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Abstract

The two most widely considered measures for optimization under uncertainty are

minimizing expected cost and minimizing worst-case cost or regret. In this paper, we

present a new robustness measure that combines the two objectives by minimizing the

expected cost while bounding the relative regret in each scenario. In particular, the

models seek the minimum-expected-cost solution that is p-robust; i.e., whose relative

regret is no more than 100p% in each scenario. We present p-robust models based

on two classical facility location problems. We solve both problems using variable

splitting, with the Lagrangian subproblem reducing to the multiple-choice knapsack

problem. For many instances of the problems, finding a feasible solution, and even

determining whether the instance is feasible, is difficult; we discuss a mechanism for

determining infeasibility. We also show how the algorithm can be used as a heuristic

to solve minimax-regret versions of the location problems.
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1



Keywords: robust facility location, stochastic p-robustness, variable splitting, multiple-

choice knapsack problem

2



1 Introduction

Optimization under uncertainty typically employs one of two approaches, stochastic

optimization or robust optimization. In stochastic optimization, random parameters

are governed by a probability distribution, and the objective is to find a solution that

minimizes the expected cost. In robust optimization, probabilities are not known, and

uncertain parameters are specified either by discrete scenarios or by continuous ranges;

the objective is to minimize the worst-case cost or regret. (Though these approaches

are the most common, many other approaches have been proposed for both stochastic

and robust optimization; for a review of their application to facility location problems,

see Owen and Daskin (1998) or Snyder (2005a).) The former approach finds solutions

that perform well in the long run on average, with poor performance at some times

balanced by good performance at others. However, many decision makers are evaluated

ex post, after the uncertainty has been resolved and costs have been realized; in such

situations, decision makers are often motivated to seek minimax regret solutions that

appear effective no matter which scenario is realized. On the other hand, minimax

objectives tend to be overly pessimistic, planning against a scenario that, while it may

be disastrous, is unlikely to occur.

In this paper, we discuss facility location models that combine the advantages

of both the stochastic and robust optimization approaches by seeking the least-cost

solution (in the expected value) that is p-robust; i.e., whose relative regret in each

scenario is no more than p, for given p ≥ 0. This robustness measure will be referred to

as stochastic p-robustness. The standard min-expected-cost objective can be obtained

by setting p = ∞. The resulting solution is optimal in the stochastic optimization sense

but may perform poorly in certain scenarios. By successively reducing p, one obtains

solutions with smaller maximum regret but greater expected cost. One objective of

this paper is to demonstrate empirically that substantial improvements in robustness

can be attained without large increases in expected cost.

We consider two classical facility location problems, the k-median problem (kMP)

and the uncapacitated fixed-charge location problem (UFLP). The problems we for-

mulate will be referred to as the stochastic p-robust kMP (p-SkMP) and the stochastic

p-robust UFLP (p-SUFLP), respectively. Both customer demands and transportation
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costs may be uncertain; the possible values of the parameters are specified by discrete

scenarios, each of which has a specific probability of occurrence. The p-SkMP and

p-SUFLP are two-stage models, in that strategic decisions (facility location) must be

made now, before it is known which scenario will come to pass, while tactical decisions

(assignment of retailers to DCs) are made in the future, after the uncertainty has been

resolved. However, by simply multiplying the results by the number of time periods

in the planning horizon, one can think of these as multi-period models in which we

make strategic decisions now and then make separate tactical decisions in each time

period. Thus our models can accommodate parameters that are not time stationary.

If we make decisions now that hedge poorly against the various scenarios, we must live

with the consequences as parameters change.

We solve both problems using a variable-splitting (or Lagrangian decomposition)

formulation whose subproblems reduce to instances of the multiple-choice knapsack

problem (MCKP), a variant of the classical knapsack problem. Feasible solutions are

found using a simple upper-bounding heuristic. For small values of p, it may be difficult

to find a feasible solution, or even to determine whether the problem is feasible. We

provide an upper bound that is valid for any feasible solution and use this bound to

provide a mechanism for detecting infeasibility early in the algorithm’s execution. By

solving the problem iteratively with multiple values of p, one can solve minimax-regret

versions of the kMP and UFLP. Since our algorithm cannot determine the feasibility

of every problem within a given time or iteration limit, this method is a heuristic.

This paper makes the following contributions to the literature. First, we introduce a

new measure for optimization under uncertainty (stochastic p-robustness) that requires

a given level of performance in each scenario while also minimizing the expected cost.

Second, we formulate and solve stochastic p-robust versions of the kMP and UFLP.

Our solution method is based on well-known methods, but the use of the MCKP in

the Lagrangian subproblems is novel, as is the infeasibility test. Third, we provide a

heuristic for solving minimax-regret versions of the kMP and UFLP; to date, these

problems have been solved optimally for special instances (e.g., on tree networks)

but only heuristically in the more general case. Our heuristic has the advantages

of providing both upper and lower bounds on the optimal minimax regret value and of

guaranteeing a given level of accuracy, though execution times may be long for small
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optimality tolerances.

The remainder of this paper is structured as follows. In Section 2, we formally

define stochastic p-robustness and review the relevant literature. We formulate the

p-SkMP and present a variable-splitting algorithm for it in Section 3 and do the same

for the p-SUFLP in Section 4. In Section 5, we discuss a mechanism for detecting

infeasibility. The minimax-regret heuristic is presented in Section 6. Section 7 contains

computational results, and Section 8 contains our conclusions.

2 Preliminaries and Literature Review

The k-median problem (kMP; Hakimi 1964, 1965) and the uncapacitated fixed-charge

location problem (UFLP; Balinski 1965) are classical facility location problems; for a

textbook treatment see Daskin (1995). Sheppard (1974) was one of the first authors

to propose a scenario approach to facility location, in 1974. He suggests selecting

facility locations to minimize the expected cost, though he does not discuss the issue

at length. Since then, the literature on facility location under uncertainty has become

substantial; we provide only a brief overview here and refer the reader to other sources

(Brandeau and Chiu 1989, Current, Daskin and Schilling 2002, Louveaux 1993, Owen

and Daskin 1998, Snyder 2005a) for more detailed reviews.

Weaver and Church (1983) present a Lagrangian relaxation algorithm for a stochas-

tic version of the kMP that is equivalent to our model with p set to ∞. Their ba-

sic strategy is to treat the problem as a deterministic problem with |I||S| customers

instead of |I| (where I is the set of customers and S is the set of scenarios) and

then to apply a standard Lagrangian relaxation method for it (Cornuejols, Fisher and

Nemhauser 1977, Geoffrion 1974). Mirchandani, Oudjit and Wong (1985) begin with

the same formulation as Weaver and Church (1983), explicitly reformulating it as a

deterministic kMP with |I||S| customers. They also suggest a Lagrangian relaxation

method, but they relax a different constraint to attain a problem that is equivalent to

the UFLP. Their method provides tight bounds and requires only a small number of

iterations, though each iteration is computationally expensive.

The two most common measures of robustness that have been applied to facility

location problems in the literature are minimax cost (minimize the maximum cost
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across scenarios) and minimax regret (minimize maximum regret across scenarios).

The regret of a solution in a given scenario is the difference between the cost of the

solution in that scenario and the cost of the optimal solution for that scenario. Robust

optimization problems tend to be more difficult to solve than stochastic optimization

problems because of their minimax structure. As a result, research on robust facility

location generally falls into one of two categories: optimal (often polynomial-time) al-

gorithms for restricted problems like 1-median problems or k-medians on tree networks

(Averbakh and Berman 2000, Burkard and Dollani 2001, Chen and Lin 1998, Vairak-

tarakis and Kouvelis 1999), or heuristics for more general problems (Current, Ratick

and ReVelle 1997, Serra, Ratick and ReVelle 1996, Serra and Marianov 1998).

To introduce the robustness measure we use in this paper, let S be a set of scenarios.

Let (Ps) be a deterministic (i.e., single-scenario) minimization problem, indexed by the

scenario index s. (That is, for each scenario s ∈ S, there is a different problem (Ps).

The structure of these problems is identical; only the data are different.) For each s,

let z∗s be the optimal objective value for (Ps); we assume z∗s > 0 for all s.

Definition 1 Let p ≥ 0 be a constant. Let X be a feasible solution to (Ps) for all

s ∈ S, and let zs(X) be the objective value of problem (Ps) under solution X. X is

called p-robust if for all s ∈ S,

zs(X)− z∗s
z∗s

≤ p (1)

or, equivalently,

zs(X) ≤ (1 + p)z∗s . (2)

The left-hand side of (1) is the relative regret for scenario s; the absolute regret is

given by zs(X)−z∗s . (For maximization problems, the left-hand side of (1) is multiplied

by −1.) In general, the same solution will not minimize the maximum relative regret,

the maximum absolute regret, and the maximum cost, though the three objectives are

closely related (absolute regret equals relative regret times a constant, and absolute

regret equals cost minus a constant). Our definition of p-robustness considers relative

regret, but it could easily be modified to consider absolute regret or cost by a suitable

change in the right-hand sides of the robustness constraints in the formulations that

follow. Thus, without loss of generality we consider only the relative regret case, and

we use the term “regret” to refer to relative regret.
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The notion of p-robustness was first introduced in the context of facility layout

(Kouvelis, Kurawarwala and Gutiérrez 1992) and used subsequently in the context of

an international sourcing problem (Gutiérrez and Kouvelis 1995) and a network design

problem (Gutiérrez, Kouvelis and Kurawarwala 1996). All three problems are also

discussed in Kouvelis and Yu’s (1997) book on robust optimization. These papers do

not refer to this robustness measure as p-robustness, but simply as “robustness.” We

will adopt the term “p-robust” to distinguish this robustness measure from others. The

international sourcing paper (Gutiérrez and Kouvelis 1995) presents an algorithm that,

for a given p and N , returns either all p-robust solutions (if there are fewer than N of

them) or the N solutions with smallest maximum regret. The sourcing problem reduces

to the UFLP, so the authors are essentially solving a p-robust version of the UFLP,

but unfortunately their algorithm contains an error that makes it return incomplete,

and in some cases incorrect, results (Snyder 2005b).

It is sometimes convenient to specify a different regret limit ps for each scenario

s—for example, to allow low-probability scenarios to have larger regrets. In this case,

one simply replaces p with ps in (1) and (2). Denoting by p the vector (p1, . . . , p|S|),

we say a solution is p-robust if the modified inequalities hold for all s. For the sake of

convenience, we will assume throughout this paper that ps = p for all s ∈ S, though

all of our results can easily be extended to the more general case.

The p-robustness measure can be combined with a min-expected-cost objective

function to obtain problems of the following form:

minimize
∑

s∈S

qszs(X)

subject to zs(X) ≤ (1 + p)z∗s ∀s ∈ S

X ∈ X

where qs is the probability that scenario s occurs and X is the set of solutions that are

feasible for all (Ps). We call the resulting robustness measure stochastic p-robustness.

3 The p-SkMP

In this section, we formulate the stochastic p-robust k-median problem (p-SkMP) and

then present a variable-splitting algorithm for it.
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3.1 Notation

We define the following notation:

Sets

I = set of customers, indexed by i

J = set of potential facility sites, indexed by j

S = set of scenarios, indexed by s

Parameters

his = demand of customer i under scenario s

dijs = cost to transport one unit from facility j to customer i under scenarios s

p = desired robustness level, p ≥ 0

z∗s = optimal objective value of the kMP under the data from scenario s

qs = probability that scenario s occurs

k = number of facilities to locate

Decision Variables

Xj = 1 if facility j is opened, 0 otherwise

Yijs = 1 if facility j serves customer i in scenario s, 0 otherwise

The robustness coefficient p is the maximum allowable regret. The regret is com-

puted using z∗s , which is an input to the model; the z∗s values are assumed to have

been computed already by solving |S| separate (deterministic) PMPs. Such problems

can be solved to optimality using a variety of well-known techniques, including La-

grangian relaxation embedded in branch and bound (Daskin 1995, 2004). Note that

the assignment variables (Y ) are dependent on s while the location variables (X) are

not, reflecting the two-stage nature of the problem.

3.2 Formulation

The p-SkMP is formulated as follows:

(p-SkMP) minimize
∑

s∈S

∑

i∈I

∑

j∈J

qshisdijsYijs (3)
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subject to
∑

j∈J

Yijs = 1 ∀i ∈ I,∀s ∈ S (4)

Yijs ≤ Xj ∀i ∈ I,∀j ∈ J,∀s ∈ S (5)
∑

i∈I

∑

j∈J

hisdijsYijs ≤ (1 + p)z∗s ∀s ∈ S (6)

∑

j∈J

Xj = k (7)

Xj ∈ {0, 1} ∀j ∈ J (8)

Yijs ∈ {0, 1} ∀i ∈ I,∀j ∈ J,∀s ∈ S (9)

The objective function (3) minimizes the expected transportation cost over all sce-

narios. Constraints (4) ensure that each customer is assigned to a facility in each

scenario. Constraints (5) stipulate that these assignments be to open facilities. Con-

straints (6) enforce the p-robustness condition, while (7) states that k facilities are to

be located. Constraints (8) and (9) are standard integrality constraints. Note that,

as in the classical kMP, the optimal Y values will be integer even if the integrality

constraints (9) are non-negativity constraints. We retain the integrality constraints

both to emphasize the binary nature of these variables and because the subproblems

formulated below do not have the integrality property; requiring the Y variables to be

binary therefore tightens the relaxation.

If p = ∞, this formulation is equivalent to the model studied by Mirchandani et al.

(1985) and Weaver and Church (1983) since constraints (6) become inactive.

3.3 Complexity

Proposition 1 below says that the p-SkMP is NP-hard; this should not be surprising

since it is an extension of the kMP, which is itself NP-hard (Garey and Johnson 1979).

What may be surprising, however, is that the feasibility problem—determining whether

a given instance of the p-SkMP is feasible—is NP-complete. This is not true of either

the kMP or its usual stochastic or robust extensions (finding a min-expected-cost or

minimax-regret solution, respectively), since any feasible solution for the kMP is also

feasible for these extensions. Similarly, the feasibility question is easy for the capaci-

tated kMP since it can be answered by determining whether the sum of the capacities

of the k largest facilities exceeds the total demand. One would like some mechanism
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for answering the feasibility question for the p-SkMP in practice to avoid spending too

much time attempting to solve an infeasible instance. This issue is discussed further

in Section 5.

Proposition 1 The p-SkMP is NP-hard.

Proof. If |S| = 1 and p = ∞, the p-SkMP reduces to the classical kMP, which is

NP-hard.

Proposition 2 For |S| ≥ 2, the feasibility problem for the p-SkMP is NP-complete.

Proof. First, the feasibility problem is in NP since the feasibility of a given solution

can be checked in polynomial time. To prove NP-completeness, we reduce the 0–1

knapsack problem to p-SkMP; the 0–1 knapsack problem is NP-complete (Garey and

Johnson 1979). Let the knapsack instance be given by

(KP) maximize
n∑

k=1

akZk

subject to
n∑

k=1

bkZk ≤ B

Zk ∈ {0, 1} ∀k = 1, . . . , n

The decision question is whether there exists a feasible Z such that

n∑

k=1

akZk ≥ A. (10)

We can assume WLOG that
∑n

k=1 ak ≥ A, otherwise the problem is clearly infeasible.

We create an equivalent instance of the p-SkMP as follows. Let I = J = {1, . . . , 2n}
and S = {1, 2}. Transportation costs are given by

cijs =





1, if j = i± n

∞, otherwise
(11)

for all i, j = 1, . . . , 2n and s = 1, 2. Demands are given by

(hi1, hi2) =





(ai + ε, ε), if 1 ≤ i ≤ n

(ε, bi
Ā
B + ε), if n + 1 ≤ i ≤ 2n

(12)
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where 0 < ε < min {mink=1,...,n{ak}, mink=1,...,n{bk}} and Ā =
∑n

k=1 ak−A. Let k = n

and p = Ā/z∗1 .

The resulting instance is pictured in Figure 1. The optimal solution in scenario 1

is to set X1 = . . . = Xn = 1 and Xn+1 = . . . = X2n = 0, with a total cost of z∗1 = nε.

Similarly, the optimal cost in scenario 2 is z∗2 = nε. We prove that the p-SkMP instance

is feasible if and only if the knapsack instance has a feasible solution for which (10)

holds; therefore, the polynomial answerability of the feasibility question for the p-SkMP

implies that of the decision question posed for the 0–1 knapsack problem.

[Insert Figure 1 here.]

(⇒) Suppose that the given instance of the p-SkMP is feasible, and let (X,Y ) be a

feasible solution. Clearly Xi + Xi+n = 1 for all i = 1, . . . , n since the cost of serving i

or i + n from a facility other than i or i + n is prohibitive. Let

Zk =





1, if Xk = 1

0, if Xk+n = 1
(13)

for k = 1, . . . , n. Since (X,Y ) is feasible, it satisfies constraint (6) for scenario 1,

namely

2n∑

i=1

2n∑

j=1

hi1cij1Yij1 ≤ (1 + p)z∗1

=⇒
∑

i:Xi+n=1

(ai + ε) +
∑

i:Xi=1

ε ≤ Ā + z∗1

=⇒
∑

i:Xi+n=1

ai + nε ≤
n∑

k=1

ak −A + nε

=⇒
n∑

k=1

ak(1− Zk) ≤
n∑

k=1

ak −A

=⇒
n∑

k=1

akZk ≥ A

(14)
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In addition, (X, Y ) satisfies constraint (6) for scenario 2:

2n∑

i=1

2n∑

j=1

hi2cij2Yij2 ≤ (1 + p)z∗2

=⇒
∑

i:Xi=1

(
bi

Ā

B
+ ε

)
+

∑

i:Xi+n=1

ε ≤ Ā + z∗2

=⇒
∑

i:Xi=1

bk
Ā

B
+ nε ≤ Ā + nε

=⇒
n∑

k=1

bk
Ā

B
Zk ≤ Ā

=⇒
n∑

k=1

bkZk ≤ B

(15)

Therefore the knapsack instance is satisfied; i.e., there exists a feasible Z whose objec-

tive function is greater than or equal to A.

(⇐) Now suppose that Z is a feasible solution to the knapsack instance that satisfies

(10). Define a solution to the p-SkMP by

Xi =





1, if Zi = 1

0, if Zi = 0

Xi+n = 1−Xi

for k = 1, . . . , n, and

Yijs =





1, if 1 ≤ i ≤ n, j ∈ {i, i + n}, and Xj = 1

1, if n + 1 ≤ i ≤ 2n, j ∈ {i, i− n}, and Xj = 1

0, otherwise

for i, j = 1, . . . , 2n, s = 1, 2.

Clearly (X,Y ) satisfies constraints (4), (5), and (7)–(9). The feasibility of (X, Y )

with respect to (6) follows from reversing the implications in (14) and (15). Therefore

the p-SkMP instance is feasible, completing the proof.

Note that Proposition 2 only applies to problems in which |S| ≥ 2. If |S| = 1, then

for p ≥ 0 the problem is trivially feasible by definition since the left-hand side of (6)

is the kMP objective function and the right-hand side is greater than or equal to its

optimal objective value.
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3.4 Variable-Splitting Algorithm

3.4.1 Model Reformulation

If p = ∞, constraints (6) are inactive and the p-SkMP can be solved by relaxing

constraints (4); Weaver and Church (1983) show that the resulting subproblem is easy

to solve since it separates by j and s. But when p < ∞, the subproblem obtained using

this method is not separable since constraints (6) tie the facilities j together. Instead,

we propose an algorithm based on variable splitting.

Variable splitting, also known as Lagrangian decomposition, is used by Barcelo, Fer-

nandez and Jörnsten (1991) to solve the capacitated facility location problem (CFLP).

The method involves the introduction of a new set of variables to mirror variables

already in the model, then forcing the two sets of variables to equal each other via a

new set of constraints. These constraints are then relaxed using Lagrangian relaxation

to obtain two separate subproblems. Each set of constraints in the original model is

written using one set of variables or the other to obtain a particular split. The bound

from variable splitting is at least as tight as that from traditional Lagrangian relaxation

and is strictly tighter if neither subproblem has the integrality property (Cornuejols,

Sridharan and Thizy 1991, Guignard and Kim 1987). In our case, another attraction of

variable splitting is that straightforward Lagrangian relaxation does not yield separable

subproblems.

The variable-splitting formulation of (p-SkMP) is obtained by introducing a new set

of variables W and setting them equal to the Y variables using a new set of constraints:

(p-SkMP-VS) minimize β
∑

s∈S

∑

i∈I

∑

j∈J

qshisdijsYijs

+(1− β)
∑

s∈S

∑

i∈I

∑

j∈J

qshisdijsWijs (16)
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subject to
∑

j∈J

Wijs = 1 ∀i ∈ I, ∀s ∈ S (17)

Yijs ≤ Xj ∀i ∈ I, ∀j ∈ J,∀s ∈ S (18)
∑

i∈I

∑

j∈J

hisdijsWijs ≤ (1 + p)z∗s ∀s ∈ S (19)

∑

j∈J

Xj = k (20)

Wijs = Yijs ∀i ∈ I, ∀j ∈ J,∀s ∈ S (21)

Xj ∈ {0, 1} ∀j ∈ J (22)

Yijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,∀s ∈ S (23)

Wijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,∀s ∈ S (24)

The parameter 0 ≤ β ≤ 1 ensures that both Y and W are included in the objective

function; since Y = W , the objective function (16) is the same as that of (p-SkMP).

In fact, the two problems are equivalent in the sense that every feasible solution to

one problem has a corresponding solution to the other with equal objective value.

Therefore, we can refer to the two problems interchangeably in terms of solutions,

objective values, and feasibility.

3.4.2 Lower Bound

To solve (p-SkMP-VS), we relax constraints (21) with Lagrange multipliers λijs. For

fixed λ, the resulting subproblem decomposes into an XY -problem and a W -problem:

XY -Problem:

minimize
∑

s∈S

∑

i∈I

∑

j∈J

(βqshisdijs − λijs)Yijs (25)

subject to (18), (20), (22), (23)

W -Problem:

minimize
∑

s∈S

∑

i∈I

∑

j∈J

[(1− β)qshisdijs + λijs] Wijs (26)

subject to (17), (19), (24)

The XY -problem is identical to Weaver and Church’s (1983) subproblem. To solve
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it, we compute the benefit bj of opening facility j:

bj =
∑

s∈S

∑

i∈I

min{0, βqshisdijs − λijs}. (27)

We set Xj = 1 for the k facilities with smallest bj and set Yijs = 1 if Xj = 1 and

βqshisdijs − λijs < 0.

The W -problem reduces to |S| instances of the 0–1 multiple-choice knapsack prob-

lem (MCKP), an extension of the classical 0–1 knapsack problem in which the items

are partitioned into classes and exactly one item must be chosen from each class

(Nauss 1978, Sinha and Zoltners 1979). The MCKP does not naturally have all-integer

solutions, so the W -problem does not have the integrality property. The W -problem

can be formulated using the MCKP as follows. For each scenario s ∈ S, there is an

instance of the MCKP. Each instance contains |I| classes, each representing a retailer

i ∈ I. Each class contains |J | elements, each representing a facility j ∈ J . Item j in

class i has objective function coefficient (1 − β)qshisdijs + λijs and constraint coeffi-

cient hisdijs; including this item in the knapsack corresponds to assigning customer i

to facility j. The right-hand side of the knapsack constraint is (1 + p)z∗s .

The classical 0–1 knapsack problem can be reduced to the 0–1 MCKP, so the

MCKP is NP-hard. However, like the knapsack problem, effective algorithms have

been published for the MCKP, including algorithms based on linear programming

(Armstrong, Kung, Sinha and Zoltners 1983, Nakagawa, Kitao, Tsuji and Teraoka

2001, Pisinger 1995, Sinha and Zoltners 1979) and Lagrangian relaxation (Aggarwal,

Deo and Sarkar 1992). Any of these algorithms could be used to solve the W -problem,

with two caveats. The first is that the data must first be transformed into the form

required by a given algorithm (for example, transforming the sign of the coefficients,

the sense of the objective function, or the direction of the knapsack inequality), but

this can usually be done without difficulty. The second caveat is that either the MCKP

must be solved to optimality, or, if a heuristic is used, one must be chosen that can

return a lower bound on the optimal objective value; otherwise, the Lagrangian sub-

problem cannot be guaranteed to produce a lower bound for the problem at hand.

If the problem is solved heuristically, one might choose to set the variables using the

heuristic (upper-bound) solution, but then the lower bound used in the subgradient

optimization method does not match the actual value of the solution to the Lagrangian
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subproblem. We have found this mismatch to lead to substantial convergence problems.

A better method is to use a lower-bound solution, not just the lower bound itself, to

set the variables. Not all heuristics that return lower bounds also return lower-bound

solutions, however, so care must be taken when making decisions about which MCKP

algorithm to use and how to set the variables.

Since the MCKP is NP-hard, we have elected to solve it heuristically by terminating

the branch-and-bound procedure of Armstrong et al. (1983) when it reaches a 1%

optimality gap. Their method can be modified to keep track not only of the best lower

bound at any point in the branch-and-bound tree, but also a solution attaining that

bound. These solutions, which are generally fractional, are then used as the values of

W in the Lagrangian subproblem.

3.4.3 Upper Bound

Once the XY - and W -problems have been solved, the two objective values are added

to obtain a lower bound on the objective function (3). An upper bound is obtained

at each iteration by opening the facilities for which Xj = 1 in the optimal solution to

(p-SkMP-VS) and assigning each customer i to the open facility that minimizes dijs.

This must be done for each scenario since the transportation costs may be scenario

dependent. The Lagrange multipliers are updated using subgradient optimization;

the method is standard, but the implementation is slightly different than in most

Lagrangian algorithms for facility location problems since the lower-bound solution

may be fractional. In addition, the subgradient optimization procedure requires an

upper bound to compute the step sizes, but it is possible that no feasible solution has

been found; we discuss an alternate upper bound in Section 5. The Lagrangian process

is terminated based on standard stopping criteria.

3.4.4 Initial Multipliers

As in any Lagrangian relaxation algorithm, the initial Lagrange multipliers can have

a significant impact on the final results. In our initial testing, we found that near-

optimal values of λijs tended to be large if j is an attractive facility for customer i in

scenario s, and small otherwise. Therefore, our strategy for setting initial mulitpliers

uses non-zero λijs values for the N closest facilities j to customer i in scenario s, with
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larger values for closer facilities. In particular, the initial values for λ are given by

λijs =





γµ̄N+2−k
N+1 , if j is the kth closest facility to i in scenario s, for 1 ≤ k ≤ 10

0, otherwise
(28)

where µ̄ is the mean demand over all retailers and scenarios and γ is a user-specified

parameter. We use γ = 0.05 and N = 10 in our computational tests.

3.4.5 Branch and Bound

If the process terminates with an UB-LB gap that is larger than desired, or if no feasible

solution has been found, branch and bound is used to continue the search. Branching is

performed on the unfixed facility with the largest assigned demand in the best feasible

solution found at the current node. If no feasible solution has been found at the current

node but a feasible solution has been found elsewhere in the branch-and-bound tree,

that solution is used instead. If no feasible solution has been found anywhere in the

tree, an arbitrary facility is chosen for branching.

4 The p-SUFLP

In this section, we formulate the stochastic p-robust uncapacitated fixed charge location

problem (p-SUFLP) and then present a variable-splitting algorithm for it.

4.1 Formulation

In addition to the notation defined in Section 3.1, let fj be the fixed cost to open

facility j ∈ J . Since facility location decisions are scenario independent, so are the

fixed costs. (Strictly speaking, the fixed costs might be scenario dependent even if the

location decisions are made in the first stage. The expected fixed cost for facility j is

then given by
(∑

s∈S qsfjs

)
Xj = fjXj , in which case the objective function below is

still correct, with fj simply interpreted as the expected fixed cost. Constraints (32)

would also be modified to include fjs instead of fj . These changes would require only

trivial modifications to the algorithm proposed below.)
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The p-SUFLP is formulated as follows:

(p-SUFLP) minimize
∑

j∈J

fjXj +
∑

s∈S

∑

i∈I

∑

j∈J

qshisdijsYijs (29)

subject to
∑

j∈J

Yijs = 1 ∀i ∈ I, ∀s ∈ S (30)

Yijs ≤ Xj ∀i ∈ I, ∀j ∈ J,∀s ∈ S (31)
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

hisdijsYijs ≤ (1 + p)z∗s ∀s ∈ S (32)

Xj ∈ {0, 1} ∀j ∈ J (33)

Yijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,∀s ∈ S (34)

If |S| = 1 and p = ∞, this problem reduces to the classical UFLP, so the p-SUFLP

is NP-hard. In addition, the feasibility problem for the p-SUFLP is NP-complete; the

proof is similar to that of Proposition 2.

4.2 Variable-Splitting Algorithm

The p-SUFLP, too, can be solved using variable splitting, but both the X and Y

variables must be split, otherwise the X variables would be contained in both the

Y -problem and the W -problem. In particular, we use Z as a doubling variable for

X; we also index the location variables X and Z by scenario and add a set of non-

anticipativity constraints (38) that force the location decisions to be the same across

all scenarios. Doing so allows the ZW -problem to decouple by scenario.

(p-SUFLP-VS)

minimize β


∑

s∈S

∑

j∈J

qsfjXjs +
∑

s∈S

∑

i∈I

∑

j∈J

qshisdijsYijs




+(1− β)


∑

s∈S

∑

j∈J

qsfjZjs +
∑

s∈S

∑

i∈I

∑

j∈J

qshisdijsWijs


 (35)
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subject to
∑

j∈J

Wijs = 1 ∀i ∈ I, ∀s ∈ S (36)

Yijs ≤ Xjs ∀i ∈ I, ∀j ∈ J,∀s ∈ S (37)

Xjs = Xjt ∀j ∈ J,∀s ∈ S,∀t ∈ S (38)
∑

j∈J

fjZjs +
∑

i∈I

∑

j∈J

hisdijsWijs ≤ (1 + p)z∗s ∀s ∈ S (39)

Zjs = Xjs ∀j ∈ J,∀s ∈ S (40)

Wijs = Yijs ∀i ∈ I, ∀j ∈ J,∀s ∈ S (41)

Xjs ∈ {0, 1} ∀j ∈ J,∀s ∈ S (42)

Zjs ∈ {0, 1} ∀j ∈ J,∀s ∈ S (43)

Yijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,∀s ∈ S (44)

Wijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,∀s ∈ S (45)

Relaxing constraints (40) and (41) with Lagrange multipliers λ and µ, respectively,

we obtain a Lagrangian subproblem that decomposes into an XY -problem and a ZW -

problem:

XY -Problem:

minimize
∑

s∈S

∑

j∈J

(βqsfj − µjs)Xjs +
∑

s∈S

∑

i∈I

∑

j∈J

(βqshisdijs − λijs)Yijs (46)

subject to (37), (38), (42), (44)

ZW -Problem:

minimize
∑

s∈S

∑

j∈J

[(1− β)qsfj + µjs] Zjs +
∑

s∈S

∑

i∈I

∑

j∈J

[(1− β)qshisdijs + λijs]Wijs

(47)

subject to (36), (39), (43), (45)

The XY -problem can be solved by computing the benefit of opening facility j:

bj =
∑

s∈S

(βqsfj − µjs) +
∑

s∈S

∑

i∈I

min{0, βqshisdijs − λijs}. (48)

We set Xjs = 1 for all s ∈ S (or, equivalently, set Xj = 1 in the original problem) if

bj < 0, or if bk ≥ 0 for all k but is smallest for j. We set Yijs = 1 if Xjs = 1 and

βqshisdijs − λijs < 0.
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The ZW -problem reduces to |S| MCKP instances, one for each scenario. As in the

p-SkMP, there is a class for each customer i, each containing an item for each facility

j, representing the assignments Wijs; these items have objective function coefficient

(1−β)qshisdijs +λijs and constraint coefficient hisdijs. In addition, there is a class for

each facility j, representing the location decisions Zjs; these classes contain two items

each, one with objective function coefficient (1−β)qsfj +µjs and constraint coefficient

fj , representing opening the facility, and one with objective function and constraint

coefficient equal to 0, representing not opening the facility. The right-hand side of the

knapsack constraint equals (1 + p)z∗s .

We note that the p-SUFLP had even greater convergence problems than the p-

SkMP did when an upper-bound solution from the MCKP heuristic was used to set the

variables, rather than a lower-bound solution. This makes the selection of an MCKP

algorithm a critical issue for this problem. The approach outlined in Section 3.4 seems

to work quite well.

The upper-bounding, subgradient optimization, and branch-and-bound procedures

are as described above for the p-SkMP. The initial values of λ are set using (28), while

µis is initially set to 0 for all i and s.

5 Detecting Infeasibility

In this section, we focus our discussion on the p-SkMP for convenience, but all of the

results are easily duplicated for the p-SUFLP.

5.1 An A Priori Upper Bound

The subgradient optimization procedure used to update the Lagrange multipliers re-

quires an upper bound (call it UB). Typically, UB is the objective value of the best

known feasible solution, but Proposition 2 suggests that finding a feasible solution for

the p-SkMP (or p-SUFLP) is difficult, and there is no guarantee that one will be found

immediately or at all, even if one exists. We need a surrogate upper bound to use in

the step size calculation. Let

Q =
∑

s∈S

qs(1 + p)z∗s . (49)

20



Proposition 3 If (p-SkMP) is feasible, then Q is an upper bound on its optimal ob-

jective value.

Proof. Let (X∗, Y ∗) be an optimal solution for (p-SkMP) . The objective value under

solution (X∗, Y ∗) is

∑

s∈S

qszs(X∗, Y ∗) ≤
∑

s∈S

qs(1 + p)z∗s = Q (50)

by constraints (6).

We refer to Q as the a priori upper bound. Proposition 3 has two important uses.

First, if no feasible solution has been found as of a given iteration, we set UB = Q in

the step-size calculation. Second, we can use Proposition 3 to detect when the problem

is infeasible. In particular, if the Lagrangian procedure and/or the branch-and-bound

procedure yield a lower bound greater than Q, we can terminate the procedure and

conclude that the problem is infeasible. One would like the Lagrangian procedure to

yield bounds greater than Q whenever the problem is infeasible, providing a test for

feasibility in every case. Unfortunately, there are infeasible instances for which the

Lagrangian bound is less than Q. In the next section, we investigate the circumstances

under which we can expect to find Lagrange multipliers that yield a bound greater

than Q.

5.2 Lagrangian Unboundedness

Let (p-SLR) be the Lagrangian subproblem obtained by relaxing (21) in (p-SkMP-VS);

(p-SLR) consists of both the XY -problem and the W -problem. Let Lλ,µ be the objec-

tive value of (p-SLR) under given multipliers λ, µ (i.e., the sum of the optimal objective

values of the XY - and W -problems). Let (p-SPMP-VS) be the LP relaxation of (p-

SkMP-VS). It is possible that (p-SkMP-VS) is infeasible but (p-SPMP-VS) is feasible.

When this is the case, we know that the optimal objective value of (p-SLR) is at least as

great as that of (p-SPMP-VS) (from standard Lagrangian duality theory), but we can-

not say whether it is greater than Q. On the other hand, if (p-SPMP-VS) is infeasible,

corollary 1 below demonstrates that (p-SLR) is either infeasible or unbounded—i.e.,

if (p-SLR) is feasible, then for any M ∈ R, there exist multipliers λ, µ such that

Lλ,µ > M . We first state this result for general linear programs:
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Lemma 1 Let (P) be a linear program of the form

(P) minimize cx

subject to Ax = b

Dx ≤ e

x ≥ 0

with c ≥ 0, and let (LR) be the Lagrangian relaxation obtained by relaxing the con-

straints Ax = b. If (P) is infeasible, then (LR) is either infeasible or unbounded. That

is, either (LR) is infeasible or for any M ∈ R, there exist Lagrange multipliers λ such

that the objective value of (LR) under λ is greater than M .

It is well known that for feasible problems, the Lagrangian dual (LR) and the LP dual

behave similarly; the lemma verifies that the same intuition holds even for infeasible

problems. The proof is similar to standard proofs that the Lagrangian bound is at

least as great as the LP bound for integer programming problems (Nemhauser and

Wolsey 1988) and is omitted here.

Corollary 1 If (p-SPMP-VS) is infeasible, then (p-SLR) is either infeasible or un-

bounded.

Proof. By Lemma 1, the LP relaxation of (p-SLR) is either infeasible or unbounded.

(The equality in (17) can be replaced by ≥ and that in (20) can be replaced by ≤
WLOG; (17) can then be multiplied by −1 to obtain an LP in the form used in

Lemma 1. The non-negativity of the objective function coefficients follows from the

definitions of the parameters.) If the LP relaxation of (p-SLR) is infeasible, then (p-

SLR) must be as well, and similarly, if the LP relaxation of (p-SLR) is unbounded, then

(p-SLR) must be as well. Therefore (p-SLR) itself is either infeasible or unbounded.

In most cases, if (p-SPMP-VS) is infeasible, then (p-SLR) will be unbounded (not

infeasible). (p-SLR) is infeasible if one of the constituent MCKPs is infeasible; since

the constraints are independent of λ and µ, the problem is infeasible for any set of

Lagrange multipliers and should be identified as such by the MCKP algorithm. If

(p-SLR) is infeasible, then clearly (p-SkMP-VS) is infeasible since the constraints of

the former problem are a subset of those of the latter. This rarely occurs, however,
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since most customers have a close (or even co-located) facility to which they may be

assigned in the W -problem. Therefore, in most cases, if (p-SPMP-VS) is infeasible,

the Lagrangian is unbounded, in which case the subgradient optimization procedure

should find λ and µ such that Lλ,µ > Q and the algorithm can terminate with a

proof of infeasibility. If (p-SPMP-VS) is feasible but (p-SkMP-VS) is not, this method

cannot detect infeasibility, and an extensive search of the branch-and-bound tree may

be required before infeasibility can be proven.

6 The Minimax Regret Heuristic

For a given optimization problem with uncertain parameters, the minimax regret prob-

lem is to find a solution that minimizes the maximum regret across all scenarios. Min-

imax regret is a commonly used robustness measure, especially for problems in which

scenario probabilities are unknown. One can solve the minimax regret kMP heuristi-

cally using the algorithm discussed above by systematically varying p and solving (p-

SkMP) for each value, as outlined below. (We focus our discussion on the (p-SkMP),

but the method for the (p-SUFLP) is identical.) If scenario probabilities are unknown,

qs can be set to 1/|S| for all s. (p-SkMP) does not need to be solved to optimality:

the algorithm can terminate as soon as a feasible solution is found for the current p.

The smallest value of p for which the problem is feasible corresponds to the minimax

regret value.

We introduce this method as a heuristic, rather than as an exact algorithm, because

for some values of p, (p-SkMP) may be infeasible while its LP relaxation is feasible. As

discussed in Section 5.2, infeasibility may not be detected by the Lagrangian method

in this case, and may not be detected until a sizable portion of the branch-and-bound

tree has been explored. Nevertheless, depending on the patience of the modeler, the

method’s level of accuracy can be adjusted as desired; this point is explicated in the

discussion of step 2, below.

Our heuristic for solving the minimax regret kMP returns two values, pL and pU ;

the minimax regret is guaranteed to be in the range (pL, pU ]. The heuristic also returns

a solution whose maximum regret is pU . It works by maintaining four values, pL ≤
p̄L ≤ p̄U ≤ pU (see Figure 2). At any point during the execution of the heuristic, the
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problem is known to be infeasible for p ≤ pL and feasible for p ≥ pU ; for p ∈ [p̄L, p̄U ], the

problem is indeterminate (i.e., feasibility has been tested but could not be determined);

and for p ∈ (pL, p̄L) or (p̄U , pU ), feasibility has not been tested. At each iteration, a

value of p is chosen in (pL, p̄L) or (p̄U , pU ) (whichever range is larger), progressively

reducing these ranges until they are both smaller than some pre-specified tolerance ε.

[Insert Figure 2 here.]

Algorithm 1 (MINIMAX-REGRET)

0. Determine a lower bound pL for which (p-SkMP) is known to be infeasible and

an upper bound pU for which (p-SkMP) is known to be feasible. Let (X∗, Y ∗) be

a feasible solution with maximum regret pU . Mark p̄L and p̄U as undefined.

1. If p̄L and p̄U are undefined, let p ← (pL + pU )/2; else if p̄L − pL > pU − p̄U , let

p ← (pL + p̄L)/2; else, let p ← (p̄U + pU )/2.

2. Determine the feasibility of (p-SkMP) under the current value of p.

2.1 If (p-SkMP) is feasible, let pU ← the maximum relative regret of the solution

found, let (X∗, Y ∗) be the solution found in step 2, and go to step 3.

2.2 Else if (p-SkMP) is infeasible, let pL ← p and go to step 3.

2.3 Else [(p-SkMP) is indeterminate]: If p̄L and p̄U are undefined, let p̄L ← p

and p̄U ← p and mark p̄L and p̄U as defined; else if p ∈ (pL, p̄L), let p̄L ← p;

else [p ∈ (p̄U , pU )], let p̄U ← p. Go to step 3.

3. If p̄L − pL < ε and pU − p̄U < ε, stop and return pL, pU , (X∗, Y ∗). Else, go to

step 2.

Several comments are in order. In step 0, the lower bound pL can be determined

by choosing a small enough value that the problem is known to be infeasible (e.g., 0).

The upper bound can be determined by solving (p-SkMP) with p = ∞ and setting

pU equal to the maximum regret value from the solution found; this solution can also

be used as (X∗, Y ∗). In step 1, we are performing a binary search on each region.

More efficient line searches, such as the Golden Section search, would work as well, but

we use the binary search for ease of exposition. In step 2, the instruction “determine

the feasibility...” is to be carried out by solving (p-SkMP) until (a) a feasible solution

has been found [the problem is feasible], (b) the lower bound exceeds the a priori
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upper bound Q [the problem is infeasible], or (c) a pre-specified stopping criterion has

been reached [the problem is indeterminate]. This stopping criterion may be specified

as a number of Lagrangian iterations, a number of branch-and-bound nodes, a time

limit, or any other stopping criterion desired by the user. In general, if the stopping

criterion is more generous (i.e., allows the algorithm to run longer), fewer problems

will be indeterminate, and the range (pL, pU ] returned by the heuristic will be smaller.

One can achieve any desired accuracy by adjusting the stopping criterion, though if a

small range is desired, long run times might ensue. (Finding an appropriate stopping

criterion may require some trial and error; it is not an immediate function of the desired

accuracy.) Our heuristic therefore offers two important advantages over most heuristics

for minimax regret problems: (1) it provides both a candidate minimax-regret solution

and a lower bound on the optimal minimax regret, and (2) it can be modified to achieve

any desired level of accuracy.

7 Computational Results

7.1 Algorithm Performance

7.1.1 Experimental Design

We tested the variable-splitting algorithms for the p-SkMP and p-SUFLP on four

benchmark data sets from the facility location literature and ten randomly gener-

ated data sets. The benchmark data sets consist of the 55-node problem of Swain

(1971) (see Church and Weaver (1986) for the complete data set) and the 49-, 88-, and

150-node data sets of Daskin (1995), which are derived from 1990 U.S. census data.

Because the benchmark data sets each include only a single scenario, we generated

additional scenarios randomly, as described below. In all data sets, each node serves as

both a customer and a potential facility site (i.e., I = J). The data sets were derived

as follows1:

• Census Data. The 49-, 88-, and 150-node data sets consist of U.S. cities. We

computed the “base” demand by dividing the population given by Daskin (1995)

1All data sets may be obtained from the lead author’s web site, www.lehigh.edu/∼lvs2/research.html.
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by 1000; we then used these base demands to compute scenario-specific demands

for 9 scenarios following the method described by Daskin, Hesse and ReVelle

(1997); in brief, this method involves defining an “attractor” point for each sce-

nario and scaling each retailer’s demand based on its distance to the attractor

point. The total mean demand is the same in all scenarios for a given problem.

Fixed location costs (fj) for the p-SUFLP were obtained by dividing the fixed

cost given by Daskin (1995) by 10 for the 49-node data set and by 100 for the

88-node data set; for the 150-node data set, fixed costs for all retailers were set to

1000. Retailer locations were taken directly from Daskin (1995) for all three data

sets; for scenarios 2–9, the latitute and longitude values from scenario 1 were mul-

tiplied by random numbers drawn uniformly from U [0.95, 1.05] (i.e., perturbed

randomly by up to 5% in either direction). This has the effect of making distances

scenario specific. Per-unit transportation costs were set equal to the great-circle

distances between facilities and customers. The scenario probabilities are taken

from Daskin et al. (1997) and are given by 0.01, 0.04, 0.15, 0.02, 0.34, 0.14, 0.09,

0.16, 0.05. We will refer to these data sets as Census49-9, Census88-9, and

Census150-9, respectively.

• Random Data. We generated 10 data sets randomly, each with 50 nodes and 5

scenarios. In each data set, demands for scenario 1 were drawn uniformly from

[0, 10000] and rounded to the nearest integer, and x and y coordinates were drawn

uniformly from [0, 1]. In scenarios 2 through 5, demands were obtained by multi-

plying scenario-1 demands by a random number drawn uniformly from [0.5, 1.5]

and rounding off; similarly, x and y coordinates were obtained by multiplying

scenario-1 coordinates by a random number drawn uniformly from [0.75, 1.25].

Per-unit transportation costs were set equal to the Euclidean distances between

facilities and customers. Fixed costs for the p-SUFLP were drawn uniformly from

[4000, 8000] and rounded to the nearest integer. Scenario probabilities were set

as follows: q1 was drawn uniformly from (0, 1), qt was drawn uniformly from(
0, 1−∑t−1

s=1 qs

)
for t = 2, 3, 4, and q5 was set to 1 −∑4

s=1 qs. We will refer to

these data sets as Random50-5.

• Swain Data. The Swain data set contains 55 nodes, for which we generated 5

scenarios. Scenario 1 demands and coordinates were set to Swain’s original data.
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Demands for scenarios 2–5 were obtained by multiplying scenario-1 demands by

a [0.5, 1.5] random variate and rounding off; x and y coordinates in those scenar-

ios were obtained by multiplying scenario-1 coordinates by a U [0.5, 1.5] random

variate and rounding off. Per-unit transportation costs were set equal to the Eu-

clidean distances between facilities and customers. Fixed costs for the p-SUFLP

were set to 1000 for all facilities. Scenario probabilities were set to 0.2 for each

scenario. We will refer to this data set as Swain55-5.

The performance measure of interest for these tests is the tightness of the bounds

produced at the root node; consequently, no branching was performed. We termi-

nated the Lagrangian procedure when the LB–UB gap was less than 1%, when 1200

Lagrangian iterations had elapsed, or when α (a parameter used in the subgradient

optimization procedure; see Daskin (1995)) was less than 10−8. Initial Lagrange mul-

tipliers were set for the p-SkMP and p-SUFLP as described in Sections 3.4.4 and 4.2,

respectively. The weighting coefficient β was set to 0.2. We tested our algorithms for

several values of p. The algorithm was coded in C++ and executed on a Gateway

M210 notebook computer with a 1.5 GHz Intel Pentium M processor and 992 MB of

RAM running under Windows XP Professional.

7.1.2 Optimality Gaps and Feasibility

Table 1 summarizes the algorithms’ performance for both the p-SkMP and the p-

SUFLP. The column marked “k” gives the number of facilities to locate for the p-SkMP

or “—” for the p-SUFLP. The column marked “p” gives the robustness coefficient.

The “Gap” columns give the mean and maximum values of (UB− LB)/LB among all

problems (out of 14) for which a feasible solution was found. Note that for some values

of p, no feasible solution was found for any of the 14 test problems. “# Lag Iter”

gives the mean and maximum number of Lagrangian iterations performed across all

problems. The final column lists the number of problems (out of 14) for which feasibility

was proved (i.e., a feasible solution was found), the number for which infeasibility was

proved (i.e., the lower bound exceeded Q), and the number that were indeterminate

(i.e., no feasible solution was found but the problem could not be proven infeasible).

[Insert Table 1 here.]
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The algorithms generally attained gaps of no more than a few percent for feasible

instances. Tighter bounds may be desirable, especially if the modeler intends to find

a provably optimal solution using branch and bound. These instances generally re-

quired close to the maximum allowable number of Lagrangian iterations. On the other

hand, the provably infeasible instances generally required fewer than 100 iterations

to prove infeasibility. The algorithm was generally successful in proving feasibility or

infeasibility, with 52 out of 392 total instances (13%) left indeterminate, generally with

mid-range values of p. Corollary 1 implies that for these problems, either the LP re-

laxation is feasible or it is infeasible but we are not finding good enough multipliers to

exceed Q. Further research is needed to establish which is the case.

7.1.3 CPU Times

Table 2 indicates the time spent solving the test problems, broken down by data set.

For the Random50-5 data sets, both mean and maximum times (over 10 trials) are

reported. The algorithm generally required well under one minute to execute on a

notebook computer. (The exception is Census150-9, which required nearly four minutes

on average. However, this is not surprising since this is a large problem, roughly

equivalent to a deterministic problem with 1350 nodes.) The bulk of the execution

time (80% on average) was spent solving multiple-choice knapsack problems, and this

statistic is relatively constant across problems of various sizes.

[Insert Table 2 here.]

7.2 Minimax Regret Heuristic

We tested the minimax regret heuristic discussed in Section 6 for the p-SkMP and p-

SUFLP using the 14 data sets described above. As above, no branching was performed,

and an iteration limit of 1200 was used (this represents the stopping criteria in step 2 of

the heuristic). The results are summarized in Table 3. The first column indicates the

data set, while the second indicates the value of k (or “—” for the p-SUFLP instances).

The columns marked “pL” and “pU” indicate the lower and upper bounds on the

minimax regret value returned by the heuristic. The column marked “Gap” gives the

difference between pU and pL, while the “Init Gap” column gives the gap between the
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values of pU and pL used to initialize the heuristic in step 0. (Since pL was initially set

to 0, the “Init Gap” column equals the maximum regret of the unconstrained problem,

used to initialize pU .) The column marked “CPU Time” indicates the time (in seconds)

spent by the heuristic, while that marked “# Solved” indicates the number of problems

solved by the heuristic (i.e., the number of values of p required before termination).

For the Random50-5 problems, all values are means taken over the 10 instances.

[Insert Table 3 here.]

The heuristic generally returned ranges of about 7% for the p-SkMP and 4% that

for the p-SUFLP. As discussed above, these ranges could be reduced by using a more

lenient stopping criterion—for example, using branch-and-bound after processing at

the root node. It is our suspicion that pU is closer to the true minimax regret value

than pL is (that is, the upper bound returned by the heuristic is tighter than the lower

bound), though further research is needed to establish this definitively.

7.3 Cost vs. Regret

The main purpose of the p-SkMP and p-SUFLP is to reduce the maximum regret (by

the choice of p) with as little increase in expected cost as possible. To illustrate this

tradeoff, we used the constraint method of multi-objective programming (Cohon 1978)

to generate a tradeoff curve between the expected cost and the maximum regret. In

particular, we solved the problem with p = ∞ and recorded the objective value and

maximum regret of the solution; we then set p equal to the actual maximum regret

obtained minus 0.00001 and re-solved the problem, continuing this process until no

feasible solution could be found for a given value of p.

We performed this experiment for two representative data sets: Census49-9 for the

p-SkMP (with k = 25) and one of the Random50-5 data sets for the p-SUFLP. The

results are summarized in Table 4. The column marked “p” gives the value of p used

to solve the problem; “Obj Value” is the objective value of the best feasible solution

returned by the algorithm; “% Increase” is the percentage by which the objective value

is greater than that of the solution found using p = ∞; “Max Regret” is the maximum

relative regret of the best solution found; and “% Decrease” is the percentage by which

the maximum regret is smaller than that of the solution found using p = ∞. The
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expected cost and maximum regret are plotted in Figure 3 for both problems (the

regret values for the Random50-5 data set appear on the right-hand y-axis).

[Insert Table 4 here.]

[Insert Figure 3 here.]

It is clear that large reductions in maximum regret are possible with small increases

in expected cost. For example, the sixth solution for the p-SkMP represents a 33%

reduction in maximum regret with only a 1% increase in expected cost, and the last p-

SUFLP solution attains a 78% reduction in maximum regret with only a 0.7% increase

in expected cost. These results justify the stochastic p-robust approach since it costs

very little to “buy” robustness. This is evident from Figure 3 since the tradeoff curves

are steep—large reductions in regret are possible with small increases in expected

cost. While we cannot be assured that results like these would be attained for any

instance, we have found them to be representative of the general trend. Note that not

all problems were solved to optimality (because no branching was performed), so it

is possible that for some problems, the optimal expected costs are even smaller than

those listed in the table.

8 Conclusions

In this paper we presented models that seek the minimum-expected-cost solution for

two classical facility location problems, subject to the constraint that the solution cho-

sen must have relative regret no more than p in every scenario. This robustness mea-

sure, called stochastic p-robustness, combines the advantages of traditional stochastic

and robust optimization approaches. We presented algorithms for our models that use

variable splitting, or Lagrangian decomposition. The Lagrangian subproblems split

into two problems, one problem that can be solved by inspection and another that re-

duces to the multiple-choice knapsack problem. We showed that our algorithm can be

used iteratively to solve the minimax-regret problem; this method is approximate, but

it provides both lower and upper bounds on the minimax regret value, and it can be

adjusted to provide arbitrarily close bounds. In addition, we showed empirically that

large reductions in regret are possible with small increases in expected cost. Although

our discussion is focused on relative regret, our models and algorithms can be readily
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applied to problems involving absolute regret or simply the cost in each scenario.

While the bounds provided by our algorithms are reasonable, it would be desirable

to tighten them even further. Preliminary exploration of our formulations indicates

that the objective values of the IPs grow much more quickly as p decreases than the

objective values of their LP relaxations do. This means that for more tightly con-

strained problems, the LP bounds are increasingly weak. While the Lagrangian bound

is necessarily greater than the LP bound (because the subproblems do not have the

integrality property), it may not be great enough to provide sufficiently tight bounds.

We have begun investigating the reasons for this discrepancy in the bounds and possible

methods for improvement; we expect this to be an avenue for future research.

Finally, we note that Snyder (2003) applies the stochastic p-robustness measure to

the location model with risk-pooling (LMRP; Daskin, Coullard and Shen (2002), Shen,

Coullard and Daskin (2003), a recent supply chain design model that is based on the

UFLP but incorporates risk-pooling effects and economies of scale in inventory costs.

The stochastic p-robust LMRP formulation does not lend itself to a variable-splitting

approach because of the non-linearity of the objective function; instead, Snyder (2003)

solves the problem using standard Lagrangian relaxation. We consider the application

of stochastic p-robustness to other logistics and supply chain design problems to be

another avenue for future research.
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Figure and Table Captions

Figure 1: p-SkMP instance.

Figure 2: Ranges maintained by the minimax-regret heuristic.

Figure 3: Expected cost vs. maximum regret.

Table 1: Algorithm performance: Optimality gaps and feasibility.

Table 2: Algorithm performance: CPU times.

Table 3: Minimax regret heuristic performance.

Table 4: Expected cost vs. maximum regret.
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Figure 1: p-SkMP instance.
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Figure 2: Ranges maintained by the minimax-regret heuristic.
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Figure 3: Expected cost vs. maximum regret.
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Table 1: Algorithm performance: Optimality gaps and feasibility.

Gap # Lag Iter
k p Mean Max Mean Max Feas/Inf/Ind
5 ∞ 1.4% 2.9% 886.2 1200 14/0/0
5 0.20 2.7% 6.1% 1046.4 1200 14/0/0
5 0.10 3.1% 8.6% 1110.6 1200 7/0/7
5 0.08 1.8% 2.4% 1140.1 1200 4/0/10
5 0.05 — 0.0% 670.4 1200 0/9/5
5 0.03 — 0.0% 134.6 214 0/14/0
5 0.01 — 0.0% 66.6 136 0/14/0
15 ∞ 1.5% 4.7% 674.9 1200 14/0/0
15 0.40 4.0% 8.9% 1145.4 1200 14/0/0
15 0.30 6.3% 15.4% 1140.7 1200 14/0/0
15 0.20 6.5% 8.7% 1200.0 1200 4/0/10
15 0.10 — 0.0% 53.8 224 0/14/0
15 0.05 — 0.0% 22.0 59 0/14/0
15 0.01 — 0.0% 16.1 38 0/14/0
25 ∞ 1.3% 6.7% 441.9 1200 14/0/0
25 0.60 6.9% 16.7% 1129.0 1200 14/0/0
25 0.40 8.7% 17.0% 1155.6 1200 13/0/1
25 0.20 — 0.0% 198.9 1200 0/12/2
25 0.10 — 0.0% 16.4 59 0/14/0
25 0.05 — 0.0% 12.1 30 0/14/0
25 0.01 — 0.0% 10.4 23 0/14/0
— ∞ 1.0% 1.9% 539.2 1200 14/0/0
— 0.20 3.7% 11.3% 1017.7 1200 14/0/0
— 0.10 2.9% 9.0% 1002.2 1200 12/0/2
— 0.08 1.9% 4.0% 1055.2 1200 10/0/4
— 0.05 0.8% 1.0% 679.9 1200 5/3/6
— 0.03 0.0% 0.0% 564.7 1200 1/10/3
— 0.01 0.0% 0.0% 93.1 220 1/13/0

Overall 3.4% 17.0% 615.2 1200 183/159/50
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Table 2: Algorithm performance: CPU Times.

Random50-5
k p Census49-9 Census88-9 Census150-9 Mean Max Swain55-5 Overall Mean
5 ∞ 21.5 85.2 272.5 8.4 13.1 8.4 33.7
5 0.20 29.5 100.6 314.2 17.9 27.8 9.7 45.2
5 0.10 38.9 113.9 349.4 18.9 24.0 16.6 50.6
5 0.08 41.0 108.8 355.5 20.1 24.6 16.8 51.7
5 0.05 4.8 27.0 113.3 14.4 24.1 5.5 21.0
5 0.03 2.4 13.0 59.3 3.3 5.0 1.7 7.8
5 0.01 1.9 7.7 36.8 1.8 3.0 0.8 4.6
15 ∞ 6.3 86.1 273.6 6.8 12.9 3.4 31.2
15 0.40 24.4 92.3 292.5 20.4 25.7 6.2 44.2
15 0.30 27.0 97.2 293.7 23.3 27.6 5.4 46.9
15 0.20 38.1 103.3 306.6 24.0 27.6 16.6 50.4
15 0.10 1.8 5.6 59.6 1.1 2.8 0.3 5.6
15 0.05 1.3 3.1 15.5 0.6 1.0 0.2 1.9
15 0.01 0.9 2.5 9.8 0.5 0.7 0.2 1.3
25 ∞ 4.4 87.9 276.7 3.4 7.2 4.4 29.1
25 0.60 26.0 92.7 291.5 24.2 29.0 8.6 47.2
25 0.40 34.8 93.9 293.9 28.0 33.4 8.0 50.7
25 0.20 1.4 11.0 318.1 3.7 31.2 0.6 26.3
25 0.10 0.9 3.0 16.0 0.4 0.6 0.2 1.7
25 0.05 1.3 1.8 7.9 0.4 0.4 0.2 1.1
25 0.01 0.6 3.1 6.1 0.3 0.5 0.2 1.0
— ∞ 14.1 1.8 286.6 5.3 10.3 16.2 26.6
— 0.20 42.3 1.4 492.3 20.6 27.3 18.1 54.3
— 0.10 42.6 1.1 434.2 20.2 26.6 17.7 49.8
— 0.08 35.5 1.3 433.7 21.2 26.6 18.1 50.0
— 0.05 5.6 0.9 198.6 14.9 26.5 17.9 26.6
— 0.03 2.8 1.1 125.7 13.9 26.8 7.0 19.7
— 0.01 3.6 1.1 81.0 2.2 5.0 0.9 7.7
Overall Mean 16.3 41.0 214.8 11.4 33.4 7.5 28.1
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Table 3: Minimax regret heuristic performance.

Problem k pL pU Gap Init Gap CPU Time # Solved
Random50-5 5 0.047 0.091 0.044 1.096 104.3 9.8

15 0.146 0.206 0.060 2.164 148.6 11.5
25 0.269 0.326 0.058 3.871 168.3 12.5
— 0.030 0.066 0.037 4.061 99.2 10.4

Swain55-5 5 0.056 0.112 0.056 0.970 100.9 9.0
15 0.177 0.235 0.058 3.092 101.3 12.0
25 0.224 0.287 0.063 6.274 86.9 12.0
— 0.027 0.060 0.033 1.617 78.8 10.0

Census49-9 5 0.074 0.146 0.072 0.572 198.3 9.0
15 0.142 0.249 0.107 1.357 223.9 11.0
25 0.307 0.451 0.145 3.847 238.5 13.0
— 0.072 0.120 0.049 3.302 197.4 12.0

Census88-9 5 0.059 0.136 0.076 2.011 598.5 11.0
15 0.146 0.262 0.116 1.052 644.2 12.0
25 0.217 0.310 0.093 2.008 884.4 12.0
— 0.068 0.109 0.041 3.077 634.5 12.0

Census150-9 5 0.058 0.169 0.111 5.874 2835.3 13.0
15 0.112 0.238 0.126 6.322 2862.7 14.0
25 0.150 0.352 0.201 5.351 3012.7 15.0
— 0.049 0.114 0.065 6.002 3375.8 12.0

Overall Mean 0.123 0.183 0.061 2.940 380.0 11.3

Table 4: Expected cost vs. maximum regret.

Problem p Obj Value % Increase Max Regret % Decrease
p-SkMP ∞ 25833.7 0.0% 0.727 0.0%

0.7266 25969.5 0.5% 0.688 5.4%
0.6876 25997.4 0.6% 0.632 13.1%
0.6315 26041.6 0.8% 0.626 13.9%
0.6259 26121.1 1.1% 0.542 25.4%
0.5162 26160.1 1.3% 0.487 32.9%
0.4872 27176.3 5.2% 0.476 34.5%
0.4758 27811.0 7.7% 0.409 43.7%

p-SUFLP ∞ 64066.5 0.0% 0.215 0.0%
0.2148 64244.3 0.3% 0.207 3.7%
0.2069 64269.3 0.3% 0.188 12.7%
0.1876 64282.6 0.3% 0.066 69.2%
0.0660 64485.4 0.7% 0.047 78.2%
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