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ABSTRACT 

In this chapter we outline the importance of facility location decisions in 
supply chain design.  We begin with a review of classical models 
including the traditional fixed charge facility location problem.  We then 
summarize more recent research aimed at expanding the context of facility 
location decisions to incorporate additional features of a supply chain 
including LTL vehicle routing, inventory management, robustness, and 
reliability. 

 
 

 
 

Introduction 
 

The efficient and effective movement of goods from raw material sites to 

processing facilities, component fabrication plants, finished goods assembly plants, 

distribution centers, retailers and customers is critical in today�s competitive 

environment.  Approximately 10% of the gross domestic product is devoted to supply-

related activities (Simchi-Levi, Kaminsky, and Simchi-Levi, 2003, p. 5).  Within 

individual industries, the percentage of the cost of a finished delivered item to the final 

consumer can easily exceed this value.  Supply chain management entails not only the 

movement of goods but also decisions about (1) where to produce, what to produce, and 

how much to produce at each site, (2) what quantity of goods to hold in inventory at each 

stage of the process, (3) how to share information among parties in the process and 

finally, (4) where to locate plants and distribution centers.   



Location decisions may be the most critical and most difficult of the decisions 

needed to realize an efficient supply chain.  Transportation and inventory decisions can 

often be changed on relatively short notice in response to changes in the availability of 

raw materials, labor costs, component prices, transportation costs, inventory holding 

costs, exchange rates and tax codes.  Information sharing decisions are also relatively 

flexible and can be altered in response to changes in corporate strategies and alliances.  

Thus, transportation, inventory, and information sharing decisions can be readily re-

optimized in response to changes in the underlying conditions of the supply chain.  

Decisions about production quantities and locations are, perhaps, less flexible, as many of 

the costs of production may be fixed in the short term.  Labor costs, for example, are 

often dictated by relatively long-term contracts.  Also, plant capacities must often be 

taken as fixed in the short-term.  Nevertheless, production quantities can often be altered 

in the intermediate term in response to changes in material costs and market demands.   

Facility location decisions, on the other hand, are often fixed and difficult to 

change even in the intermediate term.  The location of a multibillion-dollar automobile 

assembly plant cannot be changed as a result of changes in customer demands, 

transportation costs, or component prices.  Modern distribution centers with millions of 

dollars of material handling equipment are also difficult, if not impossible, to relocate 

except in the long term.  Inefficient locations for production and assembly plants as well 

as distribution centers will result in excess costs being incurred throughout the lifetime of 

the facilities, no matter how well the production plans, transportation options, inventory 

management, and information sharing decisions are optimized in response to changing 

conditions.   



However, the long-term conditions under which production plants and distribution 

centers will operate is subject to considerable uncertainty at the time these decisions must 

be made.  Transportation costs, inventory carrying costs (which are affected by interest 

rates and insurance costs), and production costs, for example, are all difficult to predict. 

Thus, it is critical that planners recognize the inherent uncertainty associated with future 

conditions when making facility location decisions.   

Vehicle routing and inventory decisions are generally secondary to facility 

location in the sense that facilities are expensive to construct and difficult to modify, 

while routing and inventory decisions can be modified periodically without difficulty.  

Nevertheless, it has been shown empirically for both location/routing and 

location/inventory problems that the facility location decisions that would be made in 

isolation are different from those that would be made taking into account routing or 

inventory.  Similarly, planners are often reluctant to consider robustness and reliability at 

design time since disruptions may be only occasional; however, large improvements in 

reliability and robustness can often be attained with only small increases in the cost of the 

supply chain network. 

In this chapter we review several traditional facility location models, beginning 

with the classical fixed charge location model.  We then show how the model can be 

extended to incorporate additional facets of the supply chain design problem, including 

more accurate representations of the delivery process, inventory management decisions, 

and robustness and reliability considerations.   

 



The Fixed Charge Facility Location Problem 
 

The fixed charge facility location problem is a classical location problem and 

forms the basis of many of the location models that have been used in supply chain 

design.  The problem can be stated simply as follows.  We are given a set of customer 

locations with known demands and a set of candidate facility locations.  If we elect to 

locate a facility at a candidate site, we incur a known fixed location cost.  There is a 

known unit shipment cost between each candidate site and each customer location.  The 

problem is to find the locations of the facilities and the shipment pattern between the 

facilities and the customers to minimize the combined facility location and shipment 

costs subject to a requirement that all customer demands be met. 

Specifically, we introduce the following notation: 

Inputs and Sets: 
 
I  Set of customer locations, indexed by i 
J  Set of candidate facility locations, indexed by j 
hi  demand at customer location i I∈  
f j  fixed cost of locating a facility at candidate site Jj∈  

cij  unit cost of shipping between candidate facility site Jj∈  and customer location 
 Ii∈

 
Decision Variables: 
 





 ∈

not if0

 site candidateat  locate  weif1 Jj
X j  

 
Y ij  fraction of the demand at customer location Ii∈  that is served by a facility at site 

 Jj∈
 
With this notation, the fixed charge facility location problem can be formulated as 

follows (Balinski, 1965): 



Minimize     (1) ∑ ∑∑
∈ ∈∈

+
Jj Ii

ijiji
Jj

jj YchXf

 
Subject to   1=∑

∈Jj
ijY Ii∈∀    (2) 

 
  −Y   0≤X jij Ii∈∀ ; Jj ∈∀    (3) 
 
  X j   { }1,0∈ Jj ∈∀    (4) 
 
  Y   0≥ij Ii∈∀ ; Jj ∈∀    (5) 
 

The objective function (1) minimizes the sum of the fixed facility location costs 

and the transportation or shipment costs.  Constraint (2) stipulates that each demand node 

is fully assigned.  Constraint (3) states that a demand node cannot be assigned to a facility 

unless we open that facility.  Constraint (4) is a standard integrality constraint and 

constraint (5) is a simple non-negativity constraint.   

The formulation given above assumes that facilities have unlimited capacity; the 

problem is sometimes referred to as the uncapacitated fixed charge location problem.  It 

is well known that at least one optimal solution to this problem involves assigning all of 

the demand at each customer location Ii∈  fully to the nearest open facility site .  In 

other words, the assignment variables, Y , will naturally take on integer values in the 

solution to this problem.  Many firms insist on or strongly prefer such single sourcing 

solutions as they make the management of the supply chain considerably simpler.  

Capacitated versions of the fixed charge location problem do not exhibit this property; 

enforcing single sourcing is significantly more difficult in this case (as discussed below). 

Jj∈

ij

A number of solution approaches have been proposed for the uncapacitated fixed 

charge location problem.  Simple heuristics typically begin by constructing a feasible 

solution by greedily adding or dropping facilities from the solution until no further 



improvements can be obtained.  Maranzana (1964) proposed a neighborhood search 

improvement algorithm for the closely related P-median problem (Hakimi, 1964, 1965) 

that exploits the ease in finding optimal solutions to 1-median problem: it partitions the 

customers by facility and then finds the optimal location within each partition.  If any 

facility changes, the algorithm repartitions the customers and continues until no 

improvement in the solution can be found.  Teitz and Bart (1968) proposed an exchange 

or �swap� algorithm for the P-median problem that can also be extended to the fixed 

charge facility location problem.  Hansen and  Mladenović (1997) proposed a variable 

neighborhood search algorithm for the P-median problem that can also be used for the 

fixed charge location problem.  Clearly, improvement heuristics designed for the P-

median problem will not perform well for the fixed charge location problem if the 

starting number of facilities is sub-optimal.  One way of resolving this limitation is to 

apply more sophisticated heuristics to the problem.  Al-Sultan and Al-Fawzan (1999) 

applied tabu search (Glover, 1989, 1990; Glover and Laguna, 1997) to the uncapacitated 

fixed charge location problem.  The algorithm was tested successfully on small- to 

moderate-sized problems. 

Erlenkotter (1978) proposed the well-known DUALOC procedure to find optimal 

solutions to the problem.  Galvão (1993) and Daskin (1995) review the use of Lagrangian 

relaxation algorithms in solving the uncapacitated fixed charge location problem.  When 

embedded in branch and bound, Lagrangian relaxation can be used to solve the fixed 

charge location problem optimally (Geoffrion, 1974).  The reader interested in a more 

comprehensive review of the uncapacitated fixed charge location problem is referred to 

either Krarup and Pruzan (1983) or Cornuéjols, Nemhauser and Wolsey (1990). 



One natural extension of the problem is to consider capacitated facilities.  If we 

let  be the maximum demand that can be assigned to a facility at candidate site b j Jj∈ , 

formulation (1)-(5) can be extended to incorporate facility capacities by including the 

following additional constraint: 

JjXbYh jj
Ii

iji ∈∀≤−∑
∈

0     (6) 

 
Constraint (6) limits the total assigned demand at facility Jj∈  to a maximum of b .  

From the perspective of the integer programming problem, this constraint obviates the 

need for constraint (3) since any solution that satisfies (5) and (6) will also satisfy (3).  

However, the linear programming relaxation of (1)-(6) is often tighter if constraint (3) is 

included in the problem. 

j

For fixed values of the facility location variables, , the optimal values of the 

assignment variables can be found by solving a traditional transportation problem.  The 

embedded transportation problem is most easily recognized if we replace h  by Z , 

the 

X j

Y iji ij

quantity shipped from distribution center j to customer i.  The transportation problem 

for fixed facility locations is then 

∑ ∑
∈ ∈Jj Ii

ijij ZcMinimize      (7) 

IihZ i
Jj

ij ∈∀=∑
∈

Subject to     (8) 

JjXbZ jj
Ii

ij ∈∀≤∑
∈

�     (9) 

JjIiZ ij ∈∀∈∀≥ ;0    (10) 
 
where we denote the fixed (known) values of the location variables by .   X j�

The solution to the transportation problem (7)-(10) may involve fractional 

assignments of customers to facilities.  This means that the solution to the problem with 



the addition of constraint (6) will not automatically satisfy the single sourcing condition, 

as does the solution to the uncapacitated fixed charge location problem in the absence of 

this constraint.  To restore the single sourcing condition, we can replace the fractional 

definition of the assignment variables by a binary one: 





 ∈∈

not if0

 site candidateat facility  aby  served are  sitecustomer at  demands if1 JjIi
Y ij  

 

The problem becomes considerably more difficult to solve since there are now far more 

integer variables.  For given facility sites, even if we ignore the requirement that each 

demand node is served exactly once, the resulting problems become knapsack problems, 

which can only be solved optimally in pseudo-polynomial time (as opposed to the 

transportation problem, which can be solved in polynomial time).   

Daskin and Jones (1993) observed that, in many practical contexts, the number of 

customers is significantly greater than the number of distribution centers that will be 

sited.  As such, each customer represents a small fraction of the total capacity of the 

distribution center to which it is assigned.  Also, if the single sourcing requirement is 

relaxed, the number of multiply sourced customers is less than or equal to the number of 

distribution centers minus one.  Thus, relatively few customers will be multiply-sourced 

in most contexts.  They further noted that warehouse capacities, when measured in terms 

of annual throughput as is commonly done, are rarely known with great precision, as they 

depend on many factors, including the number of inventory turns at the warehouse.  (We 

return to the issue of inventory turns below when we outline an integrated 

location/inventory model.)  They therefore proposed a procedure for addressing the single 



sourcing problem that involves (1) ignoring the single sourcing constraint and solving the 

transportation problem, (2) using duality to find alternate optima to the transportation 

problem that require fewer customers to be multiply sourced, and (3) allowing small 

violations of the capacity constraints to identify solutions that satisfy the single sourcing 

requirement.  In a practical context involving a large national retailer with over 300 stores 

and about a dozen distribution centers, they found that this approach was perfectly 

satisfactory from a managerial perspective. 

In a classic paper, Geoffrion and Graves (1974) extend the traditional fixed 

charge facility location problem to include shipments from plants to distribution centers 

and multiple commodities.  They introduce the following additional notation: 

Inputs and Sets: 
 
K  Set of plant locations, indexed by k 
L  Set of commodities, indexed by l 
Dli  demand for commodity Ll∈  at customer i I∈  
Slk  supply of commodity  at plant Ll∈ Kk ∈   

VV jj ,  minimum and maximum annual throughput allowed at distribution center Jj∈  

v j  variable unit cost of throughput at candidate site Jj∈  

clkji  unit cost of producing and shipping commodity l L∈  between plant k K∈ , 
candidate facility site  and customer location Jj∈ Ii∈  

 
Decision Variables: 
 



 ∈∈

not if0
 site candidateat facility  a by  served are  sitecustomer  at  demands if1 JjIi

Y ij  

Z lkji  quantity of commodity l L∈  shipped between plant Kk ∈ , candidate facility site 
 and customer location iJj∈ I∈  

 
With this notation, Geoffrion and Graves formulate the following extension of the fixed 

charge facility location problem. 



∑ ∑ ∑ ∑∑ ∑ ∑∑
∈ ∈ ∈ ∈∈ ∈ ∈∈

+







+

Ll Kk Jj Ii
lkjilkji

Jj Ll Ii
ijlij

Jj
jj ZcYDvXfMinimize   (11) 

LlKkSZ lk
Ii Jj

lkji ∈∀∈∀≤∑ ∑
∈ ∈

;Subject to    (12) 

IiJjLlYDZ ijli
Kk

lkji ∈∀∈∀∈∀=∑
∈

;;   (13) 

Ii
Jj

ijY ∈∀=∑
∈

1    (14) 

JjXVYDXV jj
Ii Ll

ijlijj ∈∀≤≤ ∑ ∑
∈ ∈

   (15) 

{ } JjX j ∈∀∈ 1,0    (16) 
{ } JjIiY ij ∈∀∈∀∈ ;1,0    (17) 

LlKkJjIiZ lkji ∈∀∈∀∈∀∈∀≥ ;;;0   (18) 
 
The objective function (11) minimizes the sum of the fixed distribution center (DC) 

location costs, the variable DC costs and the transportation costs from the plants through 

the DCs to the customers.  Constraint (12) states that the total amount of commodity l L∈  

shipped from plant  cannot exceed the capacity of the plant to produce that 

commodity.  Constraint (13) says that the amount of commodity  shipped to 

customer  via DC  must equal the amount of that commodity produced at all 

plants that is destined for that customer and shipped via that DC.  This constraint 

stipulates that demand must be satisfied at each customer node for each commodity and 

also serves as a linking constraint between the flow variables ( ) and the assignment 

variables (Y ).  Constraint (14) is the now-familiar single-sourcing constraint.  

Constraint (15) imposes lower and upper bounds on the throughput processed at each 

distribution center that is used.  This also serves as a linking constraint (e.g., it replaces 

constraint (3)) between the location variables ( ) and the customer assignment 

variables (Y ).  Alternatively, it can be thought of as an extension of the capacity 

constraint (6) above.   

Kk ∈

j∈

Ll∈

Ii∈

ij

ij

J

Z lkji

X j



In addition to the constraints above, Geoffrion and Graves allow for linear 

constraints on the location and assignment variables.  These can include constraints on 

the minimum and maximum number of distribution centers to be opened, relationships 

between the feasible open DCs, more detailed capacity constraints if different 

commodities use different amounts of a DC�s resources, and certain customer service 

constraints.  The authors apply Benders decomposition (Benders, 1962) to the problem 

after noting that, if the location and assignment variables are fixed, the remaining 

problem breaks down into L  transportation problems, one for each commodity. 

Geoffrion and Graves highlight eight different forms of analysis that were 

performed for a large food company using the model arguing, as do Geoffrion and 

Powers (1980), that the value of a model such as (11)-(18) extends far beyond the mere 

solution of a single instance of the problem to include a range of sensitivity and what-if 

analyses. 

 

Integrated Location/Routing Models 
 

An important limitation of the fixed charge location model, and even the multi-echelon, 

multi-commodity extension of Geoffrion and Graves, is the assumption that full truckload 

quantities are shipped from a distribution center to a customer.  In many contexts, 

shipments are made in less-than-truckload (LTL) quantities from a facility to customers 

along a multiple-stop route.  In the case of full truckload quantities, the cost of delivery is 

independent of the other deliveries made, whereas in the case of LTL quantities, the cost 

of delivery depends on the other customers on the route and the sequence in which 

customers are visited.  Eilon, Watson-Gandy and Christofides (1971) were among the 



first to highlight the error introduced by approximating LTL shipments by full truckloads.  

During the past three decades, a sizeable body of literature has developed on integrated 

location/routing models. 

Integrated location/routing problems combine three components of supply chain 

design:  facility location, customer allocation to facilities and vehicle routing. Many 

different location/routing problems have been described in the literature, and they tend to 

be very difficult to solve since they merge two NP-hard problems:  facility location and 

vehicle routing.  Laporte (1988) reviews early work on location routing problems; he 

summarizes the different types of formulations, solution algorithms and computational 

results of work published prior to 1988.  More recently, Min, Jayaraman, and Srivastava 

(1998) develop a hierarchical taxonomy and classification scheme that they use to review 

the existing location routing literature.  They categorize papers in terms of problem 

characteristics and solution methodology.  One means of classification is the number of 

layers of facilities.  Typically, three-layer problems include flows from plants to 

distribution centers to customers, while two-layer problems focus on flows from 

distribution centers to customers. 

An example of a three-layer location routing problem is the formulation of Perl 

(1983) and Perl and Daskin (1985); their model extends the model of Geoffrion and 

Graves to include multiple stop tours serving the customer nodes but it is limited to a 

single commodity.  Perl defines the following additional notation: 

Inputs and Sets: 
 
P  set of points =  JI ∪
d ij  distance between node  and node Pi∈ Pj∈  

v j  variable cost per unit processed by a facility at candidate facility site  Jj∈



t j  maximum throughput for a facility at candidate facility site Jj∈  
S  set of supply points (analogous to plants in the Geoffrion and Graves model), 

indexed by s 
csj  unit cost of shipping from supply point Ss∈  to candidate facility site  Jj∈

K  set of candidate vehicles, indexed by k 
σ k  capacity of vehicle  Kk ∈

τ k  maximum allowable length of a route served by vehicle Kk ∈  
α k  cost per unit distance for delivery on route k K∈  
 
Decision Variables: 
 



 ∈∈∈

not if0
point   topoint   fromdirectly  goes   vehicleif1 PjPiKk

Z ijk  

W sj  quantity shipped from supply source Ss∈  to facility site Jj∈  
 
With this notation (and the notation defined previously), Perl (1983) formulates the 

following integrated location routing problem: 

Minimize  (19) ∑ ∑ ∑∑ ∑∑ ∑∑
∈ ∈ ∈∈ ∈∈ ∈∈ 











+












+












+
Kk Pj Pi

ijkijk
Jj Ii

ijij
Ss Jj

sjsj
Jj

jj ZdYhvWcXf α

Subject to:   1=∑ ∑
∈ ∈Kk Pj

ijkZ Ii∈∀    (20) 

  ∑ ∑  σ k
Ii Pj

ijki Zh ≤












∈ ∈
Kk ∈∀    (21) 

  τ k
Pj Pi

ijkij Zd ≤
∈ ∈
∑ ∑  Kk ∈∀    (22) 

  1≥∑
∈ ∈ ∈Vi Vj Kk

ijkZ∑ ∑  VJPV ⊂⊂∀  that such   subsets   (23) 

  ∑  0=− ∑
∈∈ Pj

jik
Pj

ijk ZZ Pi∈∀ ; Kk ∈∀    (24) 

  ∑ ∑   1≤
∈ ∈Jj Ii

ijkZ Kk ∈∀    (25) 

  ∑  0=− ∑
∈∈ Ii

iji
Ss

sj YhW Jj∈∀    (26) 

  ∑  0≤−
∈

XtW jj
Ss

sj Jj∈∀    (27) 

  1≤−+ ∑
∈∈

YZZ ij
Ph

jhk
Pm

imk∑  Jj∈∀ ; Ii∈∀ ; Kk ∈∀   (28) 

  X j   { }1,0∈ Jj∈∀    (29) 
  ∈Y   { }1,0ij Ii∈∀ ; Jj∈∀    (30) 
  Z   { }1,0∈ijk Pi∈∀ ; Pj∈∀ ; Kk ∈∀   (31) 



  W sj   0≥ Ss∈∀ ; Jj∈∀    (32) 
 

The objective function (19) minimizes the sum of the fixed facility location costs, 

the shipment costs from the supply points (plants) to the facilities, the variable facility 

throughput costs and the routing costs to the customers.  Constraint (20) requires each 

customer to be on exactly one route.  Constraint (21) imposes a capacity restriction for 

each vehicle, while constraint (22) limits the length of each route.  Constraint (23) 

requires each route to be connected to a facility.  The constraint requires that there be at 

least one route that goes from any set V  (a proper subset of the points P  that contains the 

set of candidate facility sites) to its complement, thereby precluding routes that only visit 

customer nodes.  Constraint (24) states that any route entering node  also must exit 

that same node.  Constraint (25) states that a route can operate out of only one facility.  

Constraint (26) defines the flow into a facility from the supply points in terms of the total 

demand that is served by the facility.  Constraint (27) restricts the throughput at each 

facility to the maximum allowed at that site and links the flow variables and the facility 

location variables.  Thus, if a facility is not opened, there can be no flow through the 

facility, which in turn (by constraint (26)) precludes any customers from being assigned 

to the facility.  Constraint (28) states that if route 

Pi∈

Kk∈  leaves customer node  and 

also leaves facility , then customer 

Ii∈

Jj∈ Ii∈  must be assigned to facility .  This 

constraint links the vehicle routing variables ( ) and the assignment variables (Y ).  

Constraints (29)-(32) are standard integrality and non-negativity constraints. 

Jj∈

Zijk ij

Even for small problem instances, the formulation above is a difficult mixed 

integer linear programming problem.  Perl solves the problem using a three-phased 

heuristic.  The first phase finds minimum cost routes.  The second phase determines 



which facilities to open and how to allocate the routes from phase one to the selected 

facilities.  The third phase attempts to improve the solution by moving customers 

between facilities and re-solving the routing problem with the set of open facilities fixed.  

The algorithm iterates between the second and third phases until the improvement at any 

iteration is less than some specified value.  Wu, Low, and Bai (2002) propose a similar 

two-phase heuristic for the problem and test it on problems with up to 150 nodes. 

Like the three-layer formulation of Perl, two-layer location routing formulations 

(e.g., Laporte, Nobert and Pelletier (1983), Laporte, Nobert and Arpin (1986) and 

Laporte, Nobert and Taillefer (1988)) usually are based on integer linear programming 

formulations for the vehicle routing problem (VRP).  Flow formulations of the VRP often 

are classified according to the number of indices of the flow variable:   = 1 if a 

vehicle uses arc (i,j) or  = 1 if vehicle k uses arc (i,j).  The size and structure of these 

formulations make them difficult to solve using standard integer programming or 

network optimization techniques.  Motivated by the successful implementation of exact 

algorithms for set-partitioning-based routing models, Berger (1997) formulates a two-

layer location/routing problem that closely resembles the classical fixed charge facility 

location problem.  Unlike other location/routing problems, she formulates the routes in 

terms of paths, where a delivery vehicle may not be required to return to the distribution 

center after the final delivery is made.  The model is appropriate in situations where the 

deliveries are made by a contract carrier or where the commodities to be delivered are 

perishable.  In the latter case, the time to return from the last customer to the distribution 

center is much less important than the time from the facility to the last customer. Berger 

defines the following notation: 

X ij

X ijk



Inputs and Sets: 
 
P j  set of feasible paths from candidate distribution center Jj∈  

c jk  cost of serving the path k P j∈  

a j
ik  1 if delivery path  visits customer P jk∈ Ii∈ ; 0 if not 

Decision Variables: 
 

V jk   


 ∈∈

not if0
center  ondistributi ofout  operated is  path if1 Jjk P j

 

Note that there can be any number of restrictions on the feasible paths in set ; in fact, 

the more restrictive the conditions imposed on  are, the smaller the cardinality of  

is.  Restricting the total length of the paths, Berger formulates the following integrated 

location/routing model: 

P j

P j P j

Minimize     (33) ∑ ∑∑
∈ ∈∈ 











+
Jj k

jkjk
Jj

jj
P

VcXf
j

Subject to:  ∑ ∑
∈ ∈

=












Jj k
jk

j
ik

P
Va

j

1 Ii∈∀    (34) 

  V jk   0≤− X j Jj∈∀ ; P jk∈∀   (35) 
  X j   { }1,0∈ Jj∈∀    (36) 
  V jk   { }1,0∈ Jj∈∀ ; P jk∈∀   (37) 
 
The objective function (33) minimizes the sum of the facility location costs and the 

vehicle routing costs.  Constraint (34) requires each demand node to be on one route.  

Constraint (35) states that a route can be assigned only to an open facility.  Constraints 

(36) and (37) are standard integrality constraints.   

Although the similarity between this location routing model and the classical 

fixed charge location model (1)-(5) is striking, this model is much more difficult to solve 

for two reasons.  First, the linear programming relaxation provides a weak lower bound.  



The linear programming relaxation typically has solutions in which the path variables are 

assigned very small fractional values and the location variables are assigned fractional 

variables large enough only to satisfy constraints (35).  To strengthen significantly the 

linear programming relaxation, constraints (35) can be replaced by the following 

constraints:  

  ∑  0≤−
∈

X
P

Va j
k

jk
j
ik

j

Ii∈∀ ; Jj∈∀    (38) 

 
Consider a customer node  that is served (in part) using routes that emanate from 

facility .  The first term of (38) is the sum of all route assignment variables that 

serve that customer and that are assigned to that facility.  (In the linear programming 

relaxation, these assignment variables may be fractional).  Thus, this sum can be thought 

of as the fraction of demand node 

Ii∈

Jj∈

Ii∈  that is served out of facility Jj∈ .  The constraint 

requires the location variable to be no smaller than the largest of these sums for 

customers assigned (in part) to routes emanating from the facility.   

Second, there is an exponential number of feasible paths associated with any 

candidate facility, so complete enumeration of all possible columns of the problem is 

prohibitive.  Instead, Berger develops a branch-and-price algorithm, which uses column 

generation to solve the linear programs at each node of the branch-and-bound tree.  The 

pricing problem for the model decomposes into a set of independent resource-constrained 

shortest path problems.   

The development and the use of location routing models have been more limited 

than both facility location and vehicle routing models.  In our view, the reason is that it is 

difficult to combine, in a meaningful way, facility location decisions, which typically are 

strategic and long-term, and vehicle routing decisions, which typically are tactical and 



short-term.  The literature includes several papers that attempt to accommodate the fact 

that the set of customers to be served on a route may change daily, while the location of a 

distribution center may remain fixed for years. One approach is to define a large number 

of customers and to introduce a probability that each customer will require service on any 

day.  Jaillet (1985, 1988) introduces this concept in the context of the probabilistic 

traveling salesman problem.  Jaillet and Odoni (1988) provide an overview of this work 

and related probabilistic vehicle routing problems.  The idea is extended to location 

routing problems in Berman, Jaillet and Simchi-Levi (1995).  Including different 

customer scenarios, however, increases the difficulty of the problem, so this literature 

tends to locate a single distribution center.  In our view, the problem of approximating 

LTL vehicle tours in facility location problems without incurring the cost of solving an 

embedded vehicle routing or traveling salesman problem remains an open challenge 

worthy of additional research. 

Integrated Location/Inventory Models 
 

The fixed charge location problem ignores the inventory impacts of facility 

location decisions; it deals only with the tradeoff between facility costs, which increase 

with the number of facilities, and the average travel cost, which decreases approximately 

as the square root of the number of facilities located (call it N).  Inventory costs increase 

approximately as the square root of N.  As such, they introduce another force that tends to 

drive down the optimal number of facilities to locate.  Baumol and Wolfe (1958) 

recognized the contribution of inventory to distribution costs over forty years ago when 

they stated, �standard inventory analysis suggests that, optimally, important inventory 



components will vary approximately as the square root of the number of shipments going 

through the warehouse.� (p. 255)  If the total number of shipments is fixed, the number 

through any warehouse is approximately equal to the total divided by N.  According to 

Baumol and Wolfe, the cost at each warehouse is then proportional to the square root of 

this quantity.  When the cost per warehouse is multiplied by N, we see that the total 

distribution cost varies approximately with the square root of N.  This argument treats the 

cost of holding working or cycle stock; Eppen (1979) argued that safety stock costs also 

increase as the square root of N (assuming equal variance of demand at each customer 

and independence of customer demands). 

While the contribution of inventory to distribution costs has been recognized for 

many years, only recently have we been able to solve the resulting non-linear models that 

result from incorporating inventory decisions in facility location models.  Shen (2000) 

and Shen, Coullard, and Daskin (2003) introduced a location model with risk pooling 

(LMRP).  The model minimizes the sum of fixed facility location costs, direct 

transportation costs to the customers (which are assumed to be linear in the quantity 

shipped), working and safety stock inventory costs at the distribution centers and 

shipment costs from a plant to the distribution center (which may include a fixed cost per 

shipment).  The last two quantities�the inventory costs at the distribution centers and the 

shipment costs of goods to the distribution centers�depend on the allocation of 

customers to the distribution centers.  Shen introduces the following additional notation: 

Inputs and Sets: 
 

σµ 2, ii  mean and variance of the demand per unit time at customer Ii∈  

cij  a term that captures the annualized unit cost of supplying customer  from 
facility  as well as the variable shipping cost from the supplier to facility 

 

Ii∈

Jj ∈
Jj ∈



ρ j  a term that captures the fixed order costs at facility Jj ∈  as well as the fixed 

transport costs per shipment from the supplier to facility Jj ∈  and the working 
inventory carrying cost at facility Jj ∈  

jω  a term that captures the lead time of shipments from the supplier to facility Jj ∈  
as well as the safety stock holding cost 

 
 

With this notation, Shen formulates the LMRP as follows: 

Minimize ∑ ∑∑ ∑∑ ∑∑
∈ ∈∈ ∈∈ ∈∈

+++
Jj Ii

ijij
Jj Ii

ijij
Jj Ii

ijiij
Jj

jj YYYcXf σωµρµ 2   (39) 

Subject to   1=∑
∈Jj

ijY Ii∈∀    (2) 

 
  −Y   0≤X jij Ii∈∀ ; Jj ∈∀    (3) 
 
  X j   { }1,0∈ Jj ∈∀    (4) 
 
  Y   0≥ij Ii∈∀ ; Jj ∈∀    (5) 
 
The first term of the objective function (39) represents the fixed facility location costs.  

The second term captures the cost of shipping from the facilities to the customers as well 

as the variable shipment costs from the supplier to the facilities.  The third term 

represents the working inventory carrying costs which include any fixed (per shipment) 

costs of shipping from the supplier to the facilities.  The final term represents the safety 

stock costs at the facilities.  Note that the objective function is identical to that of the 

fixed charge location problem (1) with the addition of two non-linear terms, the first of 

which captures economies of scale regarding fixed ordering and shipping costs and the 

second of which captures the risk pooling associated with safety stocks.  Also note that 

the constraints of the LMRP are identical to those of the fixed charge location problem. 

Shen (2000) and Shen, Coullard, and Daskin (2003) recast this model as a set 

covering problem where the sets contain customers to be served by facility .  As in Jj ∈



Berger�s location/routing model, the number of possible sets is exponentially large.  

Thus, they propose solving the problem using column generation.  The pricing problems 

are non-linear integer programs, but their structure allows for a low-order polynomial 

solution algorithm.  Shen assumes that the variance of demand is proportional to the 

mean.  If demands are Poisson, this assumption is exact and not an approximation.  With 

this assumption, he is able to collapse the final two terms in the objective function into 

one term.  The resulting pricing problems can then be solved in ( )IIO log  time for each 

candidate facility and in ( )IIJ logO  time for all candidate facilities at each iteration of 

the column generation algorithm.  Shu, Teo, and Shen (2001) showed that the pricing 

problem with two square root terms (i.e., without assuming that the variance-to-mean 

ratio is constant for all customers) can be solved in ( )IIO log2  time.  Daskin, Coullard, 

and Shen (2003) developed a Lagrangian relaxation algorithm for this model and found it 

to be slightly faster than the column generation method. 

One of the important qualitative findings from Shen�s model is that, as inventory 

costs increase as a percentage of the total cost, the number of facilities located by the 

LMRP is significantly smaller than the number that would have been sited by the 

uncapacitated fixed charge location model, which ignores the risk pooling effects of 

inventory management.  Shen and Daskin (2003) have extended the model above to 

account for customer service considerations.  As customer service increases in 

importance, the number of facilities used in the optimal solution grows, eventually 

approaching and even exceeding the number used in the uncapacitated fixed charge 

model. 



Several joint location/inventory models appeared in the literature prior to Shen�s 

work.  Barahona and Jensen (1998) solve a location problem with a fixed cost for 

stocking a given product at a DC.  Erlebacher and Meller (2000) use various heuristic 

techniques to solve a joint location-inventory problem with a highly non-linear objective 

function.  Teo, Ou, and Goh (2001) present a 2 -approximation algorithm for the 

problem of choosing DCs to minimize location and inventory costs, ignoring 

transportation costs.  Nozick and Turnquist (2001a, 2001b) present models that, like 

Shen�s model, incorporate inventory considerations into the fixed charge location 

problem; however, they assume that inventory costs are linear, rather than concave, and 

DC-customer allocations are made based only on distance, not inventory. 

Ozsen, Daskin, and Coullard (2003) have extended the LMRP to incorporate 

capacities at the facilities.  Capacities are modeled in terms of the maximum (plausible) 

inventory accumulation during a cycle between order receipts.  This model is 

considerably harder to solve than is its uncapacitated cousin.  However, it highlights an 

important new dimension in supply chain operations that is not captured by the traditional 

capacitated fixed charge location model.  In the traditional model, capacity is typically 

measured in terms of throughput per unit time.  However, this value can change as the 

number of inventory turns per unit time changes.  Thus, the measure of capacity in the 

traditional model is often suspect.  Also, using the traditional model, there are only two 

ways to deal with capacity constraints as demand increases:  build more facilities or 

reallocate customers to more remote facilities that have excess capacity.  In the 

capacitated version of the LMRP, a third option is available, namely ordering more 

frequently in smaller quantities.  By incorporating this extra dimension of choice, the 



capacitated LMRP is more likely to reflect actual managerial options than is the 

traditional fixed charge location model. 

To some extent, merging inventory management with facility location decisions 

suffers from the same conceptual problems as merging vehicle routing with location.  

Inventory decisions, as argued above, can be revised much more frequently than can 

facility location decisions.  Nevertheless, there are three important reasons for research to 

continue in the area of integrated inventory-location modeling.  First, early results 

suggest that the location decisions that are made when inventory is considered can be 

radically different from those that would be made by a procedure that fails to account for 

inventory.  Second, as indicated above, the capacitated LMRP better models actual 

facility capacities than does the traditional fixed charge location model, as it introduces 

the option of ordering more often to accommodate increases in demand.  Third, we can 

solve fairly large instances of the integrated location-inventory model outlined above.  In 

particular, the Lagrangian approach can often solve problems with 600 customers and 

600 candidate facility sites in a matter of minutes on today�s desktop computers.  

 

Planning Under Uncertainty 
 

Long-term strategic decisions like those involving facility locations are always 

made in an uncertain environment.  During the time when design decisions are in effect, 

costs and demands may change drastically.  However, classical facility location models 

like the fixed charge location problem treat data as though they were known and 

deterministic, even though ignoring data uncertainty can result in highly suboptimal 



solutions.  In this section, we discuss approaches to facility location under uncertainty 

that have appeared in the literature. 

Most approaches to decision making under uncertainty fall into one of two 

categories: stochastic programming or robust optimization.  In stochastic programming, 

the uncertain parameters are described by discrete scenarios, each with a given 

probability of occurrence; the objective is to minimize the expected cost.  In robust 

optimization, parameters may be described either by discrete scenarios or by continuous 

ranges; no probability information is known, however, and the objective is typically to 

minimize the worst-case cost or regret.  (The regret of a solution under a given scenario is 

the difference between the objective function value of the solution under the scenario and 

the optimal objective function value for that scenario.)  Both approaches seek solutions 

that perform well, though not necessarily optimally, under any realization of the data.  

We provide a brief overview of the literature on facility location under uncertainty here.  

For a more comprehensive review, the reader is referred to Owen and Daskin (1998) or 

Berman and Krass (2001). 

Sheppard (1974) was one of the first authors to propose a stochastic approach to 

facility location.  He suggests selecting facility locations to minimize the expected cost, 

though he does not discuss the issue at length.  Weaver and Church (1983) and 

Mirchandani, Oudjit, and Wong (1985) present a multi-scenario version of the P-median 

problem.  Their model can be translated into the context of the fixed-charge location 

problem as follows.  Let S be a set of scenarios.  Each scenario s ∈ S has a probability qs 

of occurring and specifies a realization of random demands (his) and travel costs (cijs).    

Location decisions must be made now, before it is known which scenario will occur.  



However, customers may be assigned to facilities after the scenario is known, so the Y 

variables are now indexed by a third subscript, s.  The objective is to minimize the total 

expected cost.  The stochastic fixed charge location problem is formulated as follows: 

∑∑∑∑
∈ ∈ ∈∈

+
Ss Jj Ii

ijsijsiss
Jj

jj YchqXfMinimize    (40) 

 
Subject to   1=∑

∈Jj
ijsY Ii∈∀ ; Ss∈∀    (41) 

 
  Y   0≤− jijs X Ii∈∀ ; Jj ∈∀ ; Ss∈∀   (42) 
 
  X j   { }1,0∈ Jj ∈∀    (43) 
 
  Y   0≥ijs

Ii∈∀ ; Jj ∈∀ ; Ss∈∀   (44) 
 

The objective function (40) computes the total fixed cost plus the expected transportation 

cost.  Constraint (41) requires each customer to be assigned to a facility in each scenario.  

Constraint (42) requires that facility to be open.  Constraints (43) and (44) are integrality 

and non-negativity constraints.  The key to solving this model and the P-median-based 

models formulated by Weaver and Church (1983) and Mirchandani, Oudjit, and Wong 

(1985) is recognizing that the problem can be treated as a deterministic problem with |I||S| 

customers instead of |I|.   

Snyder, Daskin, and Teo (2003) consider a stochastic version of the LMRP.  

Other stochastic facility location models include those of Louveaux (1986), França and 

Luna (1982), Berman and LeBlanc (1984), Carson and Batta (1990), and Jornsten and 

Bjorndal (1994). 

Robust facility location problems tend to be more difficult computationally than 

stochastic problems because of their minimax structure.  As a result, the literature on 



robust facility location generally falls into one of two categories: analytical results and 

polynomial-time algorithms for restricted problems like 1-median problems or P-medians 

on tree networks (see Chen and Lin (1998), Burkhard and Dollani (2001), Vairaktarakis 

and Kouvelis (1999), and Averbakh and Berman (2000)) and heuristics for more general 

problems (Serra, Ratick, and ReVelle (1996), Serra and Marianov (1998), and Current, 

Ratick, and ReVelle (1997)). 

Solutions to the stochastic fixed charge problem formulated above may perform 

well in the long run but poorly in certain scenarios.  To address this problem, Snyder and 

Daskin (2003b) combine the stochastic and robust approaches by finding the minimum-

expected-cost solution to facility location problems subject to an additional constraint 

that the relative regret in each scenario is no more than a specified limit.  They show 

empirically that by reducing this limit, one obtains solutions with substantially reduced 

maximum regret without large increases in expected cost.  In other words, there are a 

number of near-optimal solutions to the fixed charge problem, many of which are much 

more robust than the true optimal solution. 



Location Models with Facility Failures 
 

Once a set of facilities has been built, one or more of them may from time to time 

become unavailable � for example, due to inclement weather, labor actions, natural 

disasters, or changes in ownership.  These facility �failures� may result in excessive 

transportation costs as customers previously served by these facilities must now be served 

by more distant ones.  In this section, we discuss models for choosing facility locations to 

minimize fixed and transportation costs while also hedging against failures within the 

system.  We call the ability of a system to perform well even when parts of the system 

have failed the �reliability� of the system.  The goal, then, is to choose facility locations 

that are both inexpensive and reliable. 

The robust facility location models discussed in the previous section hedge 

against uncertainty in the problem data.  By contrast, reliability models hedge against 

uncertainty in the solution itself.  Another way to view the distinction in the context of 

supply chain design is that robustness is concerned with �demand-side� uncertainty 

(uncertainty in demands, costs, or other parameters), while reliability is concerned with 

�supply-side� uncertainty (uncertainty in the availability of plants or distribution centers). 

The models discussed in this section are based on the fixed charge location 

problem; they address the tradeoff between operating cost (fixed location costs and day-

to-day transportation cost�the classical fixed charge problem objective) and failure cost 

(the transportation cost that results after a facility has failed).  The first model considers 

the maximum failure cost that can occur when a single facility fails, while the second 

model considers the expected failure cost given a fixed probability of failure.  The 

strategy behind both formulations is to assign each customer to a primary facility (which 



serves it under normal conditions) and one or more backup facilities (which serve it when 

the primary facility has failed).  Note that although we refer to primary and backup 

facilities, �primariness� is a characteristic of assignments, not facilities; that is, a given 

facility may be a primary facility for one customer and a backup facility for another. 

In addition to the notation defined earlier, let  
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and let V be a desired upper bound on the failure cost that may result if a facility fails.  

Snyder (2003) formulates the maximum-failure-cost reliability problem as follows: 
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  Y   0=ijj Ii∈∀ ; Jj ∈∀    (50) 
 
  X j   { }1,0∈ Jj ∈∀    (51) 
 
  Y   }1,0{≥ijk Ii∈∀ ; Jj ∈∀ ; Jk ∈∀   (52) 

 
The objective function (45) sums the fixed cost and transportation cost to 

customers from their primary facilities.  (The summation over k is necessary to determine 



the assignments, but the objective function does not depend on the backup assignments.)  

Constraint (46) requires each customer to be assigned to one primary and one backup 

facility.  Constraints (47) and (48) prevent a customer from being assigned to a primary 

or a backup facility, respectively, that has not been opened.  (The summation on the left-

hand side of (47) can be replaced by Yijk without affecting the IP solution, but doing so 

considerably weakens the LP bound.)  Constraint (49) is the reliability constraint and 

requires the failure cost for facility j to be no greater than V.  The first summation 

computes the cost of serving each customer from its primary facility if its primary facility 

is not j, while the second summation computes the cost of serving customers assigned to j 

as their primary facility from their backup facilities.  Constraint (50) requires a 

customer�s primary facility to be different from its backup facility, and constraints (51) 

and (52) are standard integrality and non-negativity constraints.  This model can be 

solved for small instances using an off-the-shelf IP solver, but larger instances must be 

solved heuristically. 

The expected-failure-cost reliability model (Snyder and Daskin, 2003a) assumes 

that multiple facilities may fail simultaneously, each with a given probability q of failing.  

In this case, a single backup facility is insufficient, since a customer�s primary and 

backup facilities may both fail.  Therefore, we define 
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A �level-r� assignment is one for which there are r closer facilities that are open.  If r = 0, 

this is a primary assignment; otherwise it is a backup assignment.  The objective is to 

minimize a weighted sum of the operating cost (the fixed charge location problem 

objective) and the expected failure cost, given by 
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Each customer i is served by its level-r facility (call it j) if the r closer facilities have 

failed (this occurs with probability qr) and if j itself has not failed (this occurs with 

probability 1 � q).  The full model is omitted here.  This problem can be solved 

efficiently using Lagrangian relaxation. 

 Few firms would be willing to choose a facility location solution that is, say, 

twice as expensive as the optimal solution to the fixed charge problem just to hedge 

against occasional disruptions to the supply chain.  However, Snyder and Daskin (2003a) 

show empirically that it often costs very little to �buy� reliability: like robustness, 

reliability can be improved substantially with only small increases in cost. 

Conclusions and Directions for Future Work 
 

Facility locations decisions are critical to the efficient and effective operation of a 

supply chain.  Poorly placed plants and warehouses can result in excessive costs and 

degraded service no matter how well inventory policies, transportation plans, and 

information sharing policies are revised, updated, and optimized.  At the heart of many 

supply chain facility location models is the fixed charge location problem.  As more 

facilities are located, the facilities tend to be closer to customers resulting in lower 

transport costs, but higher facility costs.  The fixed charge facility location problem finds 

the optimal balance between fixed facility costs and transportation costs.  Three 

important extensions of the basic model consider (1) facility capacities and single 

sourcing requirements, (2) multiple echelons in the supply chain, and (3) multiple 

products. 



The fixed charge location problem, as well as these extensions, assume that 

shipments from the warehouses or distribution centers to the customers or retailers are 

made in truckload quantities.  In reality, distribution to customers is often performed 

using less-than-truckload routes that visit multiple customers.  This chapter reviewed two 

different approaches to formulating integrated location/routing models.  However, as 

indicated above, these approaches suffer from the fundamental problem that facility 

locations are typically determined at a strategic level while vehicle routes are optimized 

at the operational level.  In other words, the set of customers and their demands may 

change daily resulting in daily route changes, while the facilities are likely to be fixed for 

years.  We believe that additional research is needed to find improved ways of 

approximating the impact of less-than-truckload deliveries on facility location costs 

without embedding a vehicle routing problem (designed to serve one realization of 

customer demands) in the facility location model. 

Incorporating inventory decisions in facility location models appears to be critical 

for supply chain modeling.  As early as 1958, researchers recognized that inventory costs 

would tend to increase with the square root of the number of facilities used.  Only 

recently, however, have non-linear models that approximate this relationship between 

inventory costs and location decisions been formulated and solved optimally.  While we 

believe that these models represent an important step forward in location modeling for 

supply chain problems, considerable additional research is needed.  In particular, 

researchers should attempt to incorporate more sophisticated inventory models, including 

multi-item inventory models and models that account for inventory accumulation at all 

echelons of the supply chain.  Heuristic approaches to the multi-item problem have 



recently been proposed by Balcik (2003) and an optimal approach has been suggested by 

Snyder (2003).  The latter model, however, assumes that items are ordered separately, 

resulting in individual fixed order costs for each commodity purchased. 

Finally, since facility location decisions are inherently strategic and long-term in 

nature, supply chain location models must account for the inherent uncertainty 

surrounding future conditions.  We have reviewed a number of scenario-based location 

models as well as models that account for unreliability in the facilities themselves.  This 

too is an area worthy of considerable additional research.  For example, generating 

scenarios that capture future uncertainty and the relationships between uncertain 

parameters is one critical area of research.  Reliability-based location models for supply 

chain management are still in their infancy.  In fact, it is not immediately clear how to 

marry reliability modeling approaches and the integrated location/inventory models we 

reviewed, since the non-linearities introduced by the inventory terms complicate the 

computation of failure costs.  In this regard, the more general techniques of stochastic 

programming (Birge and Louveaux, 1997) may ultimately prove fruitful.  
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