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Most firms face some risk of disruption to their supply due to labor strikes, supplier bankruptcies,
manufacturing quality failures, natural disasters, terrorism, or other events. In recognition of the
fact that the risk of disruption may change over time, some firms have begun to continually monitor
their disruption risk and to adjust their safeguards, e.g., inventory, in accordance with the current
risk level. Such a system allows the firm to increase its protection level when the disruption risk is
high and to operate “lean” otherwise. In this paper, we propose and investigate a threat advisory
system in which the firm, operating a periodic-review inventory system, dynamically adjusts its
inventory in response to changes in the threat level. We consider a model in which the firm has
a single unreliable supplier, for which inventory is the only disruption-management tactic, as well
as a model in which a second, perfectly reliable supplier is available, and, thus, sourcing becomes
an additional disruption-management tactic. We consider both infinite- and finite-horizon settings.
We characterize the optimal threat-dependent inventory levels and show that a threat advisory
system can result in substantial cost savings. We establish that supplier capacity and the structure
of the disruption risk process (the relative disruption risk in different threat levels and the nature of
transitions between threat levels) significantly influence the value of a threat advisory system. We
find that the presence of a threat advisory system and the structure of the disruption risk process
can have a significant impact on the optimal disruption-management strategy, i.e., the choice of
tactics (inventory and/or sourcing) used to manage the firm’s disruption risk.

1. Introduction

Supply disruptions present a significant risk for companies, as evidenced by the experiences of both

Harley-Davidson and Ford in February 2007. In the case of Harley-Davidson, a three-week strike

at its largest plant resulted in the company announcing that motorcycle shipments in the first

quarter would be 20% less than planned and that its 2007 earnings-per-share growth would fall in

the 4-6% range instead of the projected 11-17% range (Wall Street Journal 2007). Ford was forced

to temporarily halt production at their Louisville, Ky., truck plant because their engine supplier,

Navistar, cut off supply as a result of a contract dispute. Ford reported that March sales of its

profitable F-series pickup truck would be reduced because of the supply stoppage (Kosdrosky 2007).
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Strikes and contract disputes are only two of many potential sources of disruptions. Natural

disasters, terrorism, supplier bankruptcies, manufacturing quality failures and fires have all con-

tributed to major disruptions in recent years. Firms are increasingly recognizing the significant

risk presented by supply disruptions and are taking actions to better manage disruption risks. One

strategy that firms are beginning to adopt is to continuously monitor their supply chain for warn-

ings of potential supply-continuity problems. Open Ratings, a Dun and Bradstreet company, has

deployed supply-chain monitoring software for large corporations such as Eaton and UTC.

Eaton is working with Open Ratings to create a company-wide monitoring system that

will give advance notice of potential supplier instability in time to put safeguards in

place. “We are pleased to expand the use of Open Ratings’ solution as part of a

comprehensive supply chain strategy,” said Richard B. Jacobs, vice president of supply

chain management at Cleveland-based Eaton. “Open Ratings will help us gain critical

visibility and actionable insight into any potential issues before a disruption occurs.”

(From Supply & Demand Chain Executive, February 2006.)

The software toolset uses pattern recognition technology to constantly monitor supplier

data to determine if any of UTC’s 18,000 suppliers are heading for trouble. In August

2004 the system generated a financial alert based on a recognized pattern of events for

a key castings supplier. That partner was immediately identified as being important

to a number of product lines, and a system-generated e-mail was sent to the OTL staff

warning of a potential bankruptcy ... [and] UTC increased its inventory buffer as an

added layer of protection. (From Global Logistic & Supply Chain Strategies, December

2005.)

The decision by UTC to increase its inventory in response to a heightened risk of disruption

captures an essential benefit of risk-monitoring systems: rather than continuously maintaining

disruption safeguards, such as inventory, firms can increase/decrease their safeguards in response

to the current risk level. Sophisticated supply-base monitoring software is not the only approach

to tracking the risk of disruption and adjusting safeguards accordingly. Firms typically have some

knowledge as to whether the risk of a labor strike is higher than usual. The increased threat

of a strike during labor negotiations is a motive for temporarily increasing inventories that is

often ascribed to automotive companies. Before the UAW negotiation in July of 2003, there was

a significant inventory buildup in the late spring. While the Big-Three automakers would not

“acknowledge that the coming UAW talks, which kick-off July 16-18, have influenced the buildup
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of inventory ... Wall Street analysts think it only natural for automakers to stock up on inventory

just in case [of a strike],” (McCracken 2003).

The enhanced focus on disruption risks and the growing ability of firms to monitor the risk of

disruption make it likely that firms will increasingly recognize the dynamic nature of disruption

risk management. That is, rather than assessing risks at infrequent intervals, e.g., annually, and

deploying a static safeguard based on that risk assessment, firms will monitor the risk of disruption

on a continuous basis and adjust their safeguards in reaction to changes in the level of risk. Eaton

and UTC are examples of firms already using a dynamic threat advisory system to monitor and

manage disruption risks. The disruption literature to date has not explored the notion of a threat

advisory system. Our paper addresses this gap by proposing and investigating a threat advisory

system in which the firm (operating a periodic-review inventory system) can adjust its inventory

in response to changes in the current threat level.

We first explore a single-supplier model in which inventory is the only disruption-management

tactic available to the firm. We characterize the optimal threat-dependent inventory levels (for both

the infinite-horizon and finite-horizon settings) and explore how the optimal levels are influenced

by the structure of the disruption risk process, the nature of disruptions, and the remaining horizon

length. We investigate the value of using a threat advisory system and establish that the value

is significantly influenced by the structure of the disruption risk process (the relative disruption

risk in different threat levels and the nature of transitions between threat levels) and the supplier

capacity. We then explore a two-supplier model in which the firm can use sourcing tactics and

inventory to manage disruption risks. We find that a threat advisory system may change the form

of the optimal disruption-management strategy. For example, it may change the optimal strategy

from one of acceptance (doing nothing to protect against the disruption risk) to one that adds

protection during times of elevated risk. We show that the optimal strategy is heavily influenced

by both the relative disruption risk (among threat levels) and by the product lifecycle.

The remainder of this paper is organized as follows. We review the literature on supply dis-

ruptions in §2. We describe the model in §3. We consider the single-supplier setting in §4 and

the two-supplier setting in §5. Conclusions and directions for future work are presented in §6. All

proofs are contained in Appendix A.

2. Literature Survey

The issue of supply uncertainty has received much attention of late in the literature. Hendricks

and Singhal (2003, 2005a,b) empirically establish that supply chain disruptions (also called glitches)

have a significant negative impact on both the operating performance and the stock price of firms.
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Kleindorfer and Saad (2005) present a conceptual framework for the management of disruption risks

and, based on empirical data on chemical-industry accidents, provide guidance for the creation of

appropriate management systems. Dada et al. (2007) and Federgruen and Yang (2007) analytically

explore the benefit of supply diversification in random-supply newsvendor settings. Swinney and

Netessine (2007) investigate the role of contracts in mitigating the risk of supplier defaults in

environments with uncertain costs.

A number of interpretations of the term “supply uncertainty” have appeared in the analytical

literature, namely, disruptions, random yield, random capacity, and stochastic lead times. In dis-

ruption models, a supplier alternates between up-states and down-states. In up-states orders are

filled on time and in full. In down-states, the supplier is unavailable. In random-yield models, the

quantity received may differ from the quantity ordered by a random amount. We refer the reader

to Yano and Lee (1995) for a review of the random-yield literature. Disruptions are binary events,

while yield uncertainty often gives rise to smaller but more frequent variability in the delivered

quantity. Chopra et al. (2007) consider the differences between these two types of supply uncer-

tainty, and the error inherent in failing to distinguish between the two, in a single-period model,

and Schmitt and Snyder (2007) extend their analysis to an infinite-horizon setting. In random-

capacity models, there is an stochastic upper bound on the production quantity, e.g., Ciarallo et al.

(1994). Finally, in stochastic lead-time models, orders placed with a supplier are filled in-full but

subject to a random delivery time (e.g., Hadley and Whitin (1963), Kaplan (1970), Bagchi et al.

(1986), Ramasesh et al. (1991), and Bradley and Robinson (2005)). In this paper, we focus on the

disruption type of supply uncertainty.

The first treatment of supply disruptions in the literature appears to be that of Meyer et al.

(1979), who consider a production facility subject to stochastic disruptions and repairs. Items

produced by the facility are stored in a capacitated buffer that sees constant, deterministic demand.

Their model is descriptive rather than prescriptive, characterizing the stockout percentage for a

given inventory policy rather than finding the optimal policy.

Parlar and Berkin (1991) present an EOQ-like model with deterministic demand but stochastic

disruptions and repairs with the aim of finding the optimal order quantity. Berk and Arreola-Risa

(1994) point out two errors in Parlar and Berkin’s original model and offer a corrected model.

Snyder (2006) proposes an approximation for Berk and Arreola-Risa’s cost function that, unlike

the exact model, can be solved in closed form and permits a number of analytical results.

A number of papers extend Parlar and Berkin’s EOQ-based model. Parlar and Perry (1995)

relax the zero-inventory ordering (ZIO) assumption and consider random as well as deterministic

yields. Both the reorder point and the waiting time between unsuccessful orders are decision
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variables, leading to what the authors call a (Q, r, T ) inventory policy. Moinzadeh and Aggarwal

(1997) consider a model based on the economic production quantity (EPQ) model. They propose

a continuous-review (s, S) policy, rather than a (Q, r) policy, since the inventory level may fall

strictly below the reorder point during a disruption. Parlar and Perry (1996) consider an EOQ-

based model with multiple identical, unreliable suppliers, and Gürler and Parlar (1997) generalize

their two-supplier model by allowing more general failure and repair processes.

The few papers to consider stochastic demand in addition to stochastic supply include those

of Gupta (1996), who formulates a (Q, r)-based model, Parlar (1997), who studies a more general

model but formulates only an approximate cost function, and Arreola-Risa and DeCroix (1998),

who propose an (s, S) policy for a periodic-review system with supply disruptions and partial

backorders. Chao (1987) and Chao et al. (1989) propose a Markov decision process model for an

electricity market with random demand and supply. Snyder and Shen (2006) demonstrate using

simulation that different, often opposite, strategies are required for coping with demand uncertainty

and supply uncertainty (in the form of disruptions) in a variety of multi-echelon supply chains.

It is worth pointing out that nearly all of the papers on supply failures consider either single-

period models or infinite-horizon models. Exceptions include the Bernoulli-yield models of Anupindi

and Akella (1993), Parlar et al. (1995), Swaminathan and Shanthikumar (1999), Tomlin (2005a).

In addition, with a few exceptions (Chopra et al. 2007, Snyder 2006, Schmitt and Snyder 2007),

the models discussed thus far require numerical solution methods. In contrast, this paper considers

both finite- and infinite-horizon settings, as well as several special cases that can be solved in closed

form.

The papers that are most closely related to ours are those of Song and Zipkin (1996), Li et al.

(2004), and Tomlin (2006). Song and Zipkin (1996) consider a very general supply process that

can model, for example, supply disruptions or stochastic lead times. Their work established the

optimality of a state-dependent base-stock policy (assuming no fixed cost of ordering). Li et al.

(2004) consider a model which, like ours, allows the risk of disruption to change over time. However,

their model considers age-dependent changes to the disruption risk—that is, the probability of

a disruption depends only on the number of periods since the last disruption. In contrast, we

present a threat-dependent model, in which the disruption risk depends on external factors that

may be independent of the number of consecutive “up” periods. While an age-dependent model is

appropriate for some types of disruptions (e.g., machine breakdowns), a threat-dependent model

is more appropriate when (a) the disruption probability does not depend directly on the length of

time since the last disruption and (b) the firm can periodically revise its estimate of the disruption

risk. Disruptions due to labor disputes, weather, and terrorism, for example, fall into this category,

5



since the disruption probability is dependent on external factors rather than on the time of the

last disruption, and since likelihood indicators may be available. Song and Zipkin (1996) and

Li et al. (2004) consider only a single, infinite-capacity supplier, whereas our models relax both

assumptions. Finally, Tomlin (2006) considers a infinite-horizon, dual-sourcing model in which

the firm may order from a cheap but unreliable supplier and/or an expensive but reliable supplier.

Tomlin examines the conditions under which the firm’s optimal strategy is to manage disruptions by

holding extra inventory, by dual sourcing, by emergency sourcing, or by taking no action and simply

accepting the disruption risk. Our model extends Tomlin’s by allowing the disruption risk to vary

stochastically over time (i.e., multiple versus single threat levels) and by considering finite-horizon

(as well as infinite-horizon) models. We note also that Tomlin (2005b) considers a single-period,

two-product supply-failure model in which the firm can select its disruption-management tactics

from dual-sourcing, emergency sourcing or demand management.

3. The Model

We consider a firm that operates a periodic-review inventory system in which it procures product

from a single supplier. (A description of the two-supplier generalization is deferred until §5.) There

is no fixed cost of ordering and the firm pays the supplier a cost of c per unit. Production at

the supplier is instantaneous, but orders incur a transit lead time of L periods. The supplier is

subject to random disruptions, that is, in each period the supplier may either be in an up-state or a

down-state. When in an up-state the supplier can produce product subject to a (possibly infinite)

capacity limit. When in a down-state, the supplier is completely inoperative and can produce no

product for the firm. The firm knows the supplier state (up or down) at all times. We will fully

characterize the supply process after first describing the remaining features of the model.

We consider both infinite-horizon and finite-horizon settings. In the finite-horizon case, there

are T ≥ 1 periods and the time periods are indexed by t = 1, . . . , T , with T being the final period in

the horizon. Demand in each period is drawn from a stationary discrete distribution with strictly

positive support and unmet demand is backordered. Excess inventory at the end of a period incurs

a holding cost of h per unit, while backorders incur a cost of p per unit. In the finite-horizon

case, excess inventory at the end of period T incurs a terminal holding cost of hT per unit and

unmet demand at the end of period T incurs a terminal stockout penalty of pT per unit, that is,

demand not filled by the end of the horizon is lost at cost of pT per unit. A positive (negative)

terminal holding cost hT indicates ending inventory is disposed (salvaged). If ending inventory can

be salvaged, the salvage value is less than or equal to the procurement cost (−hT ≤ c). To ensure

the firm attempts to fill demand (rather than simply incur the terminal cost of unmet demand) we

6



assume that c < βT pT where β ∈ (0, 1] is the one-period discount factor. We make the standard

assumption that the terminal costs are incurred in addition to the normal holding and stockout

costs at the end of period T . The firm minimizes the expected total discounted cost, although, at

times, we will consider the long-run average cost criterion for the infinite-horizon setting.

The events in each period t occur in the following sequence:

1. Supplier’s state-space transition occurs and the new state is observed.

2. Demand is observed.

3. Order (if any) is placed.

4. Units ordered in period t− L arrive.

5. Demand is satisfied to the extent possible, and excess demands are backordered (or lost in

the final period of the finite-horizon case.)

6. All costs are incurred.

The sequence of events given above is the same as that used by Song and Zipkin (1996) with the

exception that demands are observed before orders are placed rather than after. Both conventions

are common in the literature and are equivalent except that in our sequence of events, lead times

are effectively shorter by one period. (See, e.g., Graves (1988), or most of the literature on the beer

game, for examples of models using the same sequence as ours.)

We now characterize the supply process. Recall that the supplier is either up (i.e., operative)

or down (i.e., not operative). The up-states are divided into N states, called threat levels, which

represent the likelihood of being disrupted in the next period. The transition probability from

up-state n to up-state m is given by λnm. The transition probability from up-state n to a down-

state (i.e., the disruption probability in up-state n) is given by λnd. Neither of these transition

probabilities depend on the number of periods that the supplier has been in up-state n. Without

loss of generality, the threat levels are indexed in increasing order of their disruption probability;

that is, λ1d ≤ λ2d ≤ . . . ≤ λNd. When in up-state n = 1, . . . , N , the supplier has a capacity

vn ≤ ∞, i.e., the supplier’s capacity may depend on the threat level. The capacity applies to the

order quantity: the firm can order at most vn units per period when the supplier is up (and 0 units

when down).

Define the threat-transition matrix M as the N × N matrix containing the transition proba-

bilities among the up-states (i.e., the probabilities of transitioning among threat levels.) Element

(n,m) of M is therefore the transition probability λnm. We will see later that the threat-transition

matrix is an important characteristic of the threat advisory system. We note that the threat-

transition matrix completely specifies the disruption probabilities in each threat level. To see this,
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recall that λnd = 1−∑N
m=1 λnm and λnm is given by [M]nm. Therefore, λnd = 1−∑N

m=1 [M]nm.

We now define another important characteristic of the threat advisory system, namely, the

threat-ratio vector r =(r1, . . . , rN−1) where rn is the ratio of the disruption probabilities in threat-

levels n + 1 and n, i.e., rn = λn+1,d/λnd. We refer to rn as the threat ratio for up-state n,

n = 1, . . . , N − 1. Because the probability of disruption is non-decreasing in n, we have rn ≥ 1.

If rn is large, then threat level n + 1 is a significantly higher-risk state (in terms of the disruption

probability) than threat level n, whereas if rn ≈ 1, then the risks are comparable in both threat

levels.

Let us now turn our attention to the down states. Let i = 1, . . . ,∞ denote the number of

periods (including the current one) for which the supplier has been down. The probability of a

disruption ending by transitioning to some up-state m is assumed to depend only on the length of

the disruption i and the up-state n in which the disruption originated. This probability is denoted

by µnim. Down-states are denoted by (n, i). When in down-state (n, i), the overall probability of

a disruption ending (the “repair” probability) is given by µni =
∑N

m=1 µnim and the probability of

the disruption continuing is given by 1− µni.

Given the above characterization, the firm’s supply process can be modeled as a discrete-time

Markov process with up-states indexed by n = 1, . . . , N , representing the threat levels, and down-

states indexed by (n, i). The steady-state probabilities of being in up-state n and down-state (n, i)

will be denoted by πu(n) and πd(n, i), respectively. The overall steady-state probabilities of being

up and down, respectively, are πu =
∑N

n=1 πu(n) and πd =
∑N

n=1

∑∞
i=1 πd(n, i).

In closing this section, we note that many of our results can be directly extended to the case of

Markov-modulated demand in which the demand distribution depends on the state of the supply

process. However, for ease of exposition we focus our attention on the case where the demand

distribution is state-independent. Demand in each period can take on values d1, d2, . . . , dK , with

dk a positive integer for each k = 1, . . . , K and K possibly equal to positive infinity.

4. Single-Supplier Analysis and Results

In the single-supplier setting, the firm’s only available disruption-management tactic (Tomlin 2006)

is to hold inventory in anticipation of potential disruptions. The existing disruption literature has

not considered the possibility of a threat advisory system and, therefore, one key area that we

explore in this section is whether there is much value in having threat-level information and what

influences this value. We first consider the case of an infinite-capacity supplier, i.e., vn = ∞ for

n = 1, . . . , N , and then investigate the effect of finite supplier capacity.
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4.1 Infinite Supplier Capacity

As ours is a Markovian inventory-control problem, one can apply the results of Song and Zipkin

(1993, 1996) to establish that a state-dependent base-stock policy is optimal. For the general model,

it is not possible to analytically specify the optimal base-stock levels. Therefore, we will make some

simplifying assumptions in this subsection to allow the development of analytical results. All of the

following assumptions will be relaxed when we consider the finite-capacity case. We will assume

that (i) demand is deterministic and equal to d units in each period, (ii) there is no discounting,

i.e., β = 1, and (iii) the firm can return excess inventory for a full reimbursement of the purchase

cost1.

4.1.1 Optimal Base Stock Levels

We will first consider the infinite-horizon setting and then turn our attention to the finite-horizon

setting. Because there is no discounting, i.e., β = 1, we use the long-run average cost criterion for

the infinite-horizon setting. Let yn denote the target inventory position at the end of a period in

up-state n, after accounting for the (deterministic) demand. We refer to yn as the base-stock level

even though, unlike the common definition of that term, it represents the target inventory position

after, rather than before, demand is subtracted. There is no benefit to choosing a base-stock level

that is less than the lead-time demand Ld, otherwise a shortage cost is unnecessarily incurred

in some periods. In addition, there is no benefit to ordering fractional demands. Therefore, we

have the following results (for which formal proofs are omitted) for all n: (i) y∗n ≥ Ld, and (ii)

y∗n is an integer multiple of d. Define ŷn = yn − Ld. Clearly, the optimal ŷn is also an integer

multiple of d, so we can write ŷn = jnd, where jn is a nonnegative integer. The quantity ŷn is

analogous to safety stock (protecting against supply uncertainty in this case), and jn represents the

number of down-periods covered by up-state n’s base-stock level. We therefore refer to jn as the

coverage in up-state n. The coverage vector (j1, . . . , jN ) completely characterizes a state-dependent

base-stock policy. Because unmet demand is backlogged, the procurement cost c is not relevant to

determining the optimal infinite-horizon coverages. Let C (j1, . . . , jN ) denote the long-run average

inventory-shortage cost of a base-stock policy (j1, . . . , jN ).
1When using a state-dependent base-stock policy, the firm may find itself with more inventory than it wishes to

have in a given period. This will happen when transitioning from an up state with a high base-stock level to one
with a low base-stock level. If the firm cannot, or does not want to, return excess inventory to the supplier, then
its inventory position will exceed the desired base-stock level until this excess inventory has been drained down by
demand (assuming another state transition has not occurred in the meantime). In contrast, the firm can and will
attain its desired inventory position in every up-state if the supplier allows it to return excess inventory for a full
reimbursement. Please see Appendix B for (i) an analytical characterization of the optimal base stock level for a
special case of the supply model when returns are not allowed, and (ii) for an analysis of the effect of the returns
policy on the firm’s cost.
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Define Gn [j] = πu (n) +
∑j

i=1 πd (n, i) and Gn [j] =
∑∞

i=j+1 πd (n, i). Gn [j] is the steady

state probability of being in up-state n or being in a disruption (originating from up-state n)

that has lasted j periods or less. For ease of exposition, we refer to Gn [j] as the steady state

probability of being in a disruption (originating from up-state n) that has lasted j periods or less,

with the understanding that a disruption lasting 0 periods means the supplier is up. Let us define

Fn[j] = Gn[j]/Gn[∞], where Gn[∞] = limj→∞Gn[j]. Fn[j] is the steady-state probability of being

in a disruption (originating from up-state n) that has lasted j periods or less, conditioned on being

in up-state n or in a down-state originating from up-state n.

Theorem 1 The optimal coverage in up-state (threat level) n is j∗n = F−1
n

[
p

p+h

]
.

This theorem generalizes a result in Tomlin (2006) to systems with multiple threat levels.

The optimal coverage is characterized by a newsvendor ratio and by an appropriately defined

distribution Fn[j] for the supply process. Since disruptions are more likely in higher threat levels,

Fn[j] is increasing in n if µni = µi for n = 1, . . . , N , i.e., the probability of a disruption ending after

i periods is independent of the originating up-state n. This leads to the following result.

Corollary 2 If µni = µi for n = 1, . . . , N , then the optimal coverage in up-state (threat level) n,

j∗n, is nondecreasing in n; that is, the coverage increases as the probability of disruption increases.

This confirms what one would intuitively expect, the higher the threat level the more inventory

is held. This result would not necessarily hold if different threat levels had different disruption

characteristics. For example, if disruptions originating from a high threat level tend to be shorter

than those originating from a lower threat level, then less inventory may be held in the high threat

level.

We now turn our attention to characterizing the optimal base-stock levels for the finite-horizon

setting in which the firm minimizes the expected total horizon cost. Let ynt denote the target

inventory position (base-stock level2) in up-state n at the end of period t, after accounting for

the (deterministic) demand. As in the infinite-horizon setting, there is no benefit to choosing

a base-stock level that is less than the demand over the lead time, otherwise a shortage cost is

unnecessarily incurred in some periods. Note that if T − t < L, then demand over the lead time

is the demand over the remaining horizon, i.e., (T − t)d. Also, there is no benefit to ordering

fractional demands. Therefore, we have the following results (again, formal proofs are omitted) for

all n and t (i) y∗nt ≥ min{L, T − t}d, and (ii) y∗nt is an integer multiple of d. Analogous to the
2As in the infinite-horizon setting, we refer to ynt as the base-stock level even though, unlike the common definition

of that term, it represents the target inventory position after, rather than before, demand is subtracted.
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infinite-horizon setting, define ŷnt = yn −min{L, T − t}d = jntd where jnt is a nonnegative integer

that represents the number of down-periods covered by up-state n’s base-stock level in period t.

The coverage jnt fully specifies the base stock level for up-state n in period t. We note the firm

will incur no backorders or terminal stockouts if its coverage is at least as large as the maximum

demand that can occur during a disruption. Demand over the length of a disruption must be less

than or equal to demand over the remaining horizon, i.e., (T − t) d and, therefore, j∗nt ≤ (T − t) d.

Theorem 3 The optimal coverage in up-state n in period t is j∗nt = min{̂nt, T − t} where ̂nt is

the minimum j such that:

hGn[j]− p (Gn[T − t]−Gn[j])− (pT − c) πd (n, T − t) ≥ 0. (1)

When the end-of-horizon is far away, the likelihood that a disruption (occurring next period)

will last until the end-of-horizon is very low and, therefore, any customers backordered during a

disruption will have their demands filled before the end of the horizon with a very high probability.

Therefore, the primary purpose of any inventory coverage when far from the end-of-horizon is

to protect against backorders. This is the same role played the coverage in an infinite-horizon

setting, and one would, therefore, expect the finite-horizon coverage to approach the infinite-horizon

coverage as the remaining horizon tends to infinity. This is formalized in the following corollary.

Corollary 4 j∗nt → j∗n as T − t →∞.

Intuitively, one might expect that the firm would reduce its coverage as the end-of-horizon

approaches. In fact, this is not necessarily the case. As the end-of-horizon approaches, there is a

higher probability that a disruption (occurring next period) will last until the end-of-horizon. If

the supplier is still down at the end of the horizon, then the firm incurs terminal stockout costs,

in addition to the accumulated backorder costs, for any demands not filled from the inventory

coverage. Therefore, the purpose of the inventory coverage as the end-of-horizon approaches is to

protect both against backorders and terminal stockouts. Backorder costs begin to be incurred once

the coverage runs out and they accumulate until either the disruption ends or the end-of-horizon

is reached. From the perspective of backorders then, disruptions are of less concern as the end-of-

horizon approaches because the expected disruption length effectively decreases because the relevant

length is limited by the remaining horizon. However, from the perspective of terminal stockouts,

disruptions are of more concern as the end-of-horizon approaches because the probability that a

disruption lasts until the end-of-horizon increases. Because the backorder concern is dampened

whereas the terminal stockout concern is amplified as the end-of-horizon approaches, the terminal

stock-out cost pT and the backorder cost p play a crucial role in determining whether the optimal

coverages decrease or increase in the time t, i.e., as the end-of-horizon approaches.
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Theorem 5 (i) ̂n,t+1 ≤ ̂nt if pT ≤ c+p
(

1
µn,T−t−1

− 1
)

and ̂n,t+1 ≥ ̂nt if pT > c+p
(

1
µn,T−t−1

− 1
)
.

Corollary 6 For the case of geometrically distributed disruption lengths, i.e., µni = µn for i =

1, . . . ,∞, (i) the optimal coverage j∗nt is non-increasing in t if pT ≤ c+p
(

1
µn
− 1

)
, (ii) the optimal

coverage j∗nt is at first non-decreasing and then non-increasing in t if pT > c + p
(

1
µn
− 1

)
.

To interpret the inequalities in Corollary 6, first note that, for geometrically distributed disrup-

tion lengths, the expected remaining disruption length is 1
µn

, regardless of how long the disruption

has lasted. Therefore, a backorder occurring far from the end-of-horizon incurs an expected cost

of c + p
µn

(p for each period until the end of the disruption, plus c to purchase the unit after

the disruption). In contrast, a stockout that is outstanding when the horizon ends incurs a cost

of pT + p. Therefore, terminal stockouts are more [less] consequential than normal backorders if

pT > c + p
(

1
µn
− 1

) [
pT ≤ c + p

(
1

µn
− 1

)]
. If the terminal stockout cost is not too high relative

to the backorder cost, i.e., pT ≤ c + p
(

1
µn
− 1

)
, then the concern about normal backorders dom-

inates that of terminal stockouts, so as the former concern decreases (because the end-of-horizon

is approaching), the optimal coverages decrease, as well. If, instead, pT is high, then the optimal

coverage can increase in t. Even in this case, however, the coverage will eventually start to decrease

because (as discussed earlier) the optimal coverage is always less than or equal to the demand over

the remaining horizon, i.e., j∗nt ≤ (T − t) d.

When far from the end-of-horizon, the optimal coverages are the same as the infinite-horizon

coverages. How close must the end-of-horizon be for it to influence the optimal coverages? As

we will see, the disruption frequency/duration profile is a key factor in determining when the

end-of-horizon begins to influence the coverages. (Frequency refers to how often a disruption

occurs and duration refers to the average disruption length.) We illustrate this by considering a

problem with a horizon length of T = 150 periods, each representing one week. Demand equals

5 units in each period. We use holding and stockout costs h = 0.005 and p = 0.248, which

results in a newsvendor ratio of p
p+h = 0.98. We set the terminal holding and stockout costs to

hT = 0.05 and pT = 1.248. There are five threat levels and direct transitions between non-

adjacent threat levels cannot occur, i.e., λnm = 0 if |m − n| > 1. The threat-ratio vector is

r = (3, 3, 3, 3). We consider two different disruption profiles: one with rare/long disruptions and one

with frequent/short disruptions. Disruptions are geometrically distributed with an expected length

of ten weeks for the rare/long profile and an expected length of three weeks for the frequent/short

profile. The threat-transition matrix elements for adjacent threat levels are set to achieve an

overall (steady-state) probability of being up of πu = 0.97 in both cases. Because the disruption

12



Figure 1: Optimal base-stock level vs. remaining horizon. Upper (lower) graph shows coverage for
rare/long (frequent/short) profile.
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probabilities are equal for both profiles, the rare/long profile spends much more time in the lower

threat-level states than does the frequent/short profile. In Figure 1, we illustrate the optimal base-

stock levels as a function of the remaining periods in the horizon. (The optimal coverages are zero

in threat levels 1, 2 and 3 for the frequent/short profile, whereas the optimal coverage is zero only

in threat level 1 for the rare/long profile.) We see that the end-of-horizon effect starts much sooner

for the rare/long profile than it does for the frequent/short profile. The reason is as follows: For

disruptions with short expected durations, the probability of a disruption (if it occurs) lasting until

the end of the horizon is negligible unless the end-of-horizon is very close, whereas this probability

can be significant for disruptions with long expected durations even when far from the end of the

horizon.

We note that firms may unwittingly encounter end-of-horizon type effects if managers make

inventory decisions based on their remaining tenure in the job rather than on the remaining product

life. One can imagine the disruption effect leading managers to draw down inventory that protects

against disruptions if the managers are measured solely on the performance during their tenure.

Firms are therefore advised to put some procedural safeguards in place to prevent unwanted (from

the firm’s perspective) inventory draw down. This is especially true for firms facing rare/long

13



disruptions.

4.1.2 Value of a Threat Advisory System

A threat advisory system is valuable because it allows the firm to adapt its inventory coverage

to the prevailing conditions as reflected by the current threat level. How valuable is an adaptive

(i.e., threat-dependent) policy and what influences the value? We address these two questions by

comparing the cost of the optimal threat-dependent policy with the cost of the optimal constant,

i.e. threat-independent, base-stock policy. To do so, we first need to characterize the optimal

coverage for this threat-independent base-stock policy. We focus on the infinite-horizon setting in

what follows. Define Fc[j] =
∑N

n=1

(
πu(n) +

∑j
i=1 πd(n, i)

)
. Fc[j] is the steady-state probability of

being up (in any threat level) or in a disruption (originating from any threat level) that has lasted

j periods or less. This is analogous to Fn[j], defined above, but Fn[j] was conditioned on being in

up-state n or in some down-state originating from up-state n.

Theorem 7 The optimal constant coverage is j∗c = F−1
c

[
p

p+h

]
.

Before investigating the value of using a threat-dependent policy, it is helpful to contrast the

optimal threat-dependent and constant coverages. We note that for a system with a single threat

level, i.e., N = 1, the threat-dependent and constant policies are identical, that is, j∗c = j∗1 . Explicit

solutions (i.e., solutions not using the notation F−1[·]) for the optimal threat-dependent coverages,

j∗n, n = 1, . . . , N , and the optimal constant coverage j∗c can be obtained for certain special cases of

our supply system.

Theorem 8 For the case in which disruption lengths are geometrically distributed (i.e., a constant

repair probability) and the repair probability is independent of threat level from which the disruption

originated, let the repair probability be denoted by µ. Then

j∗n =





0, p
p+h ≤ µ

µ+λnd


ln

 
1− p

p+h

1− µ
µ+λnd

!
ln(1−µ)




, p
p+h > µ

µ+λnd

(2)

j∗c =





0, p
p+h ≤ πu


ln

�
1− p

p+h
1−πu

�
ln(1−µ)




, p
p+h > πu

(3)

where dxe is the smallest integer greater than or equal to x.
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Observe that j∗n is identical to j∗c except that πu (the steady-state probability of being up) is

replaced by µ
µ+λnd

. We note that µ
µ+λnd

is the steady-state probability of being up conditioned

on being in up-state n or some down-state that originated from up-state n. Therefore, there is a

direct analogy between µ
µ+λnd

in the threat-dependent coverage and πu in the constant coverage.

Moreover, as established in the following corollary, the threat-dependent coverage (in up-state n)

is higher [lower] than the constant coverage if the conditional steady-state probability of being up

is lower [higher] than the overall steady-state probability of being up.

Corollary 9 j∗n = j∗c if µ
µ+λnd

= πu, j∗n ≥ j∗c if µ
µ+λnd

< πu, and j∗n ≤ j∗c if µ
µ+λnd

> πu

Recall that we previously defined the threat ratio rn as the disruption probability in threat level

n + 1 relative to that in threat level n. Systems with high rn values are ones in which the threat

levels are highly differentiated. For a system with two threat levels, i.e., N = 2, the threat-ratio

vector r =(r1, . . . , rN−1) = r1. In Figure 2, we plot the state-dependent coverages j∗1 and j∗2 and

the constant coverage j∗c as a function of the threat ratio r1 for a system with two threat levels

in which p
p+h = 0.98, πu = 0.97, λ12 = 0.005, λ21 = 0.025, µ1 = 0.045, µ2 = 0.005. Disruptions

last an average of twenty periods and, therefore, periods are therefore best thought of as days

for this example. The disruption probabilities λ1d and λ2d are completely specified by the threat

ratio r1 and the other probability parameters. Observe in Figure 2 that the constant coverage j∗c is

independent of the threat ratio. This is because j∗c depends on πu and µ but does not depend on the

relative disruption probabilities. In contrast, the threat-dependent coverages are highly sensitive

to the threat ratio. As the threat ratio increases, the system becomes more differentiated in terms

of the disruption probabilities and so the optimal coverages become increasingly differentiated. In

particular, j∗2 increases in the threat ratio while j∗1 decreases. This is because λ2d [λ1d, resp.],

the probability of disruption in threat level 2 [1], is increasing [decreasing] in the threat ratio for

a constant πu and a constant repair probability µ. As the threat ratio increases, λ1d eventually

becomes so small that the coverage in the low-threat state reaches zero, whereas the coverage in

the high-threat state continues to increase.

Let us now turn our attention to exploring the value of using a threat-dependent policy. Re-

call that C (j1, . . . , jN ) denotes the long-run average inventory-shortage cost of a base-stock policy

(j1, . . . , jN ). Let ∆TD denote the relative savings in inventory-shortage cost obtained by imple-

menting the threat-dependent policy rather than the constant policy. Then,

∆TD =
C (j∗c , . . . , j∗c )− C (j∗1 , . . . , j∗N )

C (j∗c , . . . , j∗c )
. (4)

As established in the proof of Theorem 1, C (j1, . . . , jN ) =
∑N

n=1

(
hKn [jn] + pKn [jn]

)
where

Kn [j] = jGn [j]−En [j], Kn [j] = En [j]−jGn [j], En [j] =
∑j

i=1 iπd (n, i), and En [j] =
∑∞

i=j+1 iπd (n, i).
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Figure 2: Optimal coverages (j∗1 , j∗2 , and j∗c ) vs. r1.
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Substituting this into (4) and rearranging terms, we obtain

∆TD = 1−
∑N

n=1

(
Kn [j∗n] + p

p+h

(
Kn [j∗n]−Kn [j∗n]

))

∑N
n=1

(
Kn [j∗c ] + p

p+h

(
Kn [j∗c ]−Kn [j∗c ]

)) . (5)

The optimal coverages j∗n , n = 1, . . . , N , and j∗c depend on the inventory and shortage costs,

h and p respectively, only through the newsvendor ratio p
p+h . Therefore ∆TD also depends on

these costs only through the newsvendor ratio. An explicit expression for ∆TD can be obtained

(but is omitted here) for the two-threat-level case in which disruption lengths are geometrically

distributed. Using the same parameters as for Figure 2 above, we plot ∆TD as a function of the

threat ratio in Figure 3. We see that the value of the threat-dependent policy, i.e., the relative

savings in inventory-shortage cost obtained by using threat-dependent policy, is increasing in the

threat ratio and that the relative savings is very high at high threat ratios. The reasons for this are

as follows. In the constant-coverage policy, the coverage and resulting expected inventory-shortage

cost are independent of the threat ratio. In the threat-dependent policy, the low-threat coverage

decreases (eventually to zero) and the high-threat coverage increases as the threat ratio increases

but the steady-state probability of being in the low-threat [high-threat] state increases [decreases]

in the threat ratio, and so the expected cost decreases.
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Figure 3: Value of threat-dependent policy (∆TD) vs. r1.
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4.2 Finite Supplier Capacity

We now explore the influence of finite capacity on the performance of a threat advisory system. As

described in §3, we assume that the supplier has a (possibly threat-dependent) capacity vn ≤ ∞,

and, therefore, the firm can order at most vn units per period when the supplier is up (in threat

level n) and 0 units when down. Because a state-dependent base-stock policy is optimal in the

infinite-capacity case, we assume a modified base-stock policy here: the firm orders either the

quantity required to reach the desired (threat-dependent) base-stock level or the supplier’s (threat-

dependent) capacity, whichever is lower.

In this section, we relax the assumptions that demand is deterministic and that there is no

discounting. Furthermore, we no longer allow the firm to return unused inventory. Please see

Appendix B for a treatment of the finite-capacity case in which returns are allowed (but possibly not

for full reimbursement). In what follows, we first describe the dynamic programming formulation

and algorithm and then proceed to explore the effect of capacity both on the performance of a

threat-dependent system and on the end-of-horizon behavior of the optimal coverages.

4.2.1 Dynamic Programming Formulation and Algorithm

We focus on the finite-horizon setting in which the firm minimizes its expected total discounted cost.

We restrict our attention to the case in which the lead time L = 0 in order to avoid a state-space

explosion in our dynamic programming algorithm. We also assume that the repair probabilities are
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independent of both the originating up-state and the length of the disruption.

Let xt be the inventory position (IP) in period t after demand is observed and subtracted from

the IP. For example, if the firm begins the period with 10 units on-hand and the demand equals 20,

then xt = −10. Let yt be the IP at the end of period t, i.e., after an order is placed and received. For

example, if xt = −10 and the firm wishes to end the period with 5 units on-hand, then yt = 5 and

an order of size 15 must be placed. For ease of exposition, we will at times suppress the subscript

t in yt and xt. The dynamic program (DP) has two cost-to-go functions, one for up-states and one

for down-states. In particular, let

• ft(n, x) be the optimal expected cost in periods t, . . . , T if the firm is in up-state n in period

t and the IP after demand is observed is x.

• gt(x) be the optimal expected cost in periods t, . . . , T if the firm is in a down-state in period

t and the IP after demand is observed is x.

An up-period ends with IP equal to y (and a down-period ends with IP equal to x), and so holding

and stockout costs are computed based on this value. Therefore, the DP recursions are as follows:

ft(n, x) = min
x≤y≤x+vn

{
c(y − x) + hy+ + p(−y)+

+β

[
N∑

m=1

λnm

K∑

k=1

qkft+1(m, y − dk) + λnd

K∑

k=1

qkgt+1(y − dk)

]}
, (6)

gt(x) =hx+ + p(−x)+ + β

[
N∑

n=1

µn

K∑

k=1

qkft+1(n, x− dk) + (1− µ)
K∑

k=1

qkgt+1(x− dk)

]
, (7)

where a+ ≡ max{a, 0}. Recall that µn is the probability that a disruption ends by returning to

up-state n, 1−µ is the probability of a disruption continuing, and qk is the probability that demand

equals dk. We note that, for ease of exposition, we have presented the DP for state-independent

demand as we do not focus on Markov-modulated demand in this paper. However, the algorithm

has been coded to allow for Markov-modulated demand in which the demand distribution can

depend on whether the supplier is up or down, and on which down-state the firm is in. The following

description of the implementation (including run time) also applies to a Markov-modulated demand

DP formulation.

The number of reachable up-states (n, x) and down-states x may be large and even potentially

infinite. To avoid computing ft(n, x) and gt(x) for every possible state, we define a range of

reasonable IPs such that the probability of reaching other IPs is sufficiently small, then compute

the cost-to-go functions only for those states. In particular, we assume that the IP in threat level n

is always in the range x(n), . . . , x̄(n), and the IP in down-states is always in the range xd, . . . , x̄d. If

equations (6) and (7) require the evaluation of ft(n, x) or gt(x) for x values not in their permissible
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ranges, we set

ft(n, x) = ft(n, x(n)) if x < x(n)

ft(n, x) = ft(n, x̄, (n)) if x > x̄(n)

gt(x) = gt(xd) if x < xd

gt(x) = gt(x̄d) if x > x̄d

(8)

The period-by-period state probabilities may be obtained as a by-product of our DP algorithm,

and these may be examined after the algorithm terminates to ensure that the ranges x(n), . . . , x̄(n)

and xd, . . . , x̄d are sufficiently large. Using this state-space truncation, the DP can be solved as

follows:

Initialization.

Set fT+1(n, x) = hT x+ + pT (−x)+ for all n = 1, . . . , N , x = x(n), . . . , x̄(n).

Set gT+1(x) = hT x+ + pT (−x)+ for all x = xd, . . . , x̄d.

Set t = T .

Recursion.

Set ft(n, x) using (6) and (8) for all n = 1, . . . , N , x = x(n), . . . , x̄(n).

Set gt(x) using (7) and (8) for all x = xd, . . . , x̄d.

Determine yt(n) for all n = 1, . . . , N as described below.

Termination.

If t > 1, set t = t− 1 and go to 2. Otherwise (t = 1), STOP; the optimal cost is

given by f1(n1, x1), where n1 and x1 are the (exogenously specified) initial state and

inventory position. (We assume for convenience that the system starts in an up-state,

but this is an easy assumption to relax).

If the firm is in up-state n and has IP xt in period t, the optimal base-stock level, denoted

y∗t (n, x), is given by replacing “min” with “argmin” in the right-hand side of (6). However, we are

interested in y∗t (n), not y∗t (n, x); that is, the base-stock level should be independent of the IP x. To

find y∗t (n), we can simply set y∗t (n) equal to the optimal base-stock level for the smallest possible

IP x assuming infinite capacity in period t. This base-stock level represents the desired target IP,

though this IP may not be attainable from every starting IP x because of the capacity constraints.

(To be clear, the resulting base-stock levels are optimal for the finite-capacity case. The infinite-

capacity assumption is necessary simply to avoid the artificially small order-up-to levels that occur

if the starting inventory is small but the capacity is finite. We perform this calculation in a separate

step, after the DP has completed, accounting fully for the finite capacity in future periods.)

The CPU time required for the algorithm to execute increases with the size of the problem

(number of time periods and threat levels), as well as with the size of the ranges x(n), . . . , x̄(n)
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and xd, . . . , x̄d. The CPU time also increases with the supplier capacity, since smaller capacities

reduce the range of feasible actions in each state. For a reasonably large problem instance, e.g.,

150 periods, 5 threat levels, with x(n) = xd = −300 and x̄(n) = x̄d = 300, the algorithm (coded

in VBA) took between 30 seconds and several minutes on a desktop computer, with the run time

primarily dependent on the capacity. Since we are primarily interested in analyzing the firm’s

strategies, rather than the computational performance of the algorithm, we omit a formal analysis

of CPU times.

4.2.2 The Effect of Capacity on a Threat Advisory System

Capacity influences the optimal base stock levels (and the resulting performance) of a threat advi-

sory system in two ways:

• Recovery Effect: If the supplier capacity is infinite, then the firm can recover fully from a

disruption, i.e., attain an inventory position equal to the desired base-stock level, in the first

period after a disruption ends. If the supplier capacity is finite, however, then it may take

the firm a number of periods to attain the desired base-stock level. As the supplier capacity

decreases, the time to recover from a disruption (i.e., attain the desired base-stock level)

increases. A disruption that occurs during this recovery phase is more significant than one

that occurs after recovery because the inventory position has yet to reach the optimal base-

stock level. To protect against this “recovery effect”, the optimal base-stock level increases

as the supplier capacity decreases. This recovery effect was discussed by Tomlin (2006) for a

single-threat system but is still relevant for multiple-threat systems.

• Threat-Transition Effect: In a multiple-threat system, the firm will want to increase its inven-

tory position after transitioning between certain threat levels. For example, as proven earlier

for the infinite-capacity setting, if disruption repair probabilities are threat-independent, then

the optimal base-stock levels are increasing in the threat level n, and, so, the firm will want to

increase its inventory position upon transitioning to a higher threat level. If supplier capacity

is finite, then there will be a transient phase during which the firm has yet to attain the

desired base-stock level. The lower the supplier capacity is, the longer this post-transition

transient phase will be. The consequence of a disruption during this transient phase is more

significant than that of a disruption after the desired base-stock level has been attained. To

protect against this, the optimal base-stock level in lower threat levels will increase because

this ensures that the firm will start from a higher inventory position when transitioning to

a higher threat level. We call this the “threat-transition effect”. This threat-transition ef-
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fect increases base-stock levels above and beyond any increase caused by the recovery effect

discussed above.

In what follows, we explore how the threat-transition matrix M influences the magnitude of

these capacity-related effects. We focus on two key characteristics of a threat advisory system: (i)

the structure of the threat transition matrix M, and (ii) the threat-ratio vector r =(r1, . . . , rN ),

defined earlier. By the structure of M, we mean the set of possible threat transitions. For example,

a “completely connected” structure, denoted MC , is one in which any threat level can transition

directly to any other threat level, i.e., λnm > 0 for any threat-level combination m and n, whereas

a “sequentially connected” structure, denoted MS , is one in which a threat level can transition

directly only to an adjacent threat level, i.e., λnm > 0 if and only if |m− n| ≤ 1.

We now introduce some metrics that will be helpful in what follows. Let v be the capacity of

the supplier (assumed for convenience to be the same in all up-states), let E[D] be the expected

demand, and let ρ = E [D] /v. The quantity ρ is analogous to utilization, although not identical to

it because expected production does not necessarily equal expected demand due to base-stock-level

transitions. We will, however, refer to ρ as utilization. Let J∗ (ρ) denote the optimal (discounted)

horizon cost for a given ρ. Let Ψ (ρ) = J∗(ρ)
J∗(0) , i.e., Ψ (ρ) is the horizon cost with finite capacity

relative to that with infinite capacity. We note that Ψ (ρ) ≥ 1 and, for simplicity, we refer to Ψ (ρ)

to as the relative cost.

For illustration, we consider a five-threat-level system with a horizon length of T = 150 periods,

each representing one week. We use holding and stockout costs h = 0.005 and p = 0.248, which

results in a newsvendor ratio of p
p+h = 0.98. We set the terminal costs to hT = 0.05 and pT = 1.248.

Demand is stationary but stochastic with a discrete distribution: the possible values are 3, 4, 5,

6 and 7, with probabilities 0.1, 0.2, 0.4, 0.2, and 0.1 respectively, which results in an expected

demand of 5 units per period. We assume the disruption length is geometrically distributed,

with a repair probability of µ = 0.211, i.e., disruptions last an average of approximately five

weeks. We set the disruption probabilities as follows: λ1d = 0.000725 and the threat-ratio vector

r = (r1, . . . , r4) = (r, r, r, r) where r = 3. (The impact of changing the threat ratio is explored

later.) We consider both a completely connected and a sequentially connected threat-transition

matrix structure. We set the transition probabilities such that the long-run probability of the

supplier being up is πu = 0.97 for both threat-transition structures, although the system may never

attain this probability due to the finite horizon. The elements of the threat transition matrices are

available upon request.

Figure 4(a) shows the optimal base-stock level in threat level 1 (y∗1) as a function of utilization

ρ for both threat-transition matrices. In the infinite-capacity case, i.e., ρ = 0, the optimal base-
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stock level is 0 for both threat-transition matrices as the probability of a disruption is very low.

As ρ increases, i.e., capacity decreases, the optimal base-stock levels initially remain at 0 because

there is still sufficient capacity to immediately attain a higher threat level’s base-stock level. As ρ

increases further, the optimal base-stock levels start to increase. The probability of a disruption

in threat level 1 does not change, and so the increase in the base-stock level is due solely to the

recovery and threat-transition effects discussed above. We note that the base-stock level increases

more rapidly for the completely connected structure. This is because the threat-transition effect is

more pronounced for this structure since threat level 1 can transition directly to much higher threat

levels, e.g., threat level 5, whereas multiple transitions have to occur in the sequentially connected

structure to move from threat level 1 to threat level 5. Therefore, the sequentially connected

structure has more time to increase its inventory position if the threat level evolves from 1 to 5.

The threat-transition effect (on the base-stock level in threat level 1) is, therefore, more significant

for the completely connected structure.

In Figure 4(b), we plot the relative cost Ψ (ρ) as a function of ρ. We see that the relative

cost increases significantly as ρ increases, i.e., as capacity decreases and approaches the expected

demand. In particular, the capacity effect is greater for the completely connected structure. Again,

this is because the threat-transition effect is more significant for this structure. In general, the

threat-transition effect is more significant for transitions between non-adjacent threat levels than

for transitions between adjacent threat levels because the difference in base-stock levels is larger.

Capacity effects are thus greater for threat-transition structures in which non-adjacent transitions

can occur.

We next investigate how the relative cost Ψ (ρ) is affected by the threat-ratio vector r =(r1, . . . , r4).

We focus on the completely connected threat-transition structure and assume r =(r, r, r, r), i.e. the

same threat ratio for all threat levels. We use the same problem parameters as before, except that

the threat-transition probabilities are adjusted as r increases so as to keep πu = 0.97. The specific

threat-transition matrices are available from the authors upon request. In Figure 5, we plot Ψ (ρ)

as a function of ρ for r = 1, 3, 5. We see that Ψ (ρ) increases more rapidly as the threat ratio

increases. A threat ratio of 1 indicates a system in which all threat levels have the same probability

of disruption. Because the repair probabilities are independent of the originating up state in our

example, the r = 1 case is effectively a single-threat-level system and so the optimal base-stock

levels are identical in all threat levels. As such, the cost increase observed for the r = 1 case in

Figure 5 is caused purely by the recovery effect of finite capacity. The cost increase observed for

the r = 3 and r = 5 cases results from both the recovery effect and the threat-transition effect

of finite capacity. This combined effect, therefore, causes the relative cost increase to be larger

when r > 1. We see that Ψ (ρ) increases more rapidly as the threat ratio increases. This is be-
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Figure 4: (a) Optimal base-stock level in threat-level 1 (y∗1) and (b) percentage cost increase (Ψ(ρ))
vs. ρ for completely connected (CC) and sequentially connected (SC) transition structures.
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Figure 5: Percentage cost increase (Ψ(ρ)) vs. ρ for various threat ratios r.
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cause for a given πu, threat levels become increasingly differentiated as the threat ratio increases.

Increasingly differentiated threat levels result in increasingly differentiated base-stock levels in the

infinite-capacity case, and therefore the threat-transition effect (in the finite-capacity case) is more

significant as the threat ratio increases.

In summary, the lower the supplier capacity, the less beneficial is a threat advisory system

because the threat-transition effect (whereby low-threat coverages are increased because high-threat

coverages cannot be instantaneously attained if the capacity is low) reduces the firm’s ability to

have highly differentiated coverages, and this differentiated coverage is central to the value of a

threat advisory system. This effect is more pronounced if the threat-transition matrix is highly

connected or if the threat ratios are high.

4.2.3 The Influence of Capacity on the End-of-Horizon Coverage Effect

In exploring the optimal coverages in the infinite-capacity case, we explored the end-of-horizon

effect, whereby the optimal coverages change as the end-of-horizon approaches. In closing this

section, we briefly discuss the influence of capacity on the end-of-horizon effect. Figure 1 in §4.1.1

illustrated the optimal coverages (for both rare/long and short/frequent disruption profiles) as a

function of the remaining horizon length in the case of infinite capacity. Using the same parameters

(except that demand is stochastic with a mean of 5 rather than deterministically equal to 5),

Figure 6 illustrates the optimal base-stock levels for the rare/long disruption profile for both infinite

and finite capacity (equal to 10). As can be seen, the optimal coverages begin to change sooner in
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Figure 6: Optimal base-stock level vs. remaining horizon. Upper (lower) graph shows coverage for
infinite-capacity (finite capacity) case.
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the finite-capacity case. In the infinite-capacity case, the firm can instantaneously recover from a

disruption that finishes before the end of the horizon and, therefore, the coverage is only to protect

against a disruption that may occur in the next period. Thus, the remaining horizon only affects the

coverage through the possibility that a disruption (occurring next period) will last until the end of

the horizon. In the case of finite capacity, the firm cannot recover immediately when a disruption

ends or attain a higher inventory position immediately following a transition to a higher threat

state. Therefore, the coverage in the finite-capacity case protects against both the possibility of a

disruption in the next period and the possibility of future disruptions. The probability of future

disruptions decreases as the remaining horizon decreases and, so, the end-of-horizon influences the

optimal coverages sooner in the finite-capacity case. Moreover, because the probability of future

disruptions decreases as the end-of-horizon approaches, this end-of-horizon effect acts to reduce the

coverages. As noted before, the other end-of-horizon effect (the higher probability of a disruption

lasting for the remaining horizon) can act to either decrease or increase the coverage depending on

the terminal stockout cost relative to the backorder cost.
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5. Two-Supplier Extension

We now extend our model to the situation in which the firm can source from two suppliers. This

enables the firm to use sourcing in addition to (or in place of) inventory to manage disruptions.

We first present the two-supplier model and then proceed to explore how the firm’s disruption-

management strategy is influenced by (i) the presence of a threat-advisory system and (ii) the

product lifecycle. Throughout this section, we assume demand to be stochastic as described in §3.

5.1 Two-Supplier Model

There are two suppliers available to the firm: an unreliable supplier (U) that is subject to random

disruptions and a reliable supplier (R) that is not subject to disruptions but is more costly than

supplier U. Units procured from supplier U (R) cost cu (cr) per unit and cu ≤ cr. Both suppliers

have an instantaneous lead time. The firm has a threat advisory system for supplier U and this is

modeled in exactly the same manner as described in §3. All other features of the single-supplier

model continue to apply here. In the two-supplier system, there are two additional disruption-

management tactics, beyond holding inventory, available to the firm: sourcing mitigation and

contingent rerouting.

Sourcing mitigation refers to a sourcing policy in which the firm routinely, i.e., every period,

sources a positive fraction 0 < w ≤ 1 of its demand from supplier R (regardless of whether supplier

U is up or down). Sourcing mitigation dampens the effect of disruptions because a disruption only

affects a portion 1− w of the firm’s supply. If the firm chooses w = 0, then it single sources from

supplier U and the single-supplier model is recovered.

Contingent rerouting refers to a sourcing policy whereby the firm temporarily increases the

quantity sourced from supplier R during a disruption to supplier U, that is, the firm procures

additional units beyond the routine fraction w. These additional units have a cost of cf ≥ cr

per unit. Rerouting is only allowed during a disruption to supplier U. As noted by Tomlin (2006),

contingent rerouting may be limited by supplier R’s volume-flexibility profile and the firm’s response

time to a disruption. Since Tomlin (2006) has explored the impact of volume-flexibility profiles

and firm response time (in the context of a single-threat-level system), we choose to focus on what

Tomlin (2006) calls the zero-flexibility and the instantaneous/infinite-flexibility (II-flexibility) cases.

In the zero-flexibility case, the firm cannot reroute any quantity to supplier R, i.e., contingent

rerouting is not possible. In the II-flexibility case, the firm can reroute any quantity and can begin

this rerouting in the first period of a disruption. We note that zero-flexibility can be obtained as a

special case of II-flexibility by setting cf = ∞.
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For a given 0 ≤ w ≤ 1, the sequence of events in each period t mirror those in the single-supplier

model except for the ordering event (#3), which is modified to reflect the routine fraction ordered

from supplier R and the fact units can be ordered from supplier R (albeit at a higher cost cf )

during a disruption to supplier U under the contingent rerouting strategy

1. Supplier U’s state-space transition occurs and the new state is observed.

2. Demand dt is observed.

3a. An order is placed to supplier R for wdt units.

3b. An order is placed with supplier U (during up-states) or supplier R (during down-states) for

any remaining items desired.

4. Units ordered arrive.

5. Demand is satisfied to the extent possible, and excess demands are backordered (or lost in

the final period of the finite-horizon case.)

6. All costs are incurred.

In choosing a disruption-management strategy, the firm can choose a any combination of in-

ventory mitigation, sourcing mitigation and contingent rerouting (assuming cf < ∞.) Sourcing

mitigation can either be partial, i.e., 0 < w < 1, or complete, i.e., w = 1. In what follows, the term

“sourcing mitigation” refers to the complete case unless it is preceded by the word “partial”. The

set of possible optimal strategies is the same in the multiple-threat-level case as in a single-threat,

infinite-horizon model (Tomlin 2006) but what we wish to explore is how the optimal strategy is

influenced by a threat-advisory system and the product lifecycle.

5.2 Influence of a Threat Advisory System on the Disruption-Management
Strategy

In this subsection, we first consider the infinite-capacity case and then briefly discuss the impact

of finite supplier capacity. We focus on the infinite-horizon setting in what follows.

Theorem 10 If supplier U has infinite capacity, then (i) For a given supplier-R allocation w, a

state-dependent base-stock policy is optimal. (ii) Single-sourcing is optimal, that is, w∗ ∈ {0, 1}.

Partial sourcing mitigation, therefore, is not optimal in the case of infinite supplier capacity.

In the zero-flexibility case, then, only the following three disruption-management strategies can be

optimal: acceptance (A), i.e., source exclusively from supplier U and carry no inventory to miti-

gate disruptions; inventory mitigation (IM), i.e., source exclusively from supplier U but carry some

inventory to mitigate disruptions; and sourcing mitigation (SM), i.e., source exclusively from sup-

plier R, in which case there are no disruptions. In the II-flexibility case, there are two additional
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strategies that can be optimal. One is contingent rerouting (CR), in which the firm sources exclu-

sively from supplier U (when U is up) and carries no inventory to mitigate disruptions but instead

reroutes some lost supply to supplier R during a disruption. The other possible optimal strategy

is inventory mitigation combined with contingent rerouting (IMCR). This strategy is identical to

CR except that the firm carries some inventory to mitigate disruptions, as this allows it to reduce

the amount of lost supply rerouted to supplier R.

For the zero-flexibility case, Figure 7 illustrates the firm’s optimal disruption-management strat-

egy as a function of supplier U’s percentage uptime πu and the expected disruption length. Fig-

ure 7(a) illustrates the firm’s optimal strategy if it does not have a threat advisory system (and

so has to use a constant inventory policy) and Figure 7(b) illustrates the optimal strategy if the

firm has a threat advisory system (and so can use an adaptive inventory policy). These examples

assume a two-threat system with a threat ratio of r = 10. Demand is deterministic (assumed equal

to 1 without loss of generality) and excess inventory can be returned for a full reimbursement. The

other relevant problem parameters are: d = 1 cu = 1, cr = 1.05, p = 0.075, h = 0.0015, λ12 = 0.005,

λ21 = 0.025, and µ1

µ2
= 9.

The optimal strategy is significantly altered by the presence of a threat advisory system. In

comparing Figures 7(a) and (b), we observe that acceptance (A) is replaced by inventory miti-

gation (IM) over quite a large area in Figure 7(b). We also observe that the boundary between

inventory mitigation and sourcing mitigation (SM) is slightly higher in Figure 7(b), i.e., inventory

mitigation displaces sourcing mitigation. A threat advisory system allows the firm to increase its

inventory when the threat is high and reduce it when the threat is low. By enabling the firm to in-

crease/decrease its inventory in response to the current threat level, a threat advisory system makes

inventory mitigation a more attractive disruption-management strategy. Because a threat advisory

system reduces the cost of mitigating disruptions with inventory, the firm can cost-effectively man-

age its disruption risk (even at high supplier percentage uptimes) rather than simply accepting it,

i.e., IM displaces A in comparing Figure 7(b) to Figure 7(a). As discussed by Tomlin (2006) for

a single-threat-level system, inventory mitigation is too expensive if disruptions are rare but long

(i.e., as the expected disruption length increases for a fixed percentage uptime) because the firm

has to carry a large amount of inventory over long periods without a disruption. While this obser-

vation remains true in the presence of a threat advisory system, the boundary at which inventory

mitigation is no longer optimal is a little higher in the presence of a threat advisory system (i.e.,

comparing Figure 7(b) to Figure 7(a)) because a threat advisory system enables the firm to carry

a large quantity of inventory only if the threat level is high rather than carrying it continuously.
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Figure 7: Optimal disruption-management strategy (a) without and (b) with a threat advisory
system.
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As discussed in §4.2.2, capacity diminishes the attractiveness of a threat advisory system as it

limits the firm’s ability to take advantage of threat-dependent coverages. Therefore, as capacity

becomes tighter, the threat advisory system will have less of an effect on the optimal disruption-

management strategy. It is important to note that the single-sourcing result of Theorem 10 does not

hold if supplier U has finite capacity. It may be optimal to routinely dual source, i.e., 0 < w∗ < 1

in this case. See (Tomlin 2006) for a discussion of this effect in a single-threat system.

5.3 Influence of Product Lifecycle on the Disruption-Management Strategy

The disruption literature to date has focused either on infinite-horizon models (appropriate for

long-lifecycle products) or on single-period models (appropriate for short-lifecycle products with

long lead times). Our finite-horizon model allows us to investigate products whose lifecycles lie

between these two ends of the spectrum.

The firm’s problem is to choose the fraction 0 ≤ w ≤ 1 of demand to routinely source from

supplier R and, given this w, the base-stock level for each period and supply state. For a given w,

we adapt our single-supplier DP formulation to reflect the presence of supplier R. In what follows,

we describe the necessary modifications to the DP. As before, we suppress the time-dependence of

the inventory position xt and the base-stock levels yt for ease of exposition.

We define x to be the inventory position (IP) after event #3a (rather than #2 as was done in

the single-supplier case); this IP accounts for the routine order placed on supplier R. Therefore,

if the firm is in an up-state, begins the period with IP equal to x′, and experiences a demand of

d, then x = x′ − d + wd. If the firm wishes to bring its IP to y, it incurs a total ordering cost of

crwd+cu(y−x) if in an up-state and crwd+cf (y−x) if in a down state, reflecting the fact that the

firm can place emergency orders (at a higher cost) with supplier R if supplier U is down. As noted

previously, the case in which emergency orders are not allowed is captured by setting cf = ∞. As

in the single-supplier DP, ft(n, x) is the minimum possible expected cost in periods t, . . . , T if the

firm is in up-state n in period t and the IP is x, and gt(x) is the minimum possible expected cost

in periods t, . . . , T if the firm is in a down-state in period t and the IP is x. The DP recursions are

as follows:
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ft(n, x) = min
x≤y≤x+vn

{
cu(y − x) + hy+ + p(−y)+

+ β

[
N∑

m=1

λnm

K∑

k=1

qk[ft+1(m, y − dk + wdk) + crwdk]

+λnd

K∑

k=1

qk[gt+1(y − dk + wdk) + crwdk]

]}
(9)

gt(x) = min
x≤y

{
cf (y − x) + hy+ + p(−y)+

+β

[
N∑

n=1

µn

K∑

k=1

qk[ft+1(n, y − dk + wdk) + crwdnk]

+(1− µ)
K∑

k=1

qk[gt+1(y − dk + wdk) + crwdk]

]}
(10)

We note that (i) there is no capacity limit on the emergency orders in this formulation but such

a limit can be readily accommodated, and (ii) because the DP algorithm considers only integer

order quantities, we round wd to the nearest integer, and wd should be interpreted to mean “wd

rounded to the nearest integer”. Unlike in the single-supplier case, (10) now reflects the fact that

emergency orders can be placed with supplier R if supplier U is down. Equations (9)–(10) mirror

the singe-supplier equations (6)–(7) except for the inclusion of the crwd terms in the cost-to-go

functions, both in the IP in period t + 1 (e.g., ft+1(m, y − dmk + wdmk)) and in the cost to order

those units (crwdmk). It is necessary to account for period t + 1’s required supplier-R units in

period t’s cost functions because, when period t + 1’s cost functions are computed, we know x,

which already accounts for the demand in period t + 1, but we don’t know the actual demand in

period t + 1. The cost-to-go functions already include expectations over the demands in period

t + 1, so it is natural to include this cost there. However, this accounting method requires a slight

modification to the recursions in periods 1 and T . First, since no state transition or demand occurs

after period T , the d and crwd terms must be omitted from the cost-to-go functions in (9)–(10) for

period T ’s cost functions, fT (·) and gT (·). Second, to account for the required supplier-R units in

period 1, we must add crwd1 to the formulas in (9)–(10) for period 1’s cost functions3, f1(·) and

g1(·).
For a given supplier-R allocation w, the algorithm for finding the optimal expected horizon cost

and optimal base-stock levels is essentially the same as that described in §4.2.1 for the single-supplier
3In addition to the initial conditions introduced for the single-supplier DP in §4.2.1, we must also define the initial

demand d1. This is because the initial IP x1 already accounts for the first-period demand, so it is impossible to
determine this demand if we only know x1. In the two-supplier model, we need to know d1 to determine the cost of
the items that are required to be procured from supplier R in period 1.
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Figure 8: Optimal disruption-management strategy vs. product life and threat ratio.
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model. The optimal w can then be found by searching over 0 ≤ w ≤ 1.

As previous literature on disruption-management strategies has not considered either finite

horizons or threat advisory systems, we focus our attention here on the impact of these two as-

pects on the firm’s optimal disruption-management strategy. For a five-threat-level system (with

a completely connected threat transition matrix), we present the optimal strategy as a function

of the product life and the threat ratio for the case in which supplier R has zero flexibility (and

so contingent rerouting is not possible); see Figure 8. We consider seven product lives (T = 10,

25, 50, 75, 100, 125 and 150 weeks) and nine threat ratios (r = 1 through 5, in increments of 0.5)

for a total of 63 combinations. The procurement costs are cu = 1, cr = 1.015, and cf = ∞ (since

supplier R has zero flexibility and cannot accommodate emergency orders). The inventory costs

and demand parameters4 are the same as in the example in §4.2.2. Supplier U’s capacity is 50 and

its steady-state uptime percentage is πu = 0.97. The probability of disruption in threat level 3 is

0.006525. Repair times are geometrically distributed with the same repair probability, µ = 0.211,

for all down-states.

We first note that single sourcing from either U or R is optimal in all 63 instances, even though

Theorem 10 does not apply if supplier U has finite capacity. (Dual sourcing was found to be

optimal if the capacity was reduced.) Either inventory mitigation (IM), i.e., source from U but carry

inventory, or sourcing mitigation (SM), i.e., source from R, is optimal in all instances. Acceptance is
4We assume that demand is stationary over the life of the product. In reality, demand would be non-stationary

and, in particular, would decrease as the end-of-life approaches.
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not optimal in any instance. The product life and the threat ratio both a have a significant impact

on the optimal strategy. Observe that inventory mitigation is optimal for higher threat ratios and/or

shorter product lives. This result reflects our earlier findings in the single-supplier system regarding

the impact of the threat ratio and the horizon length. For a given supplier percentage uptime, the

cost of mitigating disruptions with inventory decreases as the threat ratio increases because the

probability of being in threat levels that require high inventory levels decreases. As such, inventory

mitigation becomes an increasingly attractive strategy as the threat ratio increases. As discussed

earlier, if the terminal stockout cost is not too high, the amount of inventory required to mitigate

disruptions decreases as the remaining horizon decreases. This makes inventory mitigation a more

attractive strategy as the product life decreases. We note that one can create instances (using very

high terminal stockout costs) in which sourcing mitigation replaces inventory mitigation as the

lifecycle is decreased; however, for reasonable problem instances, inventory mitigation is preferred

as the product lifecycles decrease.

The crucial point is that the optimal strategy is influenced by the product lifecycle, and, there-

fore, firms should consider lifecycles when determining their disruption-management strategy. In

closing this section, we note that our model does not reflect newsvendor situations in which all

inventory must be ordered in advance of the selling season. In such cases, inventory is not a useful

mitigation tactic as the inventory arrives only if the supplier is not disrupted.

6. Conclusions

While the concept of a threat advisory system is well established in the national security domain,

the essence of such a system (warning levels with different threat probabilities) has not, to the best

of our knowledge, been considered in the literature on supply chain disruptions. This is in spite of

the fact that firms, such as UTC, have, in effect, been using the threat advisory notion to adapt

their inventory levels according to the threat of a disruption. In this paper, we formally investigate

how the concept of a threat advisory system can influence a firm’s disruption-management strategy.

Our investigation uncovers a number of important findings.

A threat advisory system enables the firm to implement an adaptive inventory policy in which

the firm can increase or decrease its inventory depending on the current threat level. This adaptive

policy can lead to substantial savings in comparison to the constant inventory policy used in the

absence of a threat advisory system. The cost savings increase with the threat ratio, i.e., with the

relative disruption probability between adjacent threat levels. The value of the adaptive policy is

diminished if the supplier capacity is tight. This capacity effect is amplified if the threat ratio is

large or if direct transitions from low to high threat levels can occur.
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The presence of a threat advisory system can significantly influence the firm’s optimal disruption-

management strategy. In the absence of such a system, it can be optimal simply to accept the risk

of potential disruptions if the supplier reliability is high. With such a system, however, it is cost

effective to mitigate these potential disruptions with inventory. At lower supplier reliabilities, the

range of disruption frequencies at which inventory mitigation is the preferred strategy is higher in

the presence of a threat advisory system. For a given supplier reliability, inventory mitigation is

increasingly preferred as the threat ratio increases.

The existing disruption literature has focused on single-period or infinite-horizon models. Our

finite-horizon model has enabled us to explore the effect of horizon length on the inventory held

to protect against disruptions and, thus, the influence of product lifecycles on the firm’s optimal

disruption-management strategy. We find that (unless the terminal stockout cost is very high), the

optimal inventory coverages decrease as the remaining horizon decreases and, as a result, inventory

mitigation is more attractive as the product lifecycle decreases (assuming the lead time is small

relative to the lifecycle.)

This work has laid the groundwork for exploring the use of threat advisory systems to manage

the risk of supply disruptions. Future work should extend this research in a number of directions.

For example, the firm’s threat updates may lag behind changes in the actual risk levels and, so, the

firm may have imperfect threat information. Also, as discussed in the introduction, firms are using

threat advisory systems to simultaneously monitor multiple suppliers across different products,

and, therefore, it would be valuable to explore the role of threat-advisory systems in more complex

supply networks.
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Appendix

A. Proofs

Proof of Theorem 1

C (j1, . . . , jN ) is the long-run average inventory-shortage cost of a base-stock policy (j1, . . . , jN ).

Under the fully reimbursed returns assumption, the firm’s inventory position will always equal yn

at the end of a period in up-state n. Therefore, yn only influences the IP in state n and in the

down-states that follow from it. Because of this, the coverage in state n does not affect the cost in

up-states other than n or the cost in down-states that originate from some up-state other than n.

C (j1, . . . , jN ) can now be expressed as the sum of N single-variable functions, i.e.,

C (j1, . . . , jN ) =
N∑

n=1

Cn (jn) , (11)

where

Cn (jn) = h

(
djnπu (n) +

jn∑

i=1

d (jn − i)πd (n, i)

)
+ p




∞∑

i=jn+1

d (i− jn) πd (n, i)


 . (12)

The N -variable coverage-optimization problem therefore separates into N different single-variable

optimization problems. For any nonnegative integer j, define Gn [j] = πu (n) +
∑j

i=1 πd (n, i),
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Gn [j] =
∑∞

i=j+1 πd (n, i), En [j] =
∑j

i=1 iπd (n, i) and En [j] =
∑∞

i=j+1 iπd (n, i). We can then

write

Cn (jn) = hd (jnGn [jn]− En [jn]) + pd
(
En [jn]− jnGn [jn]

)

= hdKn [jn] + pdKn [jn] , (13)

where Kn [j] = jGn [j]−En [j] and Kn [j] = En [j]− jGn [j]. Let ∆Cn (jn) = Cn (jn + 1)−Cn (jn)

and ∆2
Cn

(jn) = ∆Cn (jn + 1) − ∆Cn (jn) be the first- and second-order differences, respectively.

Then,

∆Cn (jn) = hd (Kn [jn + 1]−Kn [jn]) + pd
(
Kn [jn + 1]−Kn [jn]

)

= hdGn [jn]− pdGn [jn]

= hdGn [jn]− pd (Gn [∞]−Gn [jn])

= d (h + p) Gn [jn]− pdGn [∞]

and

∆2
Cn

(jn) = d (h + p) π (n, jn + 1) ≥ 0.

Cn (jn) is therefore convex in jn, and j∗n is the minimum jn ≥ 0 such that ∆Cn (jn) ≥ 0. Defining

Fn[j] = Gn[j]/Gn[∞], we then have

∆Cn (jn)
d ·Gn [∞]

= (h + p)
Gn [jn]
Gn [∞]

− p

= (h + p)Fn [jn]− p,

and so j∗n = F−1
n

[
p

p+h

]
.

Proof of Corollary 2

If µni = µi for n = 1, . . . , N , then Fn[j] is increasing in n. The proof then follows from Theorem 1,

since Fn[j] is also increasing in j.

Proof of Theorem 3

Recall that (i) demand is deterministic and equal to d units in each period, (ii) there is no dis-

counting, i.e., β = 1, and (iii) the firm can return excess inventory for a full reimbursement of

the purchase cost. Let j′nt be the coverage in period t after the (deterministic) demand is ob-

served and subtracted but before the order is placed. Let jnt be the coverage after the order is

placed. The order size is then (jnt−j′nt)d. For a given (j′nt, jnt), define Cnt (j′nt, jnt) as the expected
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remaining-horizon optimal cost if in up-state n in period t.

Cnt

(
j′nt, jnt

)
=c(jnt − j′nt)d + hd(jnt)+ + pd(−jnt)+ +

N∑

m=1

λnmCm,t+1

(
jnt − 1, j∗m,t+1

)

+
T−t−1∑

i=1

v(n, i)

(
hd(jnt − i)+ + pd(i− jnt)+ +

N∑

m=1

µnimCm,t+i+1

(
jnt − i− 1, j∗m,t+i+1

)
)

+ v(n, T − t)
(
(h + hT ) d(jnt − (T − t))+ + (p + pT ) d(T − t− jnt)+

)
,

where a+ ≡ max{a, 0} and v(n, i) = λndΠi−1
k=1 (1− µnk) is the probability that a disruption lasting

at least i periods occurs, starting in the next period, given that we are in up-state n in this period.

If t ≥ T − 1, we take the summation over i = 1, . . . , T − t− 1 to equal 0.

We note that
∑N

m=1 λnm+
∑T−t−1

i=1 v(n, i)
∑N

m=1 µnim+v(n, T−t) = 1, and that Cm,t+1

(
jnt − 1, j∗m,t+1

)
+

c(jnt − j′nt)d = Cm,t+1

(
j′nt − 1, j∗m,t+1

)
. Therefore,

Cnt

(
j′nt, jnt

)
=hd(jnt)+ + pd(−jnt)+ +

N∑

m=1

λnmCm,t+1

(
j′nt − 1, j∗m,t+1

)

+
T−t−1∑

i=1

v(n, i)

(
hd(jnt − i)+ + pd(i− jnt)+ +

N∑

m=1

µnimCm,t+i+1

(
j′nt − i− 1, j∗m,t+i+1

)
)

+ v(n, T − t)
(
c(jnt − j′nt)d + (h + hT ) d(jnt − (T − t))+ + (p + pT ) d(T − t− jnt)+

)
.

Noting that

(h + hT ) (jnt − (T − t))+ + pT (T − t− jnt)+ =((h + hT ) + c) (jnt − (T − t))+

+ ((p + pT )− c) (T − t− jnt)+ − c(jnt − (T − t)),

we can then write

Cnt

(
j′nt, jnt

)
=

N∑

m=1

λnmCm,t+1

(
j′nt − 1, j∗m,t+1

)
+

T−t−1∑

i=1

v(n, i)
N∑

m=1

µnimCm,t+i+1

(
j′nt − i− 1, j∗m,t+i+1

)

+ hd(jnt)+ + pd(−jnt)+ +
T−t∑

i=1

v(n, i)
(
hd(jnt − i)+ + pd(i− jnt)+

)

+ v(n, T − t)
(
c(T − t− j′nt)d + (hT + c) d(jnt − (T − t))+ + (pT − c) d(T − t− jnt)+

)
.

Therefore, j∗nt minimizes Ĉnt (jnt) where

Ĉnt (jnt) =hd(jnt)+ + pd(−jnt)+ +
T−t∑

i=1

v(n, i)
(
hd(jnt − i)+ + pd(i− jnt)+

)

+ v(n, T − t)
(
(hT + c) d(jnt − (T − t))+ + (pT − c) d(T − t− jnt)+

)
,
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since the terms that are in Cnt(j′nt, jnt) but not Ĉnt(jnt) are constants with respect to jnt. Equiva-

lently, j∗nt minimizes πu(n)
d Ĉnt (jnt). Noting that πd(n, i) = πu(n)v(n, i), we have

πu(n)
d

Ĉnt (jnt) =πu(n)h(jnt)+ + πu(n)p(−jnt)+ +
T−t∑

i=1

πd(n, i)
(
h(jnt − i)+ + p(i− jnt)+

)

+ πd(n, T − t)
(
(hT + c) (jnt − (T − t))+ + (pT − c) (T − t− jnt)+

)
.

It is straightforward to show that πu(n)
d Ĉnt (jnt) is decreasing in jnt if jnt < 0 and increasing in jnt

if jnt > T − t. Therefore, we can restrict attention to 0 ≤ jnt ≤ T − t, in which case

πu(n)
d

Ĉnt (jnt) =πu(n)hjnt +
T−t∑

i=1

πd(n, i)
(
h(jnt − i)+ + p(i− jnt)+

)

+ πd(n, T − t) (pT − c) (T − t− jnt)+.

Letting the first- and second-order differences be denoted by ∆Ĉnt
(jnt) = πu(n)

d Ĉnt (jnt + 1) −
πu(n)

d Ĉnt (jnt) and ∆2
Ĉnt

(jnt) = ∆Ĉnt
(jnt + 1)−∆Ĉnt

(jnt), one can show that

∆Ĉnt
(jnt) = hGn [jnt]− p (Gn [T − t]−Gn [jnt])− (pT − c) πd(n, T − t),

and

∆2
Ĉnt

(jnt) = (p + h)πd(n, jnt + 1) ≥ 0,

where recall that Gn [j] = πu (n) +
∑j

i=1 πd (n, i). Therefore, πu(n)
d Ĉnt (jnt) is convex in jnt and

j∗nt = min{̂nt, T − t} where ̂nt is the minimum j such that:

hGn[j]− p (Gn[T − t]−Gn[j])− (pT − c) πd (n, T − t) ≥ 0. (14)

Proof of Corollary 4

From Theorem 3, j∗nt = min{̂nt, T−t}, where ̂nt is the minimum j such that hGn[j]−p (Gn[T − t]−Gn[j])−
(pT − c) πd (n, T − t) ≥ 0. Now, πd (n, T − t) → 0 as T − t → ∞. Therefore, as T − t → ∞,

j∗nt approaches the minimum j such that hGn[j] − p (Gn[∞]−Gn[j]) ≥ 0. Recalling that Fn[j] =

Gn[j]/Gn[∞], then, as T −t →∞, j∗nt approaches the minimum j such that hFn[j]−p (1− Fn[j]) ≥
0. Thus, as T − t →∞, j∗nt approaches F−1

n

[
p

p+h

]
. From Theorem 1, j∗n = F−1

n

[
p

p+h

]
. Therefore,

j∗nt → j∗n as T − t →∞.

Proof of Theorem 5

From Theorem 3, ̂nt is the minimum j such that ∆Ĉnt
(jnt) ≥ 0, where

∆Ĉnt
(jnt) = hGn[j]− p (Gn[T − t]−Gn[j])− (pT − c)πd (n, T − t) . (15)
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Therefore,

∆Ĉnt
(jnt)−∆Ĉn,t+1

(jnt) = −pπd (n, T − t) + (pT − c) (πd (n, T − t− 1)− πd (n, T − t)) , (16)

so

∆Ĉnt
(jnt)−∆Ĉn,t+1

(jnt)

πd (n, T − t)
= −p + (pT − c)

(
πd (n, T − t− 1)

πd (n, T − t)
− 1

)

= −p + (pT − c)
(

1
1− µn,T−t−1

− 1
)

= −p + (pT − c)
(

µn,T−t−1

1− µn,T−t−1

)
.

Therefore, if pT ≤ c+p
(

1
µn,T−t−1

− 1
)
, then ∆Ĉnt

(jnt)−∆Ĉn,t+1
(jnt) ≥ 0 and so ̂n,t+1 ≤ ̂nt. Also,

if pT > c + p
(

1
µn,T−t−1

− 1
)
, then ∆Ĉnt

(jnt)−∆Ĉn,t+1
(jnt) ≤ 0 and so ̂n,t+1 ≥ ̂nt.

Proof of Corollary 6

We first note that if µni = µn for i = 1, . . . ,∞, then using Theorem 5, ̂n,t+1 ≤ ̂nt if pT ≤
c + p

(
1

µn
− 1

)
and ̂n,t+1 ≥ ̂nt if pT > c + p

(
1

µn
− 1

)
. (i) If pT ≤ c + p

(
1

µn
− 1

)
, then ̂nt is

non-increasing in t. Furthermore, j∗nt = min{̂nt, T − t} and T − t is decreasing in t. Therefore,

j∗nt is non-increasing in t. (ii) If pT > c + p
(

1
µn
− 1

)
, then ̂nt is non-decreasing in t. Therefore, if

̂nt > T − t, then ̂nt′ > T − t′ for all t′ > t. Thus, j∗nt is non-decreasing in t until some ̂nt > T − t,

after which, j∗nt is non-increasing in t.

Proof of Theorem 7

In the constant coverage case, j1 = j2 . . . = jN = jc, and so we write the long-run average cost

as C (jc, . . . , jc) = C (jc) for ease of exposition. C (jc) =
∑N

n=1 Cn (jc). Let ∆ (jc) = C (jc + 1) −
C (jc) and ∆2 (jc) = ∆ (jc + 1) − ∆(jc) be the first- and second-order differences, respectively.

Because C (jc) =
∑N

n=1 Cn (jc), we have ∆ (jc) =
∑N

n=1 ∆Cn (jc) and ∆2 (jc) =
∑N

n=1 ∆2
Cn

(jc)

where ∆Cn (jc) and ∆2
Cn

(jc) are as defined in the proof of Theorem 1. Therefore,

∆ (jc) = d (h + p)
N∑

n=1

Gn [jc]− pd
N∑

n=1

Gn [∞] ,

∆2 (jc) = d (h + p)
N∑

n=1

π (n, jc + 1) ≥ 0,

and therefore C (jc) is convex in jc. Therefore j∗c is the minimum jc ≥ 0 such that ∆ (jc) ≥ 0.

By definition, Gn [j] = πu (n) +
∑j

i=1 πd (n, i). Therefore
∑N

n=1 Gn [∞] = 1 and the first-order
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difference can be written as

∆ (jc) = d

(
(h + p)

N∑

n=1

(
πu (n) +

jc∑

i=1

πd (n, i)

)
− p

)

= d ((h + p) Fc [jc]− p) ,

and so j∗c = F−1
c

[
p

p+h

]
.

Proof of Theorem 8

Proof follows from application of Theorems 1 and 7 tailored to the special case of the supply system

described in the theorem statement. Algebraic details available upon request.

Proof of Corollary 9

Proof follows from comparison of j∗c and j∗n from Theorem 8.

Proof of Theorem 10

We prove this theorem for the long-run average cost criterion and note that it can be proved in an

analogous manner for the discounted-cost criterion. We also note that Tomlin (2006) established

the result for the single-threat system but that the proof did not rely on the single-threat level

assumption. We present the relevant parts of the proof here for completeness.

Consider the following inventory system. Demand in each period is stochastic but stationary.

The demand random variable, denoted by D, has a strictly positive support. Supply is completely

reliable with a guaranteed lead time of L ≥ 0. Ordering costs are linear but state-dependent; the

marginal ordering cost is cu in all “up” states and is cf in all “down” states. The state space and

state transitions are identical to those described for the unreliable supplier in §3. The following

results hold for this inventory system. (We prove them for the long-run average cost criterion

but they also hold for the discounted-cost criterion.) (a) A state-dependent, base-stock policy is

optimal. Proof. This supply system is a special case of Song and Zipkin (1996) [§9] who prove that

a state-dependent base stock policy is optimal. (b) If demand is D′
t = kDt where k ≥ 0, then

the optimal base-stock levels and the optimal cost are ky∗ (i) and kV ∗ respectively, where V ∗ is

the optimal cost when k = 1. Proof. This proof follows a similar logic to §7 of Song and Zipkin

(1996) but we tailor G+ (i, y) for the case where lead-times are constant but order costs are state

dependent. The optimality condition can be expressed as g+W (i, x) = min {H(i, y) : y ≥ x}, where

H(i, y) = G+ (i, y) + E [W (i+, y −D)], G+ (i, y) = (c (i)−E [c (i+)]) y + CL (y) + E [c (i+)]E [D],

CL (y) = E
[
Ĉ

(
y −D(L)

)]
, and i+ is shorthand for the state reached after state i. The optimal base

stock y∗ (i) minimizes H(i, y) over y, that is y∗ (i) = min {y : ∆yH(i, y) ≥ 0}, and ∆xW (i, x) = 0 for
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x < y∗ (i) and ∆xW (i, x) = ∆xH(i, x) ≥ 0 for x ≥ y∗ (i), where ∆ is the difference operator. Now,

Ĉ
(
ky − kD(L)

)
= kĈ

(
y −D(L)

)
and so CL

D′ (ky) = kCL
D (y). Therefore G+

D′ (i, ky) = kG+
D (i, y),

and proof follows.

For a given supplier-R fraction w, the inventory-production system is then a special case of that

described above with a demand of (1− w) Dt. We note that there is an additional expected cost

of crwE [D] in every period because of the Supplier R allocation. Proof that a base-stock policy is

optimal follows directly from (a) above. Using (b) above and because there is an additional expected

cost of crwE [D] in every period, the optimal long-run average cost is crwE [D]+(1− w) V ∗, which

is linear in w, and so w∗ ∈ {0, 1} .

B. Returns

As noted in the main body, under a state-dependent inventory policy, the firm may find itself with

more stock than it wishes to have in a given period. If the firm cannot, or does not want to, return

inventory to the supplier, then its inventory position (IP) will exceed the desired IP until the excess

inventory has been drained down by demand (assuming another state transition has not occurred

in the meantime). In contrast, the firm can and will attain its desired IP in every period if the

supplier allows it to return excess inventory at no cost. The returns policy therefore plays a central

role in the inventory dynamics.

For the infinite-capacity analysis in §4.1.1 we restricted attention to the case of fully reimbursed

returns to facilitate the characterization of the optimal base-stock levels. In the first part of this

appendix, we consider a special case of the general threat advisory model for which the optimal

base-stock levels can be characterized when returns are not allowed. We then explore how the

returns policy influences the firm’s optimal cost. In the finite-capacity (finite-horizon) section

(§4.2), we restricted attention to the case in which returns were not allowed. In the second part

of this appendix, we generalize the dynamic programming formulation to allow for returns, under

both full and partial reimbursement.

B.1 Influence of Returns Policy on Optimal Cost in Infinite-Horizon Case

In §4.1.1 we characterized the optimal base-stock levels in the infinite-capacity, deterministic-

demand case under the assumption that returns were fully reimbursed. Here we consider the

case in which returns are not allowed. We focus on the infinite-horizon case. The no-returns case

results in excess inventory events whereby the IP can exceed the target base-stock level in certain

periods. As a consequence, C (j1, . . . , jN ), the long-run average cost of a policy (j1, . . . , jN ), cannot

be expressed as the sum of N single-variable cost functions as was possible in the free-returns case,
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so solving for the optimal coverage vector (j∗1 , . . . , j∗N ) is significantly more complex in the no-

returns case. In contrast to the free-returns case, closed-form expressions for the optimal coverages

do not exist in general.

So as to investigate the effect of the returns policy on the long-run average cost, we consider a

particular two-threat-level system for which one can obtain closed-form expressions for the optimal

coverages j∗1 and j∗2 . We assume that λ1d = 0, that is, disruptions can only occur in threat level

2. Furthermore, we assume that disruptions always end by returning to threat level 2. Clearly

the optimal coverage in up-state 1 is 0 under either returns policy as a disruption cannot occur in

up-state 1. Let CFR (j2) denote the long-run average cost in the free-returns case and CNR (j2)

denote the long-run average cost in the no-returns case. One can show that

CFR (j2) = hK2 [j2] + pK2 [j2] , (17)

CNR (j2) = hK2 [j2] + pK2 [j2] + h

(
j2∑

i=1

(j2 − i) πu (1, i)

)
, (18)

where K2 [j] and K2 [j] are as defined in §4.1.2, and πu (1, i) is the steady-state probability of

having been in up-state 1 for i periods. The last term in (18) reflects the additional cost incurred

due to the excess inventory that occurs in the no-returns case after a transition from up-state 2 to

up-state 1.

Let j∗2,FR and j∗2,NR denote the optimal threat-2 coverages under the free-returns and no-returns

policies respectively. If the disruption lengths are geometrically distributed with a repair probability

of µ, then the optimal coverages are as follows. If p
p+h ≤ µ

µ+λ2d
, then j∗2,FR = j∗2,NR = 0. If

p
p+h > µ

µ+λ2d
, then j∗2,FR is the minimum j such that

1 + λ2d

(
1−(1−µ2)

j

µ2

)

1 + λ2d
µ2

≥ p

p + h
, (19)

and j∗2,NR is the minimum j such that

1 + λ2d

(
1−(1−µ2)

j

µ2

)

1 + λ2d
µ2

+
(

h

p + h

)(
λ21

λ12

)(
1

1 + λ2d
µ2

)(
1− (1− λ12)

j
)
≥ p

p + h
. (20)

It then follows that j∗2,FR ≥ j∗2,NR. The optimal threat-2 coverage is lower in the no-returns case

because the no-returns case results in excess inventory and this excess inventory is increasing in

the threat-2 coverage j2.

Let ΩFR denote the relative reduction in the firm’s inventory-shortage costs if the free-returns
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Figure 9: Relative cost reduction due to returns (ΩFR) vs. newsboy ratio.
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case prevails as compared to the no-returns case, i.e.,

ΩFR =
CNR

(
j∗2,NR

)
− CFR

(
j∗2,FR

)

CNR

(
j∗2,NR

) (21)

One can show that ΩFR depends on p and h only through the newsvendor ratio p
p+h . In Figure 9,

we plot the relative cost reduction as a function of p
p+h for λ2d = 0.005, µ = 0.05, λ12 = 0.011, and

λ21 = 0.025. The steady-state probability of the supplier being up is πu = 0.97. For low values of
p

p+h , the optimal coverage is zero under both returns policies and so ΩFR = 0. As p
p+h increases

the relative cost reduction increases, and so the returns policy is much more significant at higher
p

p+h values. While the relative cost reduction can be very substantial, we remind the reader that

this is a reduction in the inventory-shortage related costs, and not the overall costs, which include

procurement costs.

B.2 Generalization of Dynamic Program to Allow for Returns

In the finite-capacity (finite-horizon) section (§4.2), we restricted attention to the case in which

returns were not allowed. We now generalize our dynamic program (DP) to allow for the case in

which the firm can return inventory and earn a per-unit revenue b. Note that b = 0 corresponds

to the free-returns policy and b = −∞ corresponds to the no-returns policy. If −∞ ≤ b < 0, then

the firm incurs a cost for each return, whereas if b > 0, the firm obtains positive revenue for each

return; we assume βb ≤ c to avoid the trivial case in which the firm earns a profit for ordering an
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item in one period and returning it the next. If returns are allowed, they are only allowed during

up-periods.

This cost structure gives rise to a control-band policy (Zipkin 2000, p. 429) that has two

parameters, y and z, with y ≤ z. We refer to y as the “order-up-to level” and to z as the “return-

down-to level.” If the current IP is less than y, we order enough items to raise the IP to y; if the

current IP is greater than z, we return enough items to lower the IP to z; and if the current IP is

between y and z, we do nothing. One can show that if b = −∞ (no returns), then z∗ = ∞; if b = c

(free returns), then y∗ = z∗; and if −∞ � b � c, then y∗ � z∗ �∞.

The DP recursions are now:

ft(n, x) = min
0≤y≤x+vn

{
c(y − x)+ − b(x− y)+ + hy+ + p(−y)+

+β

[
N∑

m=1

λnm

K∑

k=1

qkft+1(m, y − dk) + λnd

K∑

k=1

qkgt+1(y − dk)

]}
, (22)

gt(x) =hx+ + p(−x)+ + β

[
N∑

n=1

µn

K∑

k=1

qkft+1(n, x− dk) + (1− µ)
K∑

k=1

qkgt+1(x− dk)

]
, (23)

where a+ ≡ max{a, 0}. The up-state formula (22) differs from the no-returns case (see (6)) only in

the lower bound of the minimization and in the procurement/returns terms c(y− x)+ − b(x− y)+.

The down-state formula, i.e., (23), is unchanged from the no-returns case (see (7)) since returns

are not allowed during down-states.

The DP algorithm is the same as described in §4.2.1 but now we have to determine zt(n) in

addition to yt(n). As before, to find y∗t (n), we can simply set y∗t (n) equal to the optimal base-stock

level for the smallest possible IP x assuming infinite capacity in period t. This base-stock level

represents the desired target IP, though this IP may not be attainable from every starting IP x

because of the capacity constraints. Similarly, in the costly-returns case we set z∗t (n) equal to the

optimal base-stock level for the largest possible IP x̄(n). (In the fully-reimbursed-returns case,

z∗t (n) = y∗t (n), whereas in the no-returns case, z∗t (n) = ∞.) Allowing for returns increases the

execution time somewhat but as before, the execution time for reasonably sized problems, e.g. 150

periods and 5 threat levels, is on the order of minutes using a desktop computer.

Finally, we note that we also have generalized the two-supplier DP algorithm to allow for

returns. Details of this formulation are available upon request.
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