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What is Operations Reseach?

Operations Research (OR) started just before World War II in Britain with
the establishment of teams of scientists to study the strategic and tactical
problems involved in military operations. The objective was to find the
most effective utilization of limited military resources by the use of
quantitative techniques.

Following the war, numerous peacetime applications emerged, leading to
the use of OR and management science in many industries and
occupations.

Occupational Outlook Handbook - http://stats.bls.gov/oco/ocos044.htm.
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Definitions

Model: A schematic description of a system,theory, or phenomenon that
accounts for its known or inferred properties and may be used for further
study of its characteristics.

System: A functionally related group of elements, especially:

The human body regarded as a functional physiological unit.

An organism as a whole, especially with regard to its vital processes or
functions.

A group of physiologically or anatomically complementary organs or parts: the
nervous system; the skeletal system.

A group of interacting mechanical or electrical components.

A network of structures and channels, as for communication, travel, or
distribution.

A network of related computer software, hardware, and data transmission
devices.
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Definitions

Operations Research (OR) is the study of mathematical models for
complex organizational systems.

Optimization is a branch of OR which uses mathematical techniques
such as linear and nonlinear programming to derive values for system
variables that will optimize performance.

Introduction to Operations Research – p.5



Models

Linear Programming

Typically, a single objective function, representing either a profit to be
maximized or a cost to be minimized, and a set of constraints that
circumscribe the decision variables. The objective function and constraints all
are linear functions of the decision variables.

Software has been developed that is capable of solving problems containing
millions of variables and tens of thousands of constraints.

Network Flow Programming

A special case of the more general linear program. Includes such problems
as the transportation problem, the assignment problem, the shortest path
problem, the maximum flow problem, and the minimum cost flow problem.

Very efficient algorithms exist which are many times more efficient than linear
programming in the utilization of computer time and space resources.

Introduction to Operations Research – p.6



Models

Integer Programming

Some of the variables are required to take on discrete values.

NP-hard: Most problems of practical size are very difficult or impossible to
solve.

Nonlinear Programming

The objective and/or any constraint is nonlinear.

In general, much more difficult to solve than linear.

Most (if not all) real world applications require a nonlinear model. In order to
be make the problems tractable, we often approximate using linear functions.
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Models

Dynamic Programming

A DP model describes a process in terms of states, decisions, transitions and
returns. The process begins in some initial state where a decision is made.
The decision causes a transition to a new state. Based on the starting state,
ending state and decision a return is realized.

The process continues through a sequence of states until finally a final state is
reached. The problem is to find the sequence that maximizes the total return.

Objectives with very general functional forms may be handled and a global
optimal solution is always obtained.

"Curse of dimensionality" - the number of states grows exponentially with the
number of dimensions of the problem.
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Models

Stochastic Processes

In many practical situations the attributes of a system randomly change over
time.

Examples include the number of customers in a checkout line, congestion on
a highway, the number of items in a warehouse, and the price of a financial
security to name a few.

The model is described in part by enumerating the states in which the system
can be found. The state is like a snapshot of the system at a point in time that
describes the attributes of the system. Events occur that change the state of
the system.

Consider an Automated Teller Machine (ATM) system. The state is the
number of customers at or waiting for the machine. Time is the linear measure
through which the system moves. Events are arrivals and departures.

Introduction to Operations Research – p.9



Models

Markov Chains

A stochastic process that can be observed at regular intervals such as every
day or every week can be described by a matrix which gives the probabilities
of moving to each state from every other state in one time interval.

Assuming this matrix is unchanging with time, the process is called a Markov
Chain. Computational techniques are available to compute a variety of system
measures that can be used to analyze and evaluate a Markov Chain model.

Markov Processes

A continuous time stochastic process in which the duration of all state
changing activities are exponentially distributed. Time is a continous
parameter.

The process is entirely described by a matrix showing the rate of transition
from each state to every other state. The rates are the parameters of the
associated exponential distributions. The analytical results are very similar to
those of a Markov Chain.
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Models

Simulation

It is often difficult to obtain a closed form expression for the behavior of a
stochastic system.

Simulation is a very general technique for estimating statistical measures of
complex systems.

A system is modeled as if the random variables were known. Then values for
the variables are drawn randomly from their known probability distributions.
Each replication gives one observation of the system response. By simulating
a system in this fashion for many replications and recording the responses,
one can compute statistics concerning the results. The statistics are used for
evaluation and design.
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Models

Time Series and Forecasting

A time series is a sequence of observations of a periodic random variable.

Typically serve as input to OR decision models.

Example - inventory model requires estimates of future demands.

Example - a course scheduling and staffing model for the university
department requires estimates of future student inflow.

Example - A model for providing warnings to the population in a river basin
requires estimates of river flows for the immediate future.
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Models

Inventory Theory

Inventories are materials stored, waiting for processing, or experiencing
processing.

When and how much raw material should be ordered?

When should a production order should be released to the plant?

What level of safety stock should be maintained at a retail outlet?

How is in-process inventory maintained in a production process?

Reliability Theory

Attempts to assign numbers to the propensity of systems to fail.

Estimating reliability is essentially a problem in probability modeling.

Extremely important in the telecommunications and networking industry.
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Mathematical Programming

A mathematical model consists of:

Decision Variables, Constraints, Objective Function, Parameters and Data

The general form of a math programming model is:

min or max f(x1, . . . , xn)

s.t. gi(x1, . . . , xn)
≤
=
≥

bi

x ∈ X

Linear program (LP): all functions f and gi are linear and X is continuous.

Integer program (IP): X is discrete.
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Mathematical Programming

A solution is an assignment of values to variables.

A feasible solution is an assignment of values to variables such that all
the constraints are satisfied.

The objective function value of a solution is obtained by evaluating the
objective function at the given solution.

An optimal solution (assuming minimization) is one whose objective
function value is less than or equal to that of all other feasible solutions.
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LP Example: Two Crude Petroleum

Two Crude Petroleum distills crude from two sources:

Saudi Arabia,Venezuela

They have three main products:

Gasoline,Jet Fuel,Lubricants

Yields

Gasoline Jet Fuel Lubricants

Saudi Arabia 0.3 barrels 0.4 barrels 0.2 barrels

Venezuela 0.4 barrels 0.2 barrels 0.3 barrels

Availability and cost

Availability Cost

Saudi Arabia 9000 barrels $20/barrel

Venezuela 6000 barrels $15/barrel
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LP Example: Two Crude Petroleum

Production Requirements (per day)

Gasoline Jet fuel Lubricants
2000 barrels 1500 barrels 500 barrels

Objective: Minimize production cost.

This yields the following LP formulation:

min 20x1 + 15x2

s.t. 0.3x1 + 0.4x2 ≥ 2.0

0.4x1 + 0.2x2 ≥ 1.5

0.2x1 + 0.3x2 ≥ 0.5

0 ≤ x1 ≤ 9

0 ≤ x2 ≤ 6

Graphical Demo
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Simplex Method

The simplex method generates a sequence of feasible iterates by
repeatedly moving from one vertex of the feasible set to an adjacent
vertex with a lower value of the objective function . When it is not possible
to find an adjoining vertex with a lower value, the current vertex must be
optimal, and termination occurs.

Exponential (worst case) run time; in practice, runs very fast.
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Optimization - Linear Programming

Simplex (Dantzig 1947)

Ellipsoid (Khachian 1979) - the "first" polynomial-time algorithm

Interior Point - the "first" practical polynomial-time algorithm
Projective Method (Karmarkar 1984)
Affine Method (Dikin 1967)
Logarithmic Barrier Method (Frisch 1955, Fiacco 1968, Gukk et. al
1986)
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Integer Programming

Let X be a discrete set (integers).

Convex hull of integer solutions

Linear programming relaxation
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Integer Programming

Why not just solve the LP and round?

max 1.00x1 + 0.64x2

s.t. 50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

x1 ≥ 0

x2 ≥ 0
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LP-based Branch and Bound

Consider problem P :

min c
T
x

s.t. Ax ≤ b

xi ∈ Z ∀ i ∈ I

where (A, b) ∈ R
m×n+1, c ∈ R

n.

Let P = conv{x ∈ R
n : Ax ≤ b, xi ∈ Z ∀ i ∈ I}.

Basic Algorithmic Approach
Use LP relaxations to produce lower bounds.
Branch using hyperplanes.

Basic Algorithmic Elements
A method for producing and tightening the LP relaxations.
A method for branching.
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Branch, Cut, and Price

Weyl-Minkowski

∃(Ā, b̄) ∈ R
m̄×n+1 s.t. P = {x ∈ R

n : Āx ≤ b̄}

We want the solution to min{cT x : Āx ≤ b̄}.

Solving this LP isn’t practical (or necessary).

BCP Approach

Form LP relaxations using submatrices of Ā.

The submatrices are defined by sets V ⊆ [1..n] and C ⊆ [1..m̄].

Forming/managing these relaxations efficiently is one of the primary
challenge of BCP.
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Cutting Plane Method

Basic cutting plane algorithm

Relax the integrality constraints.

Solve the relaxation. Infeasible ⇒ STOP.

If x̂ integral ⇒ STOP.

Separate x̂ from P .

No cutting planes ⇒ algorithm fails.

The key is good separation algorithms.
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Branch and Cut Methods

If the cutting plane approach fails, then we divide and conquer (branch).
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The Challenge of BCP

The efficiency of BCP depends heavily on the size (number of rows and
columns) and tightness of the LP relaxations.

Tradeoff
Small LP relaxations ⇒ faster LP solution.
Big LP relaxations ⇒ better bounds.

The goal is to keep relaxations small while not sacrificing bound quality.

We must be able to easily move constraints and variables in and out of
the active set.

This means dynamic generation and deletion.
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Common Problems in OR

Set Covering, Packing, Partitioning

Let S be a set of objects and Ω a set of subsets of S. Let aij = 1, if i ∈ Ωj

and define variable xj = 1, if the jth member of Ω is used.

Set Covering : min
x∈{0,1}

{
i∈Ω

cixi :
j

aijxj ≥ 1, ∀i ∈ S}

Set Packing : max
x∈{0,1}

{
i∈Ω

cixi :
j

aijxj ≤ 1, ∀i ∈ S}

Set Partitioning : min
x∈{0,1}

or max
x∈{0,1}

{
i∈Ω

cixi :
j

aijxj = 1, ∀i ∈ S}

Air Crew Scheduling (Covering): Consider S to be a set of "legs" that the
airline has to cover and the members of Ω are possible rotations involving
particular combinations of flights.
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Common Problems in OR

Quadratic Assignment Problem

Given two sets of objects S and T where |S| = |T |, each member of S must
be assigned to exactly one member of T , and vice versa. Costs are incurred
for an assignment of i ∈ S to j ∈ T and k ∈ S to l ∈ T .

min
x∈{0,1}

{
i,k∈S
k>i

j,l∈T

tikdjlxijxkl :
j∈T

xij = 1, ∀i ∈ S,

i∈S

xij = 1, ∀j ∈ T}

Facility Location: Consider S to be a set of n factories and T to be a set of n

cities. Locate one factory in each city and minimize the total communication
cost between factories. Interpret tik as the frequency of communication
between factories i and k and djl as the cost per unit of communication
between cities j and l.

Circuit Design: Consider S to be a set of n electronic modules and T to be a
set of n predetermined positions on a backplate. The modules have to be
connected to each other by a series of wires. Interpret tik as the number of
wires which must connect module i to the module k and djl as the distance
between position j and position l on the backplate.
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Common Problems in OR

Routing problems. Finding a path or cycle in a network. An easy routing
problem is the shortest path; a hard one is the travelling salesman
problem. One prevalent class, with many variations, is vehicle routing.

Shortest path. In a graph or network, this is a path from one node to another
whose total cost is the least among all such paths. The "cost" is usually the
sum of the arc costs, but it could be another function (e.g., the product for a
reliability problem, or max for a fuzzy measure of risk).

Vehicle routing problem (VRP). Find optimal delivery routes from one or more
depots to a set of geographically scattered points (e.g., population centers). In
its most complex form, the VRP is a generalization of the TSP, as it can
include additional time and capacity constraints, precedence constraints, plus
more.
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Common Problems in OR

Production Scheduling Problem

To determine levels of production over time. Constraints include demand
requirements (possibly with backordering), capacity limits (including
warehouse space for inventory), and resource limits. Define

xt = level of production in period t (before demand);
yt = level of inventory at the end of period t;
Ut = production capacity in period t;
Wt = warehouse capacity in period t;
ht = holding cost (per unit of inventory);
pt = production cost (per unit of production);
Dt = demand at the end of period t.

min
x,y

{ px + hy : yt+1 = yt + xt − Dt, ∀t, 0 ≤ x ≤ U, 0 ≤ y ≤ W}
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Common Problems in OR

Portfolio Selection Problem.

The objective is to minimize the variance on returns. Let xj be the percent of
capital invested in the jth opportunity (e.g., stock or bond), so x must satisfy
x ≥ 0 and

�

j xj = 1. Let vj be the expected return per unit of investment in

the jth opportunity, so that vx is the sum total rate of return per unit of capital
invested. It is required to have a lower limit on this rate: vx ≥ b (where b is
between min vj and max vj ). Subject to this rate of return constraint, the
objective is the quadratic form, xT Qx, where Q is the variance-covariance
matrix associated with the investments (i.e., if the actual return rate is Vj , then
Qij = E[(Vi − vi)(Vj − vj)]

Chemical Equilibrium Problem.

The problem is to minxcx +

�

j xj log xj : x > 0,

�

j xj = M, Ax = b,
where the objective is the Gibbs free energy function for xj = number of moles
of species j, bi = atomic weight of atom of type i, and aij = number of atoms
of type i in one mole of species j. The equation, Ax = b, is mass balance.
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TRL Trans Refrigerated Lines

Dynamic Load Assignment Problem (Trucks to Loads)

Parametric Multi-Criteria Objective

Early/Late Delivery, Early/Late Pickup

Reduction in Empty Travel, Vehicle Maintenance Schedule

Driver Vacation, Driver Hours Balancing (Union Labor)

GUI Interface for Load Planners (Real Time Dispatch)

Lesson in Industry - Systems Development Paradox

In order to create the system correctly we needed the knowledge base of the
load planners.

Load planners are well aware that system would serve as their replacement.

Upper management was willing to fund the development due to the potential
cost reduction.

Introduction to Operations Research – p.35



IBM SPS - Industry Standard

Rigid Structured Echelon Stocking/Order Routing Model

Stocking/order routing predetermined via pass-up schemes.

Service Delivery Performance Based on Parts Availability

No time/distance component linked to "Point-of-Demand"

Stock Network Locations Independently

Not Allowed !

(formally)


Not Allowed !

(formally)


Not Allowed !

(formally)


Customer Base


Request for


Emergency

Order


Customer Base


Request for


Emergency

Order


85% 
 75%   
 95%   
 90%
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IBM SPS - Neighborhood

Regional Contained Stocking/Ordering

Neighborhoods are created around the time-based requirements of
customers.

All locations may serve as emergency stocking points.

Stocking/order routing based on "pooled risk".

Pass-up converted to pass-along
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IBM SPS - Neighborhood

P(Part is required from location i) = βi

j∈N1(i)

(1-βj)

P(Part is available in the neighborhood) = 0.99994
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IBM SPS - Neighborhood

For a given stocking level at each location and demand made at location 1.

P (Part is required from location i) = βi

j∈N1(i)

(1 − βj)

P (Part is available in the neighborhood) = 0.99994

1


2


3


4


5


6


2 hour radius around

location 1


Location P (NoParts) = 1 − β P (PartRequired)

1 0.10 0.90

2 0.08 0.092

3 0.09 0.0073

4 0.11 0.0064

5 0.10 0.0007

6 0.10 0.000007
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IBM SPS - Neighborhood

Mixed Integer Programming Model

Variables

Demand flow rate from facilities to customers (continuous).

Stocking levels at facilities, distribution centers, and hubs (integral).

Constraints

Satisfy demand to all customers (flow balance).

Probabilistically meet all service contract requirements (parts procurement).

Size (United States)

Customers: over 2,000,000 individual across 40,000 zipcodes - aggregated to
4,000 regions. Facilities: inside 110, outside 3000. Distribution Centers: 3

Variables in MIP: 400,000 (Continuous), 122,000 (Integer)

Constraints in MIP: 100,000 (Original), 660,00 (Additional Valid Cuts)
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IBM SPS - Neighborhood

Inventory Implications

Lowers inventory investment for given PPT criteria when compared to
hierarchical structure

Locations not stocked independently of other locations in various vitality class
neighborhoods

Churn : Regional view of available inventory lessens need to "instantly"
reestablish stocking levels

Returns : Real-time inventory visibility

pickup/dropoff parts using scheduled runs

no need to return parts to original location due to regional visibility
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IBM SPS - Neighborhood

Service Implications

Customers are assigned to closest primary location

If no stock at primary location, pass-up strategy converts to pass-along

Demand satisfied directly from least cost/least critical secondary location
contained in PPT class "neighborhood"

Regional orientation for providing customer service through "pooled risk"
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Node Routing

We are given an undirected graph G = (V, E).
The edges represent transportation arteries or communication links.
Each edge has an associated cost or length.
The nodes represent supply/demand points.

Assume one supply point (the depot).

A node routing is a directed subgraph G′ of G satisfying the following
properties:

G′ is (weakly) connected.
The in-degree of each non-depot node is 1.

1

7

5
1

2

5

4

3

3

1

4

5

9

7

6

1
−32 (depot)

1

1

5

7
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Optimal Node Routing

Properties of a node routing.
It is a spanning arborescence plus (possibly) some edges returning
to the depot.
There is a unique path from the depot to each demand point.

We wish to construct a least cost routing.

Cost Measures
Sum the lengths of all edges in G′.
Sum the length of all paths from the depot.
Some linear combination of these two.

1
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IP Formulation

IP formulation for this routing problem:

Min

{i,j}∈E

γ cijxij + τ cijyij

s.t. x(δ(V \ {i})) = 1 ∀i ∈ V
−

y(δ(V \ {i})) − y(δ({i})) = di ∀i ∈ V
−

yij ≤ Mxij ∀{i, j} ∈ E

yij ≥ 0 ∀{i, j} ∈ E

xij ∈ {0, 1} ∀{i, j} ∈ E

where:

V − = V \ {0}.

xij , xji (fixed-charge variables) indicate whether {i, j} is in the routing and its
orientation. and yij (flow variable) represents demand flow.
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Complexity

This node routing problem is NP-complete in general.

Polynomially solvable special cases.
τ = 0 ⇒ Minimum Spanning Tree Problem.
γ = 0 ⇒ Shortest Paths Tree Problem.
Note that demands are irrelevant.

Other special cases.
τ, γ > 0 ⇒ Cable-Trench Problem (CTP).
τ = 0 and x(δ({i}) = 1 ⇒ Traveling Salesman Problem (TSP).

τ > 0 and x(δ({i}) = 1 ⇒ Variable Cost TSP (VCTSP).

x(δ(V \ {0}) = x(δ({0}) = k ⇒ k-TSP.
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Complexity
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