\min_{\lambda \in \mathbb{R}^{\mathcal{E}}_{+}, (x^{+}, x^{-}) \in \mathbb{R}^{n}_{+}} \left\{ x^{+} + x^{-} \left| \sum_{s \in \mathcal{E}} s\lambda_{s} + x^{+} - x^{-} = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_{s} = 1 \right. \right\}$$

- If \hat{x}_{CP} lies outside \mathcal{P}' the decomposition will fail
- By the Farkas Lemma the proof of infeasibility provides a valid and violated inequality

Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Decompose-and-Cut Method (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.'s of \mathcal{P}' .

$$\min_{\lambda \in \mathbb{R}^{\mathcal{E}}_{+}, (x^{+}, x^{-}) \in \mathbb{R}^{n}_{+}} \left\{ x^{+} + x^{-} \left| \sum_{s \in \mathcal{E}} s\lambda_{s} + x^{+} - x^{-} = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_{s} = 1 \right. \right\}$$

- Later used in TSP Concorde by ABCC (non-template cuts)
- Now being used (in some form) for generic MILP by Gurobi
- ullet This tells us that our cuts are *missing something* related to ${\mathcal P}$
- The machinery for solving this already exists (=column generation)
- Much easier than DW problem because feasibility problem and
 - $\hat{x}_i=0 \Rightarrow s_i=0$, can remove constraints not in support, and
 - $\hat{x}_i = 1 ext{ and } s_i \in \{0,1\} \Rightarrow$ constraint is redundant with convexity constraint
 - Often gets lucky and produces incumbent solutions to original IP

Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Decompose-and-Cut Method (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.'s of \mathcal{P}' .

$$\min_{\lambda \in \mathbb{R}^{\mathcal{E}}_{+}, (x^+, x^-) \in \mathbb{R}^n_+} \left\{ x^+ + x^- \ \left| \ \sum_{s \in \mathcal{E}} s\lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right. \right\}$$

- Later used in TSP Concorde by ABCC (non-template cuts)
- Now being used (in some form) for generic MILP by Gurobi
- This tells us that our cuts are missing something related to P
- The machinery for solving this already exists (=column generation)
- Much easier than DW problem because feasibility problem and
 - $\hat{x}_i = 0 \Rightarrow s_i = 0$, can remove constraints not in support, and
 - $\hat{x}_i = 1 ext{ and } s_i \in \{0,1\} \Rightarrow$ constraint is redundant with convexity constraint
 - Often gets lucky and produces incumbent solutions to original IP

Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Decompose-and-Cut Method (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.'s of \mathcal{P}' .

$$\min_{\lambda \in \mathbb{R}^{\mathcal{E}}_{+}, (x^+, x^-) \in \mathbb{R}^n_+} \left\{ x^+ + x^- \ \left| \ \sum_{s \in \mathcal{E}} s\lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right. \right\}$$

- Later used in TSP Concorde by ABCC (non-template cuts)
- Now being used (in some form) for generic MILP by Gurobi
- This tells us that our cuts are missing something related to \mathcal{P}'
- The machinery for solving this already exists (=column generation)
- Much easier than DW problem because feasibility problem and
 - $\hat{x}_i=0 \Rightarrow s_i=0$, can remove constraints not in support, and
 - $\hat{x}_i = 1 ext{ and } s_i \in \{0,1\} \Rightarrow$ constraint is redundant with convexity constraint
 - Often gets lucky and produces incumbent solutions to original IP

Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Decompose-and-Cut Method (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.'s of \mathcal{P}' .

$$\min_{\lambda \in \mathbb{R}^{\mathcal{E}}_{+}, (x^+, x^-) \in \mathbb{R}^n_+} \left\{ x^+ + x^- \left| \sum_{s \in \mathcal{E}} s\lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right| \right\}$$

- Later used in TSP Concorde by ABCC (non-template cuts)
- Now being used (in some form) for generic MILP by Gurobi
- This tells us that our cuts are missing something related to \mathcal{P}'
- The machinery for solving this already exists (=column generation)
- Much easier than DW problem because feasibility problem and
 - $\hat{x}_i=0 \Rightarrow s_i=0$, can remove constraints not in support, and
 - $\hat{x}_i = 1$ and $s_i \in \{0, 1\} \Rightarrow$ constraint is redundant with convexity constraint
 - Often gets lucky and produces incumbent solutions to original IP

Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Decompose-and-Cut Method (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.'s of \mathcal{P}' .

$$\min_{\lambda \in \mathbb{R}^{\mathcal{E}}_{+}, (x^+, x^-) \in \mathbb{R}^n_+} \left\{ x^+ + x^- \ \left| \ \sum_{s \in \mathcal{E}} s\lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right. \right\}$$

Original idea proposed by Ralphs for VRP

- Later used in TSP Concorde by ABCC (non-template cuts)
- Now being used (in some form) for generic MILP by Gurobi
- This tells us that our cuts are missing something related to \mathcal{P}'
- The machinery for solving this already exists (=column generation)
- Much easier than DW problem because feasibility problem and
 - $\hat{x}_i = 0 \Rightarrow s_i = 0$, can remove constraints not in support, and
 - $\hat{x}_i = 1$ and $s_i \in \{0, 1\} \Rightarrow$ constraint is redundant with convexity constraint
 - Often gets lucky and produces incumbent solutions to original IP

Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

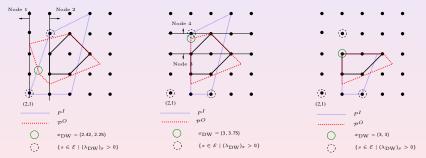
- Add column bounds to [A'', b''] and map back to the compact space $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$
- Variable branching in the compact space is constraint branching in the extended space
- This idea takes care of (most of) the design issues related to branching for inner methods
- Current Limitation: Identical subproblems are currently treated like non-identical

Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	
Applications	
Future Research	Algorithmic Details

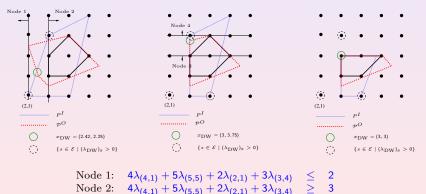
- Add column bounds to [A'', b''] and map back to the compact space $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$
- Variable branching in the compact space is constraint branching in the extended space
- This idea takes care of (most of) the design issues related to branching for inner methods
- Current Limitation: Identical subproblems are currently treated like non-identical.

Algorithmic Details

- Add column bounds to [A'', b''] and map back to the compact space $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$
- Variable branching in the compact space is constraint branching in the extended space
- This idea takes care of (most of) the design issues related to branching for inner methods ٩
- Current Limitation: Identical subproblems are currently treated like non-identical.



- Add column bounds to [A'', b''] and map back to the compact space $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$
- Variable branching in the compact space is constraint branching in the extended space
- This idea takes care of (most of) the design issues related to branching for inner methods
- Current Limitation: Identical subproblems are currently treated like non-identical.



Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Branching for Inner Methods (RC)

- In general, Lagrangian methods do *not* provide a primal solution λ
- Let ${\cal B}$ define the extreme points found in solving subproblems for $z_{
 m LD}$
- Build an inner approximation using this set, then proceed as in PC

Closely related to volume algorithm and bundle methods

Branching for Inner Methods (RC)

- In general, Lagrangian methods do *not* provide a primal solution λ
- Let ${\cal B}$ define the extreme points found in solving subproblems for $z_{
 m LD}$
- Build an inner approximation using this set, then proceed as in PC

$$\mathcal{P}_{I} = \left\{ x \in \mathbb{R}^{n} \mid x = \sum_{s \in \mathcal{B}} s\lambda_{s}, \sum_{s \in \mathcal{B}} \lambda_{s} = 1, \lambda_{s} \ge 0 \; \forall s \in \mathcal{B} \right\}$$
$$\min_{\lambda \in \mathbb{R}^{\mathcal{B}}_{+}} \left\{ c^{\top} \left(\sum_{s \in \mathcal{B}} s\lambda_{s} \right) \mid A'' \left(\sum_{s \in \mathcal{B}} s\lambda_{s} \right) \ge b'', \sum_{s \in \mathcal{B}} \lambda_{s} = 1 \right\}$$

Closely related to volume algorithm and bundle methods

Iraditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details

Branching for Inner Methods (RC)

- In general, Lagrangian methods do not provide a primal solution λ
- Let ${\cal B}$ define the extreme points found in solving subproblems for $z_{
 m LD}$
- Build an inner approximation using this set, then proceed as in PC

$$\mathcal{P}_{I} = \left\{ x \in \mathbb{R}^{n} \mid x = \sum_{s \in \mathcal{B}} s\lambda_{s}, \sum_{s \in \mathcal{B}} \lambda_{s} = 1, \lambda_{s} \ge 0 \; \forall s \in \mathcal{B} \right\}$$
$$\min_{\lambda \in \mathbb{R}^{\mathcal{B}}_{+}} \left\{ c^{\top} \left(\sum_{s \in \mathcal{B}} s\lambda_{s} \right) \mid A'' \left(\sum_{s \in \mathcal{B}} s\lambda_{s} \right) \ge b'', \sum_{s \in \mathcal{B}} \lambda_{s} = 1 \right\}$$

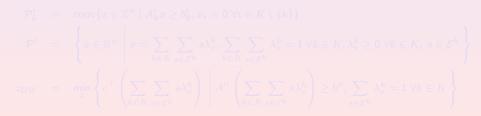
• Closely related to volume algorithm and bundle methods

Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	
Applications	
Future Research	Algorithmic Details

Relaxation Separability

- Key motivation of original DW was separability of the subproblem
- Independence lends itself nicely to parallel implementation
- Projections into subspace for each block, then take e.p.'s from each





Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	
Applications	
Future Research	Algorithmic Details

Relaxation Separability

- Key motivation of original DW was separability of the subproblem
- Independence lends itself nicely to parallel implementation
- Projections into subspace for each block, then take e.p.'s from each

$$\begin{aligned} \mathcal{P}'_k &= \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'_k x \ge b'_k, x_i = \mathbf{0} \; \forall i \in K \setminus \{k\}\} \\ \mathcal{P}' &= \left\{ x \in \mathbb{R}^n \; \left| \; x = \sum_{k \in K} \sum_{s \in \mathcal{E}^k} s \lambda^k_s, \sum_{k \in K} \sum_{s \in \mathcal{E}^k} \lambda^k_s = \mathbf{1} \; \forall k \in K, \lambda^k_s \ge \mathbf{0} \; \forall k \in K, \; s \in \mathcal{E}^k \right\} \\ x_{\mathrm{DW}} &= \left. \min_{\lambda} \left\{ c^\top \left(\sum_{k \in K} \sum_{s \in \mathcal{E}^k} s \lambda^k_s \right) \; \left| \; A'' \left(\sum_{k \in K} \sum_{s \in \mathcal{E}^k} s \lambda^k_s \right) \ge b'', \sum_{s \in \mathcal{E}^k} \lambda^k_s = \mathbf{1} \; \forall k \in K \right\} \right. \end{aligned}$$

Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	Algorithmic Details

Relaxation Separability

- Key motivation of original DW was separability of the subproblem
- Independence lends itself nicely to parallel implementation
- Projections into subspace for each block, then take e.p.'s from each

Generalized Assignment Problem (GAP)

min

$$\sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij}$$

$$\sum_{j \in N} w_{ij} x_{ij} \leq b_i \quad \forall i \in M$$

$$\sum_{i \in M} x_{ij} = 1 \quad \forall j \in N$$

$$x_{ij} \in \{0, 1\} \quad \forall i, j \in M \times N$$

Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	Algorithmic Details

Identical Subproblems

- One motivation for using inner methods like DW is to break symmetry
- Block-diagonal special-case: identical subproblems

Vehicle Routing Problem (VRP)

Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	Algorithmic Details

Identical Subproblems

- One motivation for using inner methods like DW is to break symmetry
- Block-diagonal special-case: *identical subproblems*

$$\Lambda_s = \sum_{k \in K} s \lambda_s^k \; \forall s \in \mathcal{E}$$

$$z_{\mathrm{DW}} = \min_{\Lambda} \left\{ c^{\top} \left(s \Lambda_s \right) \; \middle| \; A^{\prime \prime} \left(\sum_{s \in \mathcal{E}} s \Lambda_s \right) \geq b^{\prime \prime}, \sum_{s \in \mathcal{E}} \Lambda_s^k = K \right\}$$

- Aggregation step breaks our dependence on one-to-one mapping $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$
- Vanderbeck, et al. has been investigating disaggregation based on lexicographic ordering

Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	
Applications	
Future Research	Algorithmic Details

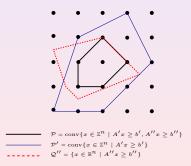
- Outer methods use various approximations to improve the bound (template paradigm)
- New Idea: generate inner points from multiple (nested) polyhedra
- For any polyhedron $\mathcal{P}'_N \subset \mathcal{P}'$, we can also *heuristically* solve $\operatorname{OPT}(\mathcal{P}'_N, c^\top u^\top A'')$
- ullet Can greatly improve generation of incumbents, upper bounds on $z_{
 m IP}$
- The more diverse the pool of columns, the better the chance to find good incumbents

Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	
Applications	
Future Research	Algorithmic Details

- Outer methods use various approximations to improve the bound (template paradigm)
- New Idea: generate inner points from multiple (nested) polyhedra
- For any polyhedron ${\cal P}'_N \subset {\cal P}'$, we can also *heuristically* solve ${
 m OPT}\left({\cal P}'_N, c^+ u^+A''
 ight)$
- ullet Can greatly improve generation of incumbents, upper bounds on $z_{
 m IP}$
- The more diverse the pool of columns, the better the chance to find good incumbents

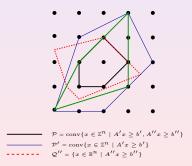
Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method
Algorithmic Details

- Outer methods use various approximations to improve the bound (template paradigm)
- New Idea: generate inner points from multiple (nested) polyhedra
- For any polyhedron $\mathcal{P}'_N \subset \mathcal{P}'$, we can also *heuristically* solve OPT $(\mathcal{P}'_N, c^{\top} u^{\top} A'')$
- Can greatly improve generation of incumbents, upper bounds on z_{IP}
- The more diverse the pool of columns, the better the chance to find good incumbents

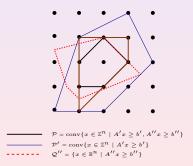


Thesis Contributions Decomposition Methods DIP Framework Applications Future Research	Traditional Methods Integrated Methods Structured Separation Decompose-and-Cut Method Algorithmic Details
 Future Research	Algorithmic Details

- Outer methods use various approximations to improve the bound (template paradigm)
- New Idea: generate inner points from multiple (nested) polyhedra
- For any polyhedron $\mathcal{P}'_N \subset \mathcal{P}'$, we can also *heuristically* solve OPT $(\mathcal{P}'_N, c^{\top} u^{\top} A'')$
- Can greatly improve generation of incumbents, upper bounds on z_{IP}
- The more diverse the pool of columns, the better the chance to find good incumbents

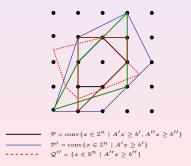


- Outer methods use various approximations to improve the bound (template paradigm)
- New Idea: generate inner points from multiple (nested) polyhedra
- For any polyhedron $\mathcal{P}'_N \subset \mathcal{P}'$, we can also *heuristically* solve OPT $(\mathcal{P}'_N, c^{\top} u^{\top} A'')$
- Can greatly improve generation of incumbents, upper bounds on z_{IP}
- The more diverse the pool of columns, the better the chance to find good incumbents



Thesis Contributions Decomposition Methods	Traditional Methods Integrated Methods
DIP Framework	
Applications	
Future Research	Algorithmic Details

- Outer methods use various approximations to improve the bound (template paradigm)
- New Idea: generate inner points from multiple (nested) polyhedra
- For any polyhedron $\mathcal{P}'_N \subset \mathcal{P}'$, we can also *heuristically* solve OPT $(\mathcal{P}'_N, c^{\top} u^{\top} A'')$
- Can greatly improve generation of incumbents, upper bounds on z_{IP}
- The more diverse the pool of columns, the better the chance to find good incumbents



Thesis Contributions	Traditional Methods
Decomposition Methods	Integrated Methods
DIP Framework	Structured Separation
Applications	Decompose-and-Cut Method
Future Research	Algorithmic Details

Nested Polyhedra - Example

Vehicle Routing Problem

• Relaxation: *b*-Matching $\mathcal{P}' = \mathcal{P}^{bMatch}$

Thesis Contributions	Traditional Methods	
Decomposition Methods	Integrated Methods	
DIP Framework	Structured Separation	
Applications	Decompose-and-Cut Method	
Future Research	Algorithmic Details	

Nested Polyhedra - Example

Vehicle Routing Problem

• Nested Relaxation: Multiple Traveling Salesman $\mathcal{P}^{kTSP} \subset \mathcal{P}^{bMatch}$

 \boldsymbol{x} \boldsymbol{x}

Nested Polyhedra - Example

Vehicle Routing Problem

 $\begin{array}{lll} \min & \sum_{e \in E} c_e x_e \\ & x(\delta(\{0\})) &= 2k \\ & x(\delta(\{v\})) &= 2 & \forall v \in V \\ & x(\delta(S)) &\geq 2b(S) & \forall S \subseteq V, |S| > 1 \\ & x_e \in \{0, 1\} & \forall e \in E(V) \\ & x_e \in \{0, 1, 2\} & \forall e \in \delta(\{0\}) \end{array}$

• Nested Relaxation: *b*-Matching (plus some GSECs) $\mathcal{P}^{bMatch+} \subset \mathcal{P}^{bMatch}$

Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	
Applications	
Future Research	Algorithmic Details

- Integration of generic MILP cuts new idea
 - Using the mapping $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$ we can use generic MILP cuts in RC/PC context
- Initial columns
 - Solve $\operatorname{OPT}(\mathcal{P}', c+r)$ for random perturbations
 - Solve $OPT(\mathcal{P}_N)$ heuristically
 - Run several iterations of LD or DC collecting extreme points
- Price-and-branch heuristic
 - ullet For block-angular case, at end of each node, solve with $\lambda\in\mathbb{Z}$
 - Used in root node by Barahona and Jensen ('98), we extend to tree
- Choice of master LP solver
 - Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)
 - Primal simplex after adding columns (warm-start primal feasible)
 - Interior-point methods might help with stabilization vs extremal duals
- Compression of master LP and object pools
 - Reduce size of master LP, improve efficiency of subproblem processing

Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	
Applications	
Future Research	Algorithmic Details

- Integration of generic MILP cuts new idea
 - Using the mapping $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$ we can use generic MILP cuts in RC/PC context
- Initial columns
 - Solve $OPT(\mathcal{P}', c+r)$ for random perturbations
 - Solve $OPT(\mathcal{P}_N)$ heuristically
 - Run several iterations of LD or DC collecting extreme points
- Price-and-branch heuristic
 - ullet For block-angular case, at end of each node, solve with $\lambda\in\mathbb{Z}$
 - Used in root node by Barahona and Jensen ('98), we extend to tree
- Choice of master LP solver
 - Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)
 - Primal simplex after adding columns (warm-start primal feasible)
 - Interior-point methods might help with stabilization vs extremal duals
- Compression of master LP and object pools
 - Reduce size of master LP, improve efficiency of subproblem processing

Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	
Applications	
Future Research	Algorithmic Details

- Integration of generic MILP cuts new idea
 - Using the mapping $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$ we can use generic MILP cuts in RC/PC context
- Initial columns
 - Solve $OPT(\mathcal{P}', c+r)$ for random perturbations
 - Solve $OPT(\mathcal{P}_N)$ heuristically
 - Run several iterations of LD or DC collecting extreme points
- Price-and-branch heuristic
 - For block-angular case, at end of each node, solve with $\lambda \in \mathbb{Z}$
 - Used in root node by Barahona and Jensen ('98), we extend to tree
- Choice of master LP solver
 - Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)
 - Primal simplex after adding columns (warm-start primal feasible)
 - Interior-point methods might help with stabilization vs extremal duals
- Compression of master LP and object pools
 - Reduce size of master LP, improve efficiency of subproblem processing

Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	
Applications	
Future Research	Algorithmic Details

- Integration of generic MILP cuts new idea
 - Using the mapping $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$ we can use generic MILP cuts in RC/PC context
- Initial columns
 - Solve $OPT(\mathcal{P}', c+r)$ for random perturbations
 - Solve $OPT(\mathcal{P}_N)$ heuristically
 - Run several iterations of LD or DC collecting extreme points
- Price-and-branch heuristic
 - For block-angular case, at end of each node, solve with $\lambda \in \mathbb{Z}$
 - Used in root node by Barahona and Jensen ('98), we extend to tree
- Choice of master LP solver
 - Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)
 - Primal simplex after adding columns (warm-start primal feasible)
 - Interior-point methods might help with stabilization vs extremal duals
- Compression of master LP and object pools
 - Reduce size of master LP, improve efficiency of subproblem processing

Thesis Contributions	
Decomposition Methods	Integrated Methods
DIP Framework	
Applications	
Future Research	Algorithmic Details

- Integration of generic MILP cuts new idea
 - Using the mapping $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$ we can use generic MILP cuts in RC/PC context
- Initial columns
 - Solve $OPT(\mathcal{P}', c+r)$ for random perturbations
 - Solve $OPT(\mathcal{P}_N)$ heuristically
 - Run several iterations of LD or DC collecting extreme points
- Price-and-branch heuristic
 - For block-angular case, at end of each node, solve with $\lambda \in \mathbb{Z}$
 - Used in root node by Barahona and Jensen ('98), we extend to tree
- Choice of master LP solver
 - Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)
 - Primal simplex after adding columns (warm-start primal feasible)
 - Interior-point methods might help with stabilization vs extremal duals
- Compression of master LP and object pools
 - · Reduce size of master LP, improve efficiency of subproblem processing

Outline

Thesis Contributions

2 Decomposition Methods

- Traditional Methods
- Integrated Methods
- Structured Separation
- Decompose-and-Cut Method
- Algorithmic Details

OIP Framework

- Applications
 - Multi-Choice Multi-Dimensional Knapsack Problem
 - ATM Cash Management Problem
 - Generic Black-box Solver for Block-Angular MILP

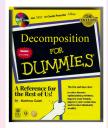
5 Future Research

DIP Framework

DIP Framework

DIP (Decomposition for Integer Programming) is an open-source software framework that provides an implementation of various decomposition methods with minimal user responsibility

- Allows direct comparison CPM/DW/LD/PC/RC/DC in one framework
- DIP abstracts the common, generic elements of these methods
- Key: The user defines application-specific components in the space of the compact formulation - greatly simplifying the API
 - Define $[A^{\prime\prime},b^{\prime\prime}]$ and/or $[A^{\prime},b^{\prime}]$
 - Provide methods for $\operatorname{OPT}(\mathcal{P}',c)$ and/or $\operatorname{SEP}(\mathcal{P}',x)$
- Framework handles all of the algorithm-specific reformulation

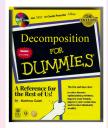


DIP Framework

DIP Framework

DIP (Decomposition for Integer Programming) is an open-source software framework that provides an implementation of various decomposition methods with minimal user responsibility

- Allows direct comparison CPM/DW/LD/PC/RC/DC in one framework
- DIP abstracts the common, generic elements of these methods
- Key: The user defines application-specific components in the space of the compact formulation - greatly simplifying the API
 - Define $[A^{\prime\prime},b^{\prime\prime}]$ and/or $[A^{\prime},b^{\prime}]$
 - Provide methods for $\operatorname{OPT}(\mathcal{P}',c)$ and/or $\operatorname{SEP}(\mathcal{P}',x)$
- Framework handles all of the algorithm-specific reformulation

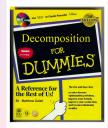


DIP Framework

DIP Framework

DIP (Decomposition for Integer Programming) is an open-source software framework that provides an implementation of various decomposition methods with minimal user responsibility

- Allows direct comparison CPM/DW/LD/PC/RC/DC in one framework
- DIP abstracts the common, generic elements of these methods
- Key: The user defines application-specific components in the space of the compact formulation greatly simplifying the API
 - Define $[A^{\prime\prime},b^{\prime\prime}]$ and/or $[A^{\prime},b^{\prime}]$
 - Provide methods for $OPT(\mathcal{P}', c)$ and/or $SEP(\mathcal{P}', x)$
- Framework handles all of the algorithm-specific reformulation



DIP Framework: Implementation

COmputational INfrastructure for Operations Research Have some DIP with your CHiPPs?

DIP was built around data structures and interfaces provided by COIN-OR

- The DIP framework, written in C++, is accessed through two user interfaces:
 - Applications Interface: DecompApp
 - Algorithms Interface: DecompAlgo
- DIP provides the bounding method for branch and bound
- ALPS (Abstract Library for Parallel Search) provides the framework for tree search
 - AlpsDecompModel : public AlpsModel
 - a wrapper class that calls (data access) methods from DecompApp
 - AlpsDecompTreeNode : public AlpsTreeNode
 - a wrapper class that calls (algorithmic) methods from DecompAlgo

DIP Framework: Implementation

COmputational INfrastructure for Operations Research Have some DIP with your CHiPPs?

- DIP was built around data structures and interfaces provided by COIN-OR
- The DIP framework, written in C++, is accessed through two user interfaces:
 - Applications Interface: DecompApp
 - Algorithms Interface: DecompAlgo
- DIP provides the bounding method for branch and bound
- ALPS (Abstract Library for Parallel Search) provides the framework for tree search
 - AlpsDecompModel : public AlpsModel
 - a wrapper class that calls (data access) methods from DecompApp
 - AlpsDecompTreeNode : public AlpsTreeNode
 - a wrapper class that calls (algorithmic) methods from DecompAlgo

DIP Framework: Implementation

COmputational INfrastructure for Operations Research Have some DIP with your CHiPPs?

- DIP was built around data structures and interfaces provided by COIN-OR
- The DIP framework, written in C++, is accessed through two user interfaces:
 - Applications Interface: DecompApp
 - Algorithms Interface: DecompAlgo
- DIP provides the bounding method for branch and bound
- ALPS (Abstract Library for Parallel Search) provides the framework for tree search
 - AlpsDecompModel : public AlpsModel
 - a wrapper class that calls (data access) methods from DecompApp
 - AlpsDecompTreeNode : public AlpsTreeNode
 - a wrapper class that calls (algorithmic) methods from DecompAlgo

DIP - Creating an Application

- The base class DecompApp provides an interface for user to define the application-specific components of their algorithm
- Define the model(s)
 - setModelObjective(double * c): define c
 - setModelCore(DecompConstraintSet * model): define \mathcal{Q}''
 - setModelRelaxed(DecompConstraintSet * model, int block): define \mathcal{Q}' [optional]
- solveRelaxed(): define a method for $OPT(\mathcal{P}', c)$ [optional, if \mathcal{Q}' , CBC is built-in]
- generateCuts(): define a method for $\text{SEP}(\mathcal{P}', x)$ [optional, CGL is built-in]
- isUserFeasible(): is $\hat{x} \in \mathcal{P}$? [optional, if $\mathcal{P} = \operatorname{conv}(\mathcal{P}' \cap \mathcal{Q}'' \cap \mathbb{Z})$]
- All other methods have appropriate defaults but are virtual and may be overridden

DIP - Creating an Application

- The base class DecompApp provides an interface for user to define the application-specific components of their algorithm
- Define the model(s)
 - o setModelObjective(double * c): define c
 - setModelCore(DecompConstraintSet * model): define Q''
 - setModelRelaxed(DecompConstraintSet * model, int block): define Q' [optional]
- solveRelaxed(): define a method for $OPT(\mathcal{P}', c)$ [optional, if \mathcal{Q}' , CBC is built-in]
- generateCuts(): define a method for $SEP(\mathcal{P}', x)$ [optional, CGL is built-in]
- isUserFeasible(): is $\hat{x} \in \mathcal{P}$? [optional, if $\mathcal{P} = \operatorname{conv}(\mathcal{P}' \cap \mathcal{Q}'' \cap \mathbb{Z})$]
- All other methods have appropriate defaults but are virtual and may be overridden

DIP - Creating an Application

- The base class DecompApp provides an interface for user to define the application-specific components of their algorithm
- Define the model(s)
 - setModelObjective(double * c): define c
 - setModelCore(DecompConstraintSet * model): define Q''
 - setModelRelaxed(DecompConstraintSet * model, int block): define Q' [optional]
- solveRelaxed(): define a method for $OPT(\mathcal{P}', c)$ [optional, if \mathcal{Q}' , CBC is built-in]
- generateCuts(): define a method for $SEP(\mathcal{P}', x)$ [optional, CGL is built-in]
- isUserFeasible(): is $\hat{x} \in \mathcal{P}$? [optional, if $\mathcal{P} = \operatorname{conv}(\mathcal{P}' \cap \mathcal{Q}'' \cap \mathbb{Z})$]
- All other methods have appropriate defaults but are virtual and may be overridden

DIP - Creating an Application

- The base class DecompApp provides an interface for user to define the application-specific components of their algorithm
- Define the model(s)
 - setModelObjective(double * c): define c
 - setModelCore(DecompConstraintSet * model): define Q''
 - setModelRelaxed(DecompConstraintSet * model, int block): define Q' [optional]
- solveRelaxed(): define a method for $OPT(\mathcal{P}', c)$ [optional, if \mathcal{Q}' , CBC is built-in]
- generateCuts(): define a method for $SEP(\mathcal{P}', x)$ [optional, CGL is built-in]
- isUserFeasible(): is $\hat{x} \in \mathcal{P}$? [optional, if $\mathcal{P} = \operatorname{conv}(\mathcal{P}' \cap \mathcal{Q}'' \cap \mathbb{Z})$]
- All other methods have appropriate defaults but are virtual and may be overridden

DIP Framework: Compare and Contrast to COIN/BCP

```
int main(int argc, char ** argv){
  //create the utility class for parsing parameters
  UtilParameters utilParam(argc, argv);
  bool doCut
                     = utilParam.GetSetting("doCut", true);
  bool doPriceCut = utilParam.GetSetting("doPriceCut", false);
  bool doRelaxCut = utilParam.GetSetting("doRelaxCut". false):
  //create the user application (a DecompApp)
  SILP_DecompApp sip(utilParam):
  //create the CPM/PC/RC algorithm objects (a DecompAlgo)
  DecompAlgo * algo = NULL;
  if (doCut) algo = new DecompAlgoC (\&sip, &utilParam);
  if (doPriceCut) algo = new DecompAlgoPC(&sip, &utilParam);
  if (doRelaxCut) algo = new DecompAlgoRC(&sip, &utilParam);
  //create the driver AlpsDecomp model
  AlpsDecompModel alpsModel(utilParam, algo);
  //solve
  alpsModel.solve();
```

DIP Framework: Compare and Contrast to COIN/BCP

- Limitations:
 - BCP: The user must derive methods for almost all of the algorithmic components: (master reformulation, expansion of rows and columns, branching in reformulated space, calculation of pricing mechanisms like reduced cost, etc).
 - DIP: There exists a compact formulation which forms the basis of the model attributes.
- Design:
 - BCP: The user defines the model attributes and algorithmic components based on one predefined solution *method* (i.e., PC or CPM).
 - DIP: The user defines the model attributes and algorithmic components based on one predefined compact formulation. The different algorithmic details are managed by the framework.
- Parallelization:
 - BCP: Designed for shared or distributed memory for branch-and-bound search.
 - DIP: Threaded for block-angular shared memory processing.
 - DIP: Built on top of Alps so potential for fully distributed branch-and-bound search (in the future).

DIP Framework: Compare and Contrast to COIN/BCP

• Limitations:

- BCP: The user must derive methods for almost all of the algorithmic components: (master reformulation, expansion of rows and columns, branching in reformulated space, calculation of pricing mechanisms like reduced cost, etc).
- DIP: There exists a compact formulation which forms the basis of the model attributes.

Design:

- BCP: The user defines the model attributes and algorithmic components based on one predefined solution *method* (i.e., PC or CPM).
- **DIP**: The user defines the model attributes and algorithmic components based on one predefined compact *formulation*. The different algorithmic details are managed by the framework.

Parallelization:

- BCP: Designed for shared or distributed memory for branch-and-bound search.
- DIP: Threaded for block-angular shared memory processing.
- DIP: Built on top of Alps so potential for fully distributed branch-and-bound search (in the future).

DIP Framework: Compare and Contrast to COIN/BCP

• Limitations:

- BCP: The user must derive methods for almost all of the algorithmic components: (master reformulation, expansion of rows and columns, branching in reformulated space, calculation of pricing mechanisms like reduced cost, etc).
- DIP: There exists a compact formulation which forms the basis of the model attributes.

Design:

- BCP: The user defines the model attributes and algorithmic components based on one predefined solution *method* (i.e., PC or CPM).
- **DIP**: The user defines the model attributes and algorithmic components based on one predefined compact *formulation*. The different algorithmic details are managed by the framework.

Parallelization:

- BCP: Designed for shared or distributed memory for branch-and-bound search.
- DIP: Threaded for block-angular shared memory processing.
- DIP: Built on top of Alps so potential for fully distributed branch-and-bound search (in the future).

DIP - Algorithms

- The base class DecompAlgo provides the shell (init / master / subproblem / update).
- Each of the methods described has derived default implementations DecompAlgoX : public DecompAlgo which are accessible by any application class, allowing full flexibility.
- New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example,
 - Alternative methods for solving the master LP in DW, such as interior point methods
 - Add stabilization to the dual updates in LD (stability centers)
 - For LD, replace subgradient with volume providing an approximate primal solution
 - Hybrid init methods like using LD or DC to initialize the columns of the DW master
 - During PC, adding cuts to either master and/or subproblem.
 - ...



41/59

DIP - Algorithms

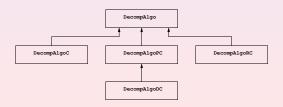
- The base class DecompAlgo provides the shell (init / master / subproblem / update).
- Each of the methods described has derived default implementations DecompAlgoX : public DecompAlgo which are accessible by any application class, allowing full flexibility.
- New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example,
 - Alternative methods for solving the master LP in DW, such as interior point methods
 - Add stabilization to the dual updates in LD (stability centers)
 - For LD, replace subgradient with volume providing an approximate primal solution
 - Hybrid init methods like using LD or DC to initialize the columns of the DW master
 - During PC, adding cuts to either master and/or subproblem.
 - o ...



41/59

DIP - Algorithms

- The base class DecompAlgo provides the shell (init / master / subproblem / update).
- Each of the methods described has derived default implementations DecompAlgoX : public DecompAlgo which are accessible by any application class, allowing full flexibility.
- New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example,
 - Alternative methods for solving the master LP in DW, such as interior point methods
 - Add stabilization to the dual updates in LD (stability centers)
 - For LD, replace subgradient with volume providing an approximate primal solution
 - Hybrid init methods like using LD or DC to initialize the columns of the DW master
 - During PC, adding cuts to either master and/or subproblem.
 - ...



41/59

DIP - Example Applications

Application	Description	\mathcal{P}'	$\mathbf{OPT}(c)$	$\mathbf{SEP}(x)$	Input
AP3	3-index assignment	AP	Jonker	user	user
ATM	cash management (SAS COE)	MILP(s)	CBC	CGL	user
GAP	generalized assignment	KP(s)	Pisinger	CGL	user
MAD	matrix decomposition	MaxClique	Cliquer	CGL	user
MILP	random partition into A', A''	MILP	CBC	CGL	mps
MILPBlock	user-defined blocks for A'	MILP(s)	CBC	CGL	mps, block
MMKP	multi-dim/choice knapsack	MCKP	Pisinger	CGL	user
		MDKP	CBC	CGL	user
SILP	intro example, tiny IP	MILP	CBC	CGL	user
TSP	traveling salesman problem	1-Tree	Boost	Concorde	user
		2-Match	CBC	Concorde	user
VRP	vehicle routing problem	<i>k</i> -TSP	Concorde	CVRPSEP	user
		b-Match	СВС	CVRPSEP	user

Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

Outline

Thesis Contributions

2 Decomposition Methods

- Traditional Methods
- Integrated Methods
- Structured Separation
- Decompose-and-Cut Method
- Algorithmic Details

3 DIP Framework

Applications

- Multi-Choice Multi-Dimensional Knapsack Problem
- ATM Cash Management Problem
- Generic Black-box Solver for Block-Angular MILP

Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

Multi-Choice Multi-Dimensional Knapsack Problem (MMKP)

• SAS Marketing Optimization - improve ROI for marketing campaign offers by targeting higher response rates, improving channel effectiveness, and reduce spending.

- Relaxation Multi-Choice Knapsack Problem (MCKP)
 - solver mcknap by Pisinger a DP-based branch-and-bound

$$\begin{array}{lll} \displaystyle \sum_{i \in N} \displaystyle \sum_{j \in L_i} r_{mij} x_{ij} & \leq & b_m \\ \displaystyle \sum_{j \in L_i} x_{ij} & = & 1 & \forall i \in N \\ \displaystyle x_{ij} & \in & \{0,1\} & \forall i \in N, j \in \end{array}$$

Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

Multi-Choice Multi-Dimensional Knapsack Problem (MMKP)

• SAS Marketing Optimization - improve ROI for marketing campaign offers by targeting higher response rates, improving channel effectiveness, and reduce spending.

- Relaxation Multi-Choice Knapsack Problem (MCKP)
 - solver mcknap by Pisinger a DP-based branch-and-bound

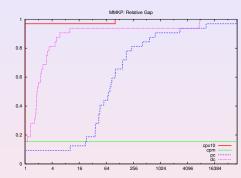
$$egin{array}{rll} \displaystyle\sum_{i\in N}\displaystyle\sum_{j\in L_i}r_{mij}x_{ij}&\leq b_m\ \displaystyle\sum_{j\in L_i}x_{ij}&=&\mathbf{1}\qquadorall i\in N\ x_{ij}&\in&\{\mathbf{0},\mathbf{1}\}\quadorall i\in N, j\in L_i \end{array}$$

Thesis Contributions Decomposition Methods DIP Framework Applications

Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

MMKP: CPX10.2 vs CPM/PC/DC

	CP3	K10.2	DIP-	СРМ	DI	P-PC	DIF	-DC
Instance	Time	Gap	Time	Gap	Time	Gap	Time	Gap
11	0.00	OPT	0.02	OPT	0.04	OPT	0.14	OPT
110	Т	0.05%	Т	∞	Т	11.86%	Т	0.15%
111	Т	0.03%	Т	∞	Т	12.25%	Т	0.14%
112	Т	0.01%	Т	∞	Т	7.93%	Т	0.10%
113	Т	0.02%	Т	∞	Т	11.89%	Т	0.12%
12	0.01	OPT	0.01	OPT	0.05	OPT	0.05	OPT
13	1.17	OPT	23.23	OPT	Т	1.07%	Т	0.75%
14	15.71	OPT	Т	∞	Т	5.14%	Т	0.77%
15	0.01	0.01%	0.01	OPT	0.13	OPT	0.05	OPT
16	0.14	OPT	0.07	OPT	Т	0.28%	0.63	OPT
17	Т	0.08%	Т	∞	Т	14.32%	Т	0.09%
18	Т	0.09%	Т	∞	Т	13.36%	Т	0.20%
19	Т	0.06%	Т	∞	Т	10.71%	Т	0.19%
INST01	Т	0.43%	Т	∞	Т	9.99%	Т	0.70%
INST02	T	0.09%	Т	∞	Т	7.39%	Т	0.45%
INST03	Т	0.38%	Т	∞	Т	3.83%	Т	0.85%
INST04	Т	0.34%	Т	∞	Т	7.48%	Т	0.45%
INST05	Т	0.18%	Т	∞	Т	10.23%	Т	0.62%
INST06	Т	0.21%	Т	∞	Т	9.82%	Т	0.38%
INST07	Т	0.36%	Т	∞	Т	15.75%	Т	0.62%
INST08	Т	0.25%	Т	∞	Т	11.55%	Т	0.46%
INST09	Т	0.21%	Т	∞	Т	15.24%	Т	0.40%
INST11	Т	0.22%	Т	∞	Т	7.96%	Т	0.39%
INST12	Т	0.18%	Т	∞	Т	7.90%	Т	0.42%
INST13	Т	0.08%	Т	∞	Т	2.97%	Т	0.14%
INST14	Т	0.05%	Т	∞	Т	3.89%	Т	0.09%
INST15	Т	0.04%	Т	∞	Т	3.43%	Т	0.10%
INST16	Т	0.06%	Т	∞	Т	2.19%	Т	0.06%
INST17	Т	0.03%	Т	∞	Т	2.09%	Т	0.09%
INST18	Т	0.03%	Т	∞	Т	4.43%	Т	0.06%
INST19	Т	0.03%	Т	∞	Т	3.13%	Т	0.04%
INST20	Т	0.03%	Т	∞	Т	3.05%	Т	0.04%



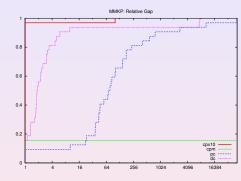
	CPX10.2	DIP-CPM	DIP-PC	DIP-DC
Optimal	5	5	3	4
\leq 1% Gap	32	5	4	32
\leq 10% Gap	32	5	22	32

CGL: missing Gub Covers

Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

MMKP: CPX10.2 vs CPM/PC/DC

	CP3	(10.2	DIP-	СРМ	DI	P-PC	DIF	-DC
Instance	Time	Gap	Time	Gap	Time	Gap	Time	Gap
11	0.00	OPT	0.02	OPT	0.04	OPT	0.14	OPT
110	Т	0.05%	Т	∞	Т	11.86%	Т	0.15%
111	Т	0.03%	Т	∞	Т	12.25%	Т	0.14%
112	Т	0.01%	Т	∞	Т	7.93%	Т	0.10%
113	Т	0.02%	Т	∞	Т	11.89%	Т	0.12%
12	0.01	OPT	0.01	OPT	0.05	OPT	0.05	OPT
13	1.17	OPT	23.23	OPT	Т	1.07%	Т	0.75%
14	15.71	OPT	Т	∞	Т	5.14%	Т	0.77%
15	0.01	0.01%	0.01	OPT	0.13	OPT	0.05	OPT
16	0.14	OPT	0.07	OPT	Т	0.28%	0.63	OPT
17	Т	0.08%	Т	∞	Т	14.32%	Т	0.09%
18	Т	0.09%	Т	∞	Т	13.36%	Т	0.20%
19	Т	0.06%	Т	∞	Т	10.71%	Т	0.19%
INST01	Т	0.43%	Т	∞	Т	9.99%	Т	0.70%
INST02	Т	0.09%	Т	∞	Т	7.39%	Т	0.45%
INST03	Т	0.38%	Т	∞	Т	3.83%	Т	0.85%
INST04	Т	0.34%	Т	∞	Т	7.48%	Т	0.45%
INST05	Т	0.18%	Т	∞	Т	10.23%	Т	0.62%
INST06	Т	0.21%	Т	∞	Т	9.82%	Т	0.38%
INST07	Т	0.36%	Т	∞	Т	15.75%	Т	0.62%
INST08	Т	0.25%	Т	∞	Т	11.55%	Т	0.46%
INST09	Т	0.21%	Т	∞	Т	15.24%	Т	0.40%
INST11	Т	0.22%	Т	∞	Т	7.96%	Т	0.39%
INST12	Т	0.18%	Т	∞	Т	7.90%	Т	0.42%
INST13	Т	0.08%	Т	∞	Т	2.97%	Т	0.14%
INST14	Т	0.05%	Т	∞	Т	3.89%	Т	0.09%
INST15	Т	0.04%	Т	∞	Т	3.43%	Т	0.10%
INST16	Т	0.06%	Т	∞	Т	2.19%	Т	0.06%
INST17	Т	0.03%	Т	∞	Т	2.09%	Т	0.09%
INST18	Т	0.03%	Т	∞	Т	4.43%	Т	0.06%
INST19	Т	0.03%	Т	∞	Т	3.13%	Т	0.04%
INST20	Т	0.03%	Т	∞	Т	3.05%	Т	0.04%



	CPX10.2	DIP-CPM	DIP-PC	DIP-DC
Optimal	5	5	3	4
\leq 1% Gap	32	5	4	32
\leq 10% Gap	32	5	22	32

CGL: missing Gub Covers

Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

MMKP: Nested Pricing

Nested Relaxations:

• Multi-Choice 2-D Knapsack Problem (MC2KP): $\mathcal{P}_p^{\mathrm{MC2KP}} \subset \mathcal{P}^{\mathrm{MCKP}} \; \forall p \in M \setminus \{m\}$

$$\begin{split} \sum_{i \in N} \sum_{j \in L_i} r_{pij} x_{ij} &\leq b_p \\ \sum_{i \in N} \sum_{j \in L_i} r_{mij} x_{ij} &\leq b_m \\ \sum_{j \in L_i} x_{ij} &= 1 \quad \forall i \in N \\ x_{ij} &\in \{0,1\} \quad \forall i \in N, j \in L \end{split}$$

• Multi-Choice Multi-Dimensional Knapsack Problem (MMKP): $\mathcal{P} \subset \mathcal{P}^{MCKP}$

Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

MMKP: Nested Pricing

Nested Relaxations:

• Multi-Choice 2-D Knapsack Problem (MC2KP): $\mathcal{P}_p^{MC2KP} \subset \mathcal{P}^{MCKP} \ \forall p \in M \setminus \{m\}$

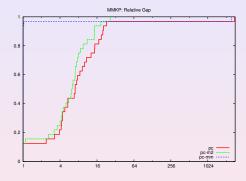
$$\begin{split} \sum_{i \in N} \sum_{j \in L_i} r_{pij} x_{ij} &\leq b_p \\ \sum_{i \in N} \sum_{j \in L_i} r_{mij} x_{ij} &\leq b_m \\ \sum_{j \in L_i} x_{ij} &= 1 \quad \forall i \in N \\ x_{ij} &\in \{0,1\} \quad \forall i \in N, j \in L \end{split}$$

• Multi-Choice Multi-Dimensional Knapsack Problem (MMKP): $\mathcal{P} \subset \mathcal{P}^{\mathrm{MCKP}}$

Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

MMKP: PC vs PC Nested with MC2KP and MMKP

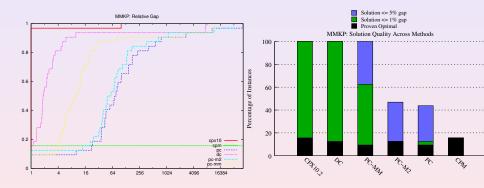
		P-PC		PC-M2		C-MM
Instance	Time	Gap	Time	Gap	Time	Gap
11	0.04	OPT	0.16	OPT	0.08	OPT
110	Т	11.86%	Т	6.99%	Т	0.63%
111	Т	12.25%	Т	11.15%	Т	0.60%
112	Т	7.93%	Т	11.41%	Т	0.79%
113	Т	11.89%	Т	13.65%	Т	0.52%
12	0.05	OPT	0.45	OPT	0.14	OPT
13	Т	1.07%	Т	1.18%	Т	1.10%
14	Т	5.14%	Т	3.18%	Т	1.23%
15	0.13	OPT	0.14	OPT	0.07	OPT
16	Т	0.28%	483.53	OPT	Т	0.25%
17	Т	14.32%	Т	4.85%	Т	0.97%
18	Т	13.36%	Т	9.79%	Т	0.67%
19	Т	10.71%	Т	10.57%	Т	0.73%
INST01	Т	9.99%	Т	5.97%	Т	1.86%
INST02	Т	7.39%	Т	7.29%	Т	1.74%
INST03	Т	3.83%	Т	11.93%	Т	1.61%
INST04	Т	7.48%	Т	7.04%	Т	1.56%
INST05	Т	10.23%	Т	8.84%	Т	1.11%
INST06	Т	9.82%	Т	9.77%	Т	1.39%
INST07	Т	15.75%	Т	8.78%	Т	1.23%
INST08	Т	11.55%	Т	8.50%	Т	1.37%
INST09	Т	15.24%	Т	8.48%	Т	0.89%
INST11	Т	7.96%	Т	8.72%	Т	1.13%
INST12	Т	7.90%	Т	6.72%	Т	1.03%
INST13	Т	2.97%	Т	3.06%	Т	0.76%
INST14	Т	3.89%	Т	3.67%	Т	0.52%
INST15	Т	3.43%	Т	2.81%	Т	0.78%
INST16	Т	2.19%	Т	3.01%	Т	0.50%
INST17	Т	2.09%	Т	2.16%	Т	0.39%
INST18	Т	4.43%	Т	2.60%	Т	0.41%
INST19	Т	3.13%	Т	3.97%	Т	0.46%
INST20	Т	3.05%	Т	4.06%	Т	0.94%



	DIP-PC	DIP-PC-M2	DIP-PC-MM
Optimal	3	4	3
\leq 1% Gap	4	4	20
\leq 10% Gap	22	27	32

Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

MMKP: CPX10.2 vs CPM/PC/DC/PC-M2/PC-MM



SAS Center of Excellence in Operations Research Applications (OR COE)

- Determine schedule for allocation of cash inventory at branch banks to service ATMs
- Define a polynomial fit for predicted cash flow need per day/ATM
- Predictive model factors include:
 - days of the week
 - weeks of the month
 - holidays
 - salary disbursement days
 - Iocation of the branches
- Cash allocation plans finalized at beginning of month deviations from plan are costly
- Goal: Determine multipliers for fit to minimize mismatch based on predicted withdrawals
- Constraints:
 - Regulatory agencies enforce a minimum cash reserve ratio at branch banks (per day)
 - For each ATM, limit on number of days cash-out based on predictive model (customer satisfaction)

SAS Center of Excellence in Operations Research Applications (OR COE)

- Determine schedule for allocation of cash inventory at branch banks to service ATMs
- Define a polynomial fit for predicted cash flow need per day/ATM
- Predictive model factors include:
 - days of the week
 - weeks of the month
 - holidays
 - salary disbursement days
 - location of the branches

• Cash allocation plans finalized at beginning of month - deviations from plan are costly

- Goal: Determine multipliers for fit to minimize mismatch based on predicted withdrawals
- Constraints:
 - Regulatory agencies enforce a minimum cash reserve ratio at branch banks (per day)
 - For each ATM, limit on number of days cash-out based on predictive model (customer satisfaction)

SAS Center of Excellence in Operations Research Applications (OR COE)

- Determine schedule for allocation of cash inventory at branch banks to service ATMs
- Define a polynomial fit for predicted cash flow need per day/ATM
- Predictive model factors include:
 - days of the week
 - weeks of the month
 - holidays
 - salary disbursement days
 - location of the branches
- Cash allocation plans finalized at beginning of month deviations from plan are costly
- Goal: Determine multipliers for fit to minimize mismatch based on predicted withdrawals
 - Regulatory agencies enforce a minimum cash reserve ratio at branch banks (per day)
 - For each ATM, limit on number of days cash-out based on predictive model (customer satisfaction)

SAS Center of Excellence in Operations Research Applications (OR COE)

- Determine schedule for allocation of cash inventory at branch banks to service ATMs
- Define a polynomial fit for predicted cash flow need per day/ATM
- Predictive model factors include:
 - days of the week
 - weeks of the month
 - holidays
 - salary disbursement days
 - location of the branches
- Cash allocation plans finalized at beginning of month deviations from plan are costly
- Goal: Determine multipliers for fit to minimize mismatch based on predicted withdrawals
- Constraints:
 - · Regulatory agencies enforce a minimum cash reserve ratio at branch banks (per day)
 - For each ATM, limit on number of days cash-out based on predictive model (customer satisfaction)

Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

ATM Cash Management Problem - MINLP Formulation

- Simple looking nonconvex quadratic integer NLP.
- Linearize the absolute value, add binaries for count constraints.
- So far, no MINLP solvers seem to be able to solve this (several die with numerical failures).

$min\sum \sum f_{ad} $		
$a \in A \ d \in D$		
s.t. $c_{ad}^{x}x_{a} + c_{ad}^{y}y_{a} + c_{ad}^{xy}x_{a}y_{a} + c_{ad}^{u}u_{a} + c_{ad} - w_{ad}$	$= f_{ad}$	$\forall a \in A, d \in D$
$\sum \left(f_{ad} + w_{ad} ight)$	$\leq B_d$	$\forall d \in D$
$a \in A$		
$ \{d\in D\mid f_{ad}<0\} $	$\leq K_a$	$\forall a \in A$
x_a, y_a	\in [0, 1]	$\forall a \in A$
u_a	\geq 0	$\forall a \in A$
f_{ad}	$\geq -w_{ad}$	$\forall a \in A, d \in D$

Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

Application - ATM Cash Management Problem - MILP Approx Formulation

- Discretization of x domain $\{0, 0.1, 0.2, ..., 1.0\}$.
- Linearization of product of binary and continuous, and absolute value.

$$\begin{split} \min \sum_{a \in A} \sum_{d \in D} \left(f_{ad}^{+} + f_{ad}^{-} \right) \\ \text{s.t.} \ c_{ad}^{x} \sum_{t \in T} c_{t} x_{at} + c_{ad}^{y} y_{a} + c_{ad}^{xy} \sum_{t \in T} c_{t} z_{at} + c_{ad}^{u} u_{a} - w_{ad} &= f_{ad}^{+} - f_{ad}^{-} \qquad \forall a \in A, d \in D \\ \sum_{t \in T} x_{at} &\leq 1 \qquad \forall a \in A \\ z_{at} &\leq x_{at} \qquad \forall a \in A, t \in T \\ z_{at} &\leq y_{a} \qquad \forall a \in A, t \in T \\ z_{at} &\geq x_{at} + y_{a} - 1 \qquad \forall a \in A, t \in T \\ f_{ad}^{-} &\leq w_{ad} v_{ad} \qquad \forall a \in A, d \in D \\ \sum_{a \in A} (f_{ad}^{+} - f_{ad}^{-} + w_{ad}) &\leq B_{d} \qquad \forall d \in D \\ \sum_{d \in D} v_{ad} &\leq K_{a} \qquad \forall a \in A \end{split}$$

Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

ATM Cash Management Problem - MILP Approx Formulation

x_{at}	$\in \{0,1\}$	$\forall a \in A, t \in T$
z_{at}	\geq 0	$\forall a \in A, t \in T$
v_{ad}	$\in \{0,1\}$	$\forall a \in A, d \in D$
y_a	\in [0, 1]	$\forall a \in A$
u_a	\geq 0	$\forall a \in A$
f^+_{ad}, f^{ad}	\in [0, w_{ad}]	$\forall a \in A, d \in D$

- The MILP formulation has a natural block-angular structure.
 - Master constraints are just the budget constraint.
 - Subproblem constraints (the rest) one block for each ATM.

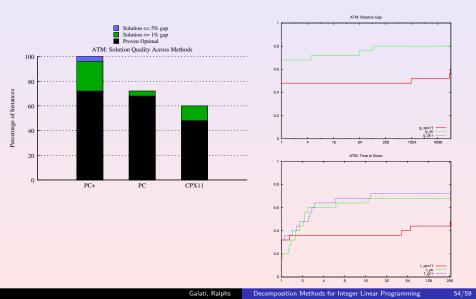
Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

ATM: CPX11 vs PC/PC+

				CPX11		DIP-PC			D	DIP-PC+		
A	D	s	Time	Gap	Nodes	Time	Gap	Nodes	Time	Gap	Nodes	
5	25	1	0.76	OPT	467	1.62	OPT	6	1.96	OPT	6	
5	25	2	1.41	OPT	804	1.95	OPT	9	1.57	OPT	7	
5	25	3	0.42	OPT	147	7.38	OPT	32	8.03	OPT	32	
5	25	4	1.49	OPT	714	2.74	OPT	14	2.45	OPT	13	
5	25	5	0.16	OPT	32	0.98	OPT	7	0.95	OPT	6	
5	50	1	Т	0.10	1264574	162.74	OPT	127	164.46	OPT	131	
5	50	2	87.96	OPT	38341	183.28	OPT	273	263.24	OPT	275	
5	50	3	8.09	OPT	3576	17.58	OPT	36	22.28	OPT	35	
5	50	4	4.13	OPT	1317	3.13	OPT	3	3.17	OPT	3	
5	50	5	57.55	OPT	32443	91.30	OPT	145	141.29	OPT	147	
10	50	1	Т	0.76	998624	297.65	OPT	301	234.47	OPT	156	
10	50	2	1507.84	OPT	351879	28.84	OPT	29	52.99	OPT	29	
10	50	3	Т	0.81	667371	64.72	OPT	64	49.20	OPT	47	
10	50	4	1319.00	OPT	433155	7.97	OPT	1	5.00	OPT	1	
10	50	5	365.51	OPT	181013	12.49	OPT	3	5.18	OPT	3	
10	100	1	Т	∞	128155	Т	∞	20590	Т	0.11	13190	
10	100	2	Т	∞	116522	Т	∞	60554	2437.43	OPT	135	
10	100	3	Т	∞	118617	Т	∞	52902	Т	0.20	40793	
10	100	4	Т	∞	108899	Т	∞	47931	Т	1.51	59477	
10	100	5	Т	∞	167617	Т	∞	40283	Т	0.38	26490	
20	100	1	Т	∞	93519	379.75	OPT	9	544.49	OPT	9	
20	100	2	Т	∞	68863	Т	16.44	14240	Т	0.26	25756	
20	100	3	Т	∞	95981	Т	15.37	41495	Т	0.12	3834	
20	100	4	Т	∞	81836	Т	0.39	7554	Т	0.08	7918	
20	100	5	Т	∞	101917	635.59	OPT	21	608.68	OPT	19	
Opti				12		17			18			
	% Gap			15			18			25		
_ <u>≤</u> 10	1% Gaj)		15			18			25		

Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

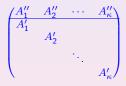
ATM: CPX11 vs PC/PC+



Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

MILPBlock - Block-Angular MILP (as a Generic Solver)

- Consulting work led to numerous MILPs that cannot be solved with generic (B&C) solvers
- Often consider a decomposition approach, since a common modeling paradigm is
 - independent departmental policies which are then coupled by some global constraints
- Development time was slow due to problem-specific implementations of methods



MILPBlock provides a black-box solver for applying integrated methods to generic MILP

- This is the *first* framework to do this (to my knowledge).
- Similar efforts are being talked about by F. Vanderbeck BaPCod (no cuts)
- Currently, the only input needed is MPS/LP and a block file
- Future work will attempt to embed automatic recognition of the block-angular structure using packages from linear algebra like: MONET, hMETIS, Mondriaan

Multi-Choice Multi-Dimensional Knapsack Problem ATM Cash Management Problem Generic Black-Box Solver for Block-Angular MILP

MILPBlock - Block-Angular MILP (as a Generic Solver)

- Consulting work led to numerous MILPs that cannot be solved with generic (B&C) solvers
- Often consider a decomposition approach, since a common modeling paradigm is
 - independent departmental policies which are then coupled by some global constraints
- Development time was slow due to problem-specific implementations of methods



MILPBlock provides a black-box solver for applying integrated methods to generic MILP

- This is the *first* framework to do this (to my knowledge).
- Similar efforts are being talked about by F. Vanderbeck BaPCod (no cuts)
- Currently, the only input needed is MPS/LP and a *block file*
- Future work will attempt to embed automatic recognition of the block-angular structure using packages from linear algebra like: MONET, hMETIS, Mondriaan

Application - Block-Angular MILP (applied to Retail Optimization)

SAS Retail Optimization Solution

- Multi-tiered supply chain distribution problem where each block represents a store
- Prototype model developed in SAS/OR's OPTMODEL (algebraic modeling language)

	CPX11			DIP-PC		
Instance	Time	Gap	Nodes	Time	Gap	Nodes
retail27	Т	2.30%	2674921	3.18	OPT	1
retail31	Т	0.49%	1434931	767.36	OPT	41
retail3	529.77	OPT	2632157	0.54	OPT	1
retail4	Т	1.61%	1606911	116.55	OPT	1
retail6	1.12	OPT	803	264.59	OPT	303

Outline

Thesis Contributions

2 Decomposition Methods

- Traditional Methods
- Integrated Methods
- Structured Separation
- Decompose-and-Cut Method
- Algorithmic Details
- 3 DIP Framework
- Applications
 - Multi-Choice Multi-Dimensional Knapsack Problem
 - ATM Cash Management Problem
 - Generic Black-box Solver for Block-Angular MILP

Future Research

• Branch-and-Relax-and-Cut - computational focus thus far has been on CPM/DC/PC

- Convergence issues and stabilization of duals (stability centers)
- Can we implement Gomory cuts in Price-and-Cut?
 - $\bullet\,$ Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- DIP support for identical subproblems (using Vanderbeck's ideas)
- Parallelization of branch-and-bound
 - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress):
 - Pricing in block-angular case
 - Nested pricing use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra diversity of cuts

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Convergence issues and stabilization of duals (stability centers)
- Can we implement Gomory cuts in Price-and-Cut?
 - \bullet Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- DIP support for identical subproblems (using Vanderbeck's ideas)
- Parallelization of branch-and-bound
 - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress):
 - Pricing in block-angular case
 - Nested pricing use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra diversity of cuts

Future Research

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Convergence issues and stabilization of duals (stability centers)
- Can we implement Gomory cuts in Price-and-Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp

Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve

- DIP support for identical subproblems (using Vanderbeck's ideas)
- Parallelization of branch-and-bound
 - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress):
 - Pricing in block-angular case
 - Nested pricing use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra diversity of cuts

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Convergence issues and stabilization of duals (stability centers)
- Can we implement Gomory cuts in Price-and-Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- DIP support for identical subproblems (using Vanderbeck's ideas)
- Parallelization of branch-and-bound
 - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress):
 - Pricing in block-angular case
 - Nested pricing use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra diversity of cuts

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Convergence issues and stabilization of duals (stability centers)
- Can we implement Gomory cuts in Price-and-Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- DIP support for identical subproblems (using Vanderbeck's ideas)
- Parallelization of branch-and-bound
 - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress):
 - Pricing in block-angular case
 - Nested pricing use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra diversity of cuts

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Convergence issues and stabilization of duals (stability centers)
- Can we implement Gomory cuts in Price-and-Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- DIP support for identical subproblems (using Vanderbeck's ideas)
- Parallelization of branch-and-bound
 - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress):
 - Pricing in block-angular case
 - Nested pricing use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra diversity of cuts

- Conceptual framework tying together numerous decomposition-based methods for generating approximations of the convex hull of feasible solutions.
 - Traditional method for outer approximation: cutting plane method.
 - Traditional methods for inner approximations: Dantzig-Wolfe method and Lagrangian method.
 - Integrated methods: price-and-cut and relax-and-cut.
- Introduction to a relatively new integrated method called decompose-and-cut, an associated class of cutting planes called decomposition cuts, and the concept of structured separation.
- Descriptions of numerous implementation considerations for branch-and-price-and-cut, including an introduction to a relatively unknown idea of using nested polyhedra for generating inner approximations.
- DIP (Decomposition for Integer Programming), an extensible open-source software framework for implementing decomposition-based methods with minimal user burden.
- MILPBlock, a DIP application and generic black-box solver for block-diagonal MILPs that fully automates the branch-and-price-and-cut algorithm with no additional user input.
- Computational results using DIP on three real-world applications coming from the marketing, banking, and retail industries.

- Conceptual framework tying together numerous decomposition-based methods for generating approximations of the convex hull of feasible solutions.
 - Traditional method for outer approximation: cutting plane method.
 - Traditional methods for inner approximations: Dantzig-Wolfe method and Lagrangian method.
 - Integrated methods: price-and-cut and relax-and-cut.
- Introduction to a relatively new integrated method called decompose-and-cut, an associated class of cutting planes called decomposition cuts, and the concept of structured separation.
- Descriptions of numerous implementation considerations for branch-and-price-and-cut, including an introduction to a relatively unknown idea of using nested polyhedra for generating inner approximations.
- DIP (Decomposition for Integer Programming), an extensible open-source software framework for implementing decomposition-based methods with minimal user burden.
- MILPBlock, a DIP application and generic black-box solver for block-diagonal MILPs that fully automates the branch-and-price-and-cut algorithm with no additional user input.
- Computational results using DIP on three real-world applications coming from the marketing, banking, and retail industries.

- Conceptual framework tying together numerous decomposition-based methods for generating approximations of the convex hull of feasible solutions.
 - Traditional method for outer approximation: cutting plane method.
 - Traditional methods for inner approximations: Dantzig-Wolfe method and Lagrangian method.
 - Integrated methods: price-and-cut and relax-and-cut.
- Introduction to a relatively new integrated method called decompose-and-cut, an associated class of cutting planes called decomposition cuts, and the concept of structured separation.
- Descriptions of numerous implementation considerations for branch-and-price-and-cut, including an introduction to a relatively unknown idea of using **nested polyhedra** for generating inner approximations.
- DIP (Decomposition for Integer Programming), an extensible open-source software framework for implementing decomposition-based methods with minimal user burden.
- MILPBlock, a DIP application and generic black-box solver for block-diagonal MILPs that fully automates the branch-and-price-and-cut algorithm with no additional user input.
- Computational results using DIP on three real-world applications coming from the marketing, banking, and retail industries.

- Conceptual framework tying together numerous decomposition-based methods for generating approximations of the convex hull of feasible solutions.
 - Traditional method for outer approximation: cutting plane method.
 - Traditional methods for inner approximations: Dantzig-Wolfe method and Lagrangian method.
 - Integrated methods: price-and-cut and relax-and-cut.
- Introduction to a relatively new integrated method called decompose-and-cut, an associated class of cutting planes called decomposition cuts, and the concept of structured separation.
- Descriptions of numerous implementation considerations for branch-and-price-and-cut, including an introduction to a relatively unknown idea of using **nested polyhedra** for generating inner approximations.
- DIP (Decomposition for Integer Programming), an extensible open-source software framework for implementing decomposition-based methods with minimal user burden.
- MILPBlock, a DIP application and generic black-box solver for block-diagonal MILPs that fully automates the branch-and-price-and-cut algorithm with no additional user input.
- Computational results using DIP on three real-world applications coming from the marketing, banking, and retail industries.

- Conceptual framework tying together numerous decomposition-based methods for generating approximations of the convex hull of feasible solutions.
 - Traditional method for outer approximation: cutting plane method.
 - Traditional methods for inner approximations: Dantzig-Wolfe method and Lagrangian method.
 - Integrated methods: price-and-cut and relax-and-cut.
- Introduction to a relatively new integrated method called decompose-and-cut, an associated class of cutting planes called decomposition cuts, and the concept of structured separation.
- Descriptions of numerous implementation considerations for branch-and-price-and-cut, including an introduction to a relatively unknown idea of using **nested polyhedra** for generating inner approximations.
- DIP (Decomposition for Integer Programming), an extensible open-source software framework for implementing decomposition-based methods with minimal user burden.
- MILPBlock, a DIP application and generic black-box solver for **block-diagonal** MILPs that fully automates the branch-and-price-and-cut algorithm with no additional user input.
- Computational results using DIP on three real-world applications coming from the marketing, banking, and retail industries.

- Conceptual framework tying together numerous decomposition-based methods for generating approximations of the convex hull of feasible solutions.
 - Traditional method for outer approximation: cutting plane method.
 - Traditional methods for inner approximations: Dantzig-Wolfe method and Lagrangian method.
 - Integrated methods: price-and-cut and relax-and-cut.
- Introduction to a relatively new integrated method called decompose-and-cut, an associated class of cutting planes called decomposition cuts, and the concept of structured separation.
- Descriptions of numerous implementation considerations for branch-and-price-and-cut, including an introduction to a relatively unknown idea of using **nested polyhedra** for generating inner approximations.
- DIP (Decomposition for Integer Programming), an extensible open-source software framework for implementing decomposition-based methods with minimal user burden.
- MILPBlock, a DIP application and generic black-box solver for **block-diagonal** MILPs that fully automates the branch-and-price-and-cut algorithm with no additional user input.
- Computational results using DIP on three real-world applications coming from the marketing, banking, and retail industries.