
NORTHWESTERN UNIVERSITY

Supply Chain Robustness and Reliability: Models and Algorithms

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Industrial Engineering and Management Sciences

By

Lawrence V. Snyder

EVANSTON, ILLINOIS

December 2003



c©Copyright by Lawrence V. Snyder 2003

All Rights Reserved

ii



ABSTRACT

Supply Chain Robustness and Reliability: Models and Algorithms

Lawrence V. Snyder

Supply chain design models have traditionally treated the world as if we knew everything

about it with certainty. In reality, however, parameter estimates may be inaccurate

due to poor forecasts, measurement errors, changing demand patterns, or other factors.

Moreover, even if all of the parameters of the supply chain are known with certainty, the

system may face disruptions from time to time, for example, due to inclement weather,

labor actions, or sabotage. This dissertation studies models for designing supply chains

that are robust (i.e., perform well with respect to uncertainties in the data, such as

demand) and reliable (i.e., perform well when parts of the system fail).

The first half of this dissertation is concerned with models for robust supply chain

design. The first of these models minimizes the expected systemwide cost, including costs

for facility location, transportation, and inventory. The second model adds a constraint

that restricts the regret in any scenario to be within a pre-specified limit. Both models are

solved using Lagrangian relaxation. The second model presents an additional challenge

since feasible solutions cannot always be found easily, and it may even be difficult to

determine whether a given problem is feasible. We present strategies for overcoming these

difficulties. We also discuss regret-constrained versions of two classical facility location

problems and suggest algorithms for these problems based on variable-splitting. The

iii



algorithms presented here can be used (heuristically) to solve minimax-regret versions of

the corresponding problems.

In the second half of the dissertation, we present a new approach to supply chain

optimization that attempts to choose facility locations so that if a distribution center

becomes unavailable, the resulting cost of operating the system (called the “failure cost”)

is not excessive. We discuss two types of reliability models, one that considers the

maximum failure cost and one that considers the expected failure cost. We propose

several formulations of the maximum failure cost problem and discuss relaxations for

them. We also present a tabu search heuristic for solving these problems. The expected

failure cost problem is solved using Lagrangian relaxation. Computational results from

both models demonstrate empirically that large improvements in reliability are often

possible with small increases in cost.

iv



Dissertation Committee

Professor Mark S. Daskin, Committee Chair
Department of Industrial Engineering and Management Sciences
Robert R. McCormick School of Engineering
Northwestern University

Professor Collette Coullard
Department of Industrial Engineering and Management Sciences
Robert R. McCormick School of Engineering
Northwestern University

Professor Karen Smilowitz
Department of Industrial Engineering and Management Sciences
Robert R. McCormick School of Engineering
Northwestern University

Professor Chung–Piaw Teo
Department of Decision Sciences
National University of Singapore

v



Acknowledgments

I would like to thank Mark Daskin, without whose guidance this project would have

been impossible. Mark has been generous and supportive, academically, professionally,

and personally, and is a true role model to me.

My readers, Collette Coullard, Karen Smilowitz, and Chung-Piaw Teo, have been of

great help throughout my graduate career. I especially appreciate the time that Collette

took to mentor me as a first-year graduate student. Karen’s perspective on my research

has helped my dissertation take shape as a cohesive whole, and her support got me

through the job search process. C.P. has been a valuable resource whenever I ran into a

roadblock, and I value his impressive expertise.

I would like to thank my parents, Harvey and Lenny, my sister Tanya, and my ex-

tended family, Carol, Art, Joyce, and Amy. This achievement is due in no small part to

their love, support, and generosity.

I would not have stayed happy and sane throughout this process without our friends

Mark and Alyssa, for whom a deck of cards and a bottle of Rancho will always be waiting

at our home. Our friend and choir conductor, Randi, has been a musical and personal

inspiration, and I will miss him.

My advisors during my undergraduate years at Amherst College, Norton Starr and

Ruth Haas, were formative in my academic development, and I thank them for helping

me develop as a student and researcher, and for encouraging me to pursue graduate

study in Operations Research. I also wish to thank the rest of the faculty and my fellow

graduate students in the IE/MS department for creating a productive environment of

vi



intellectual growth and for supporting me as a student, teacher, and researcher.

Most especially, I want to thank my wife, Suzanne, an amazing friend and partner

from whom I have learned so much about generosity, dedication, and scholarship. I hope

I can repay some of the support, encouragement, and love she has given me.

vii



Contents

1 Introduction 1

1.1 Robust vs. Reliable Optimization . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Robust Location Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Stochastic Location Problems . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Minimax Location Models . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Other Robustness Measures . . . . . . . . . . . . . . . . . . . . . 28

2.2.4 p-Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Reliable Supply Chain Design . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Network Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 Expected Covering Models . . . . . . . . . . . . . . . . . . . . . . 39

2.3.3 Reliable Supply Chain Management . . . . . . . . . . . . . . . . . 40

viii



2.3.4 Other Related Research . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Relaxation Methods for Facility Location Problems . . . . . . . . . . . . 42

2.4.1 The PMP and UFLP . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.2 The CFLP: Notation and Formulation . . . . . . . . . . . . . . . 48

2.4.3 The CFLP: Relaxations . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Location–Inventory Models . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5.1 LMRP: Problem Statement . . . . . . . . . . . . . . . . . . . . . 60

2.5.2 LMRP: Solution Procedure . . . . . . . . . . . . . . . . . . . . . 67

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 The Stochastic Location Model with Risk Pooling 73

3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.2 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.3 Branch and Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2.4 Variable Fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.5 Relationship to Weaver and Church’s Algorithm . . . . . . . . . . 83

3.3 Multi-Commodity and Multi-Period Problems . . . . . . . . . . . . . . . 84

3.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.2 Algorithm Performance . . . . . . . . . . . . . . . . . . . . . . . . 89

ix



3.4.3 Variable Fixing and DC Locations . . . . . . . . . . . . . . . . . . 92

3.4.4 Stochastic vs. Deterministic Solutions . . . . . . . . . . . . . . . . 95

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 The p Robust Stochastic Location Model with Risk Pooling 99

4.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.2 Detecting Infeasibility . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.3 Unboundedness of (p-SLR) . . . . . . . . . . . . . . . . . . . . . 109

4.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2.5 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2.6 Branch and Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.7 Variable Fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3 The Minimax Regret Problem . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4 p-Robust Stochastic Location Problems . . . . . . . . . . . . . . . . . . . 124

4.4.1 p-Robust Stochastic PMP . . . . . . . . . . . . . . . . . . . . . . 125

4.4.2 p-Robust Stochastic UFLP . . . . . . . . . . . . . . . . . . . . . . 129

4.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.5.1 p-SLMRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.5.2 Expected Cost vs. Maximum Regret . . . . . . . . . . . . . . . . 139

4.5.3 p-SPMP and p-SUFLP . . . . . . . . . . . . . . . . . . . . . . . . 144

x



4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5 Maximum Failure Cost Reliability Models 157

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.2 Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.2.2 Weak Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.2.3 Strong Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.2.4 Separable Formulation . . . . . . . . . . . . . . . . . . . . . . . . 170

5.3 Relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.3.1 LLR Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.3.2 ALR Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.3.3 Hybrid Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.3.4 Variable-Splitting Relaxation . . . . . . . . . . . . . . . . . . . . 180

5.4 Infeasibility Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.5 Tabu Search Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.5.1 Moves and Tabu Lists . . . . . . . . . . . . . . . . . . . . . . . . 185

5.5.2 Evaluation of Solutions . . . . . . . . . . . . . . . . . . . . . . . . 187

5.5.3 Initialization and Termination . . . . . . . . . . . . . . . . . . . . 187

5.5.4 Outline of Tabu Search Heuristic . . . . . . . . . . . . . . . . . . 188

5.6 Tradeoff Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.7 UFLP-Based Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

xi



5.8 Definitions of Failure Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.9 Hedge Set Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.10 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.10.1 Comparison of LP Bounds . . . . . . . . . . . . . . . . . . . . . . 197

5.10.2 Comparison of Relaxation Bounds . . . . . . . . . . . . . . . . . . 199

5.10.3 Tabu Search Heuristic Performance . . . . . . . . . . . . . . . . . 201

5.10.4 Tradeoff Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.11 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6 Expected Failure Cost Reliability Models 207

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.2.3 Integer Programming Formulation . . . . . . . . . . . . . . . . . . 213

6.3 Lagrangian Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.3.1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.3.2 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.3.3 Multiplier Updating . . . . . . . . . . . . . . . . . . . . . . . . . 219

6.3.4 Branch and Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 220

6.3.5 Variable Fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.4 Tradeoff Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

xii



6.5 UFLP-Based Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.5.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.5.2 Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

6.6 A Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

6.7 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

6.7.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 227

6.7.2 Algorithm Performance . . . . . . . . . . . . . . . . . . . . . . . . 229

6.7.3 Tradeoff Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

6.7.4 Number of Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

6.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

7 Conclusions and Future Research 240

A Counterexample to p-Robust ISP Algorithm 243

B The Multiple-Choice Knapsack Problem (MCKP) 249

xiii



List of Tables

2.1 Relaxations for the CFLP. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Parameters for Lagrangian relaxation procedure: SLMRP. . . . . . . . . 89

3.2 SLMRP algorithm performance. . . . . . . . . . . . . . . . . . . . . . . . 91

3.3 SLMRP algorithm performance summary. . . . . . . . . . . . . . . . . . 92

3.4 SLMRP: variable-fixing and DC locations. . . . . . . . . . . . . . . . . . 94

3.5 SLMRP: variable-fixing and DC locations summary. . . . . . . . . . . . . 95

3.6 SLMRP: stochastic vs. deterministic solutions. . . . . . . . . . . . . . . . 97

3.7 SLMRP: stochastic vs. deterministic solutions summary. . . . . . . . . . 98

4.1 Facility data for example problem. . . . . . . . . . . . . . . . . . . . . . 113

4.2 Other data for example problem. . . . . . . . . . . . . . . . . . . . . . . 113

4.3 Parameters for Lagrangian relaxation algorithm: p-SLMRP. . . . . . . . 133

4.4 Subgradient optimization modifications. . . . . . . . . . . . . . . . . . . 134

4.5 p-SLMRP: Upper and lower bounds. . . . . . . . . . . . . . . . . . . . . 136

4.5 p-SLMRP: Upper and lower bounds (cont’d). . . . . . . . . . . . . . . . . 137

4.6 p-SLMRP: Performance summary. . . . . . . . . . . . . . . . . . . . . . . 139

xiv



4.7 p-SLMRP algorithm performance. . . . . . . . . . . . . . . . . . . . . . . 140

4.7 p-SLMRP algorithm performance (cont’d). . . . . . . . . . . . . . . . . . 141

4.8 p-SLMRP: Scenario regret. . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.9 p-SLMRP minimax regret heuristic. . . . . . . . . . . . . . . . . . . . . . 144

4.10 p-SPMP algorithm performance: 25-node, 5-scenario data set. . . . . . . 147

4.11 p-SPMP algorithm performance: 49-node, 9-scenario data set. . . . . . . 148

4.11 p-SPMP algorithm performance: 49-node, 9-scenario data set (cont’d). . 149

4.12 p-SUFLP algorithm performance: 25-node, 5-scenario data set. . . . . . . 149

4.13 p-SUFLP algorithm performance: 49-node, 9-scenario data set. . . . . . . 149

4.14 p-SPMP and p-SUFLP: Performance summary. . . . . . . . . . . . . . . 149

4.15 Variable-splitting vs. Lagrangian relaxation. . . . . . . . . . . . . . . . . 151

4.16 p-SPMP and p-SUFLP minimax regret heuristic. . . . . . . . . . . . . . . 154

5.1 Failure costs for UFLP solution. . . . . . . . . . . . . . . . . . . . . . . . 159

5.2 Parameters for tabu search algorithm for RPMP-MFC. . . . . . . . . . . 188

5.3 MFC Models: Comparison of LP bounds. . . . . . . . . . . . . . . . . . . 198

5.4 MFC Models: Comparison of relaxation bounds. . . . . . . . . . . . . . . 200

5.5 MFC Models: Comparison of relaxation times. . . . . . . . . . . . . . . . 201

5.6 Tabu search heuristic performance. . . . . . . . . . . . . . . . . . . . . . 202

5.7 Tabu search heuristic performance: 100-node RFLP-MFC problem. . . . 203

5.8 First 10 solutions in curve: RFLP-MFC. . . . . . . . . . . . . . . . . . . 205

6.1 Lagrangian parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

xv



6.2 Algorithm results: RPMP-EFC. . . . . . . . . . . . . . . . . . . . . . . . 230

6.3 Algorithm results: RFLP-EFC. . . . . . . . . . . . . . . . . . . . . . . . 230

6.4 First 10 solutions in curve: RFLP-EFC. . . . . . . . . . . . . . . . . . . 232

6.5 Sensitivity to m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

xvi



List of Figures

2.1 Decision-making taxonomy. . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 An infeasible (p-SLMRP) instance with unbounded (p-SLR). . . . . . . . 114

4.2 Ranges maintained by the minimax-regret heuristic. . . . . . . . . . . . . 122

4.3 Increase in expected cost versus maximum regret. . . . . . . . . . . . . . 142

4.4 Variable-splitting vs. Lagrangian relaxation: p-SPMP, P = 5. . . . . . . . 153

4.5 Variable-splitting vs. Lagrangian relaxation: p-SPMP, P = 15. . . . . . . 153

4.6 Variable-splitting vs. Lagrangian relaxation: p-SUFLP. . . . . . . . . . . 154

5.1 UFLP solution before failure. . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2 UFLP solution after failure. . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.3 RFLP-MFC tradeoff curve for 100-node data set. . . . . . . . . . . . . . 205

6.1 RFLP-EFC tradeoff curve for 49-node data set. . . . . . . . . . . . . . . 232

6.2 Shifting tradeoff curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.3 Changing the number of non-failing facilities. . . . . . . . . . . . . . . . . 235

A.1 ISP example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

xvii



A.2 Branch-and-bound trees for ISP algorithm. . . . . . . . . . . . . . . . . . 248

xviii



Chapter 1

Introduction

Supply chain network design decisions are costly and difficult to reverse, and their impact

spans a long time horizon. During the time when design decisions are in effect, any of the

parameters of the problem—costs, demands, distances, lead times—may fluctuate widely.

However, supply chain optimization models have traditionally treated the world as if we

knew everything about it with certainty. Even inventory models, the main aspect of

supply chain management whose inherent uncertainty has been considered widely in the

literature, generally assume that probability distributions of the uncertain parameters are

known. In reality, however, parameter estimates may be inaccurate due to poor forecasts,

measurement errors, changing demand patterns, or other factors. Moreover, even if all

of the parameters of the supply chain are known with certainty, the system may face

disruptions from time to time, for example, due to inclement weather, labor actions, or

sabotage. This highlights a need for models that incorporate various forms of uncertainty

into strategic decisions about supply chain design. In this dissertation, we present models

1



2

for robust and reliable supply chain design. Broadly defined, a supply chain is robust if

it performs well with respect to uncertain future conditions—for example, costs or travel

times; a supply chain is reliable if it performs well when parts of the system fail—for

example, when a distribution center becomes unavailable because of poor weather.

The goal of robust optimization in general is to find solutions that perform well under

every realization of the uncertain parameters, though not necessarily optimally in any.

Our models for robust supply chain design use as an underlying model a joint location–

inventory model that recently appeared in the literature; this model, called the Location

Model with Risk Pooling (LMRP), chooses distribution center (DC) locations, assign-

ments of retailers to DCs, and inventory levels at the DCs to minimize the total cost.

The first model we consider in this dissertation solves the LMRP in a stochastic context

to minimize the total expected systemwide cost. The second model is similar to the first

but it also imposes a maximum level of “regret,” or opportunity loss, on each scenario.

Both of these are two-stage models, in that strategic decisions (facility location) must be

made now, before it is known which scenario will come to pass, while tactical decisions

(assignment of retailers to DCs, setting inventory levels) are made in the future, after the

uncertainty has been resolved. However, by simply multiplying the results by the number

of time periods in the planning horizon, one can think of these as multi-period models in

which we make strategic decisions now and then make separate tactical decisions in each

time period. Thus our models do not require parameters to be time-stationary; demand

means and variances may change over time. If we make decisions now that hedge poorly

against the various scenarios, we must live with the consequences as parameters change.



3

The notion of supply chain reliability has not previously been studied. While several

recent authors have identified a need for strategies that reduce the vulnerability of supply

chains to disruptions, few quantitative models have been developed. Our research begins

to address this need by formulating several models for choosing facility locations so

that if one or more facilities becomes unavailable, the remaining system is adequate to

serve customers efficiently. Naturally, systems designed based solely on cost may not

be reliable, and more reliable systems may be more expensive to operate. There is a

tradeoff between the day-to-day operating cost of a system and the reliability of the

system. One set of models in this dissertation addresses the tradeoff between operating

cost and the maximum cost that might result when a facility fails, while another set

addresses that between operating cost and the expected cost of failure when facilities

have a given probability of failing. All of these models have a classical facility location

model as the underlying model. Future research will extend the reliability concept to

richer supply chain models such as the LMRP described above.

1.1 Robust vs. Reliable Optimization

As noted above, robust optimization is concerned with finding solutions that perform

well with respect to uncertain future conditions, while reliable optimization is concerned

with finding solutions that perform well when parts of the system fail. Typically, robust

optimization problems involve scenarios that describe the uncertain parameters; these

scenarios may be discrete (each scenario providing a complete description of the pa-



4

rameters, possibly with a probability of each scenario’s occurrence) or continuous (each

parameter represented by a range of values that it may take, possibly described by a

probability distribution). While some authors use the term “stochastic” for problems

involving expected performance and reserve the term “robust” for problems involving

worst-case performance or regret, we prefer to use “robust” more broadly to refer to

any solution that performs well across a range of scenarios, in expected performance,

worst-case performance, or any of a number of other measures that have appeared in the

literature over the past half-century or so. In contrast, “reliability” refers to a different

approach to uncertainty in which we are hedging against failures in the system described

by a given solution. In that sense, one can view robustness as concerned with uncertainty

in the data, while reliability refers to uncertainty in the solution itself. Another way to

view the distinction in the context of supply chain design or facility location is that ro-

bustness is concerned with demand-side uncertainty (uncertainty in demands, costs, or

other aspects of the distribution of goods from a firm to its customers) while reliabil-

ity is concerned with supply-side uncertainty (uncertainty in the availability of plants,

distribution centers, or other facilities required to produce and distribute the product).

This discussion is meant to provide a framework for thinking about the distinction

between robustness and reliability. It is not meant to suggest that there is a rigorous

distinction between the two from a modeling or optimization point of view. Indeed, one

could incorporate facility failures into the problem data, blurring the “data uncertainty

vs. solution uncertainty” distinction above. Similarly, the line between supply-side and

demand-side may itself be blurred, making that distinction irrelevant, as well. Still,



5

we find these to be useful distinctions between the approaches to uncertainty, and we

encourage the reader to keep them in mind while reading this dissertation.

1.2 Research Contributions

Supply chain design models mainly consider deterministic settings, despite the long hori-

zons over which supply chains are operational and the strong likelihood that the param-

eters will look significantly different at the end of the planning horizon than they did

during design time. The robust supply chain design models in this dissertation address

the need to incorporate uncertainty into the strategic planning process. In particular, we

contribute to the literature on robust supply chain design as follows:

1. We develop a model to choose DC locations, assignments of retailers to DCs, and

inventory levels at the DCs in order to minimize total expected systemwide cost.

This model can also be used to model a multi-commodity supply chain design

problem. We present a Lagrangian relaxation-based algorithm for this model.

2. We extend the first model by adding a constraint restricting the regret in any sce-

nario to be no greater than a pre-specified robustness parameter, ensuring that

solutions perform well both in the long run and in any individual scenario. We

present another Lagrangian relaxation-based algorithm for this model. By system-

atically varying the robustness parameter, one can solve a minimax-regret version

of the LMRP or, as a special case, of the uncapacitated fixed-charge location prob-

lem (UFLP). Since our algorithm may not perform well for certain values of the



6

robustness parameter, this method serves as a heuristic for the minimax-regret

problem.

3. We present formulations of regret-constrained versions of the P -median problem

(PMP) and the UFLP that are tighter than those from the relaxation described in

number 2. These formulations are solved via variable-splitting.

No facility location models have been published that explicitly account for reliability

issues—the ability of the system to perform well when not all facilities are operational.

We make the following contributions:

4. We develop a model for choosing facility locations to minimize total fixed and

transportation cost while restricting the maximum failure cost (the cost that results

when a facility fails) to be no greater than a pre-specified value. We present several

formulations and relaxations of this problem, as well as a tabu search heuristic for

solving it. We show how to generate the tradeoff curve between operating cost and

maximum failure cost using the constraint method of multi-objective optimization.

5. We develop a model for choosing facility locations to minimize a weighted sum of

the operating cost (fixed plus transportation cost) and the expected failure cost.

We solve this problem using Lagrangian relaxation and show how to generate the

tradeoff curve between the two objectives using the weighting method of multi-

objective optimization.



7

1.3 Outline

The remainder of this dissertation is organized as follows. In Chapter 2 we review the

literature on robust and reliable supply chain design and facility location; we also discuss

location–inventory models, focusing especially on the LMRP. In Chapter 3 we formulate

and solve a stochastic version of the LMRP, present computational results, and discuss

a multi-commodity interpretation of this model. In Chapter 4 we extend the stochastic

problem by adding a constraint on the maximum regret, discuss the solution method,

and resolve a number of computational difficulties arising from the additional constraint.

We present tighter formulations of regret-constrained versions of the PMP and UFLP,

and we present computational results. We discuss maximum failure cost reliability lo-

cation problems in Chapter 5 and expected failure cost problems in Chapter 6. Both

chapters include formulations, solution methods, and computational results. Finally, we

summarize and discuss areas of future research in Chapter 7.



Chapter 2

Literature Review

2.1 Introduction

Many authors divide decision-making environments into three categories: certainty, risk,

and uncertainty (Rosenhead, Elton, and Gupta 1972). In certainty situations, all param-

eters are deterministic and known, whereas risk and uncertainty situations both involve

randomness. In risk situations, there are uncertain parameters whose values are governed

by probability distributions, which are known by the decision maker. In uncertainty situ-

ations, parameters are uncertain, and furthermore, no information about probabilities is

known. In both situations, the goal is generally to find solutions that perform well under

a variety of realizations of the uncertain parameters. Problems in risk situations are

known as stochastic optimization problems, while problems under uncertainty are known

as robust optimization problems. Stochastic optimization problems generally optimize the

expected value of some objective function, while robust optimization problems involve

8



9

guaranteeing that the solution chosen will perform well no matter what future comes to

pass.

In this dissertation, the more relevant dichotomy is between robust and reliable op-

timization, which we defined in Chapter 1. Both types of optimization fall under the

broad category of decision-making under uncertainty. (We do not reserve the word “un-

certainty” to refer only to situations in which no probability information is known.) Thus,

we suggest the following taxonomy of decision making (see Figure 2.1). At the highest

level, decision-making problems take place in either certainty or uncertainty situations.

This dissertation deals almost exclusively with the latter. Uncertainty situations can

be classified as either robust or reliable optimization, with robust optimization dealing

with uncertainty in data and reliable optimization dealing with uncertainty in solutions.

Finally, robust optimization problems generally have an objective of minimizing either

expected cost or worst-case cost (or regret), or a number of other measures that have been

proposed in the literature and that are discussed below. Similarly, reliable optimization

problems hedge against either expected cost of failure or worst-case cost due to failure.

This chapter has four main sections. In the first, we review several approaches to

robust optimization, illustrating each with location modeling applications that have ap-

peared in the literature. Although few models have been proposed that explicitly address

reliable supply chain design, the concept bears some similarity to three previous streams

of research, which we review briefly in Section 2.3. In Section 2.4, we review solution

techniques that have been proposed for the capacitated facility location problem (CFLP),

as some of the concepts used by previous authors are related to the algorithms developed



10

Figure 2.1: Decision-making taxonomy.

Decision
Making

���������

HHHHHHHHj

Certainty Uncertainty

���������

HHHHHHHHj

Robust
Optimization

Reliable
Optimization

�
�

�
��

@
@

@
@R

�
�

�
��

@
@

@
@R

Expected
Cost

Worst-Case
Cost

Expected
Failure Cost

Worst-Case
Failure Cost

in this dissertation. Finally, the last section is devoted to location–inventory models,

focusing especially on the Location Model with Risk-Pooling (LMRP).

Throughout this chapter we assume the reader has some familiarity with (determin-

istic) facility location theory. For an introduction into this topic, the reader is referred

to the texts by Daskin (1995), Drezner (1995), or Hurter and Martinich (1989).

2.2 Robust Location Problems

The goal of robust optimization is to find a solution that will perform well under any

possible realization of the random parameters. The definition of “performing well” varies

from application to application and choosing an appropriate measure of robustness is

part of the modeling process. Examples include minimizing expected and worst-case



11

cost. The random parameters can be either continuous, in which case they are generally

assumed to be statistically independent of one another, or described by discrete scenar-

ios. If probability information is known, uncertainty is described using a (continuous

or discrete) probability distribution on the parameters. If no probability information

is known, parameters are generally described by intervals in the continuous case. The

scenario approach has two main drawbacks. One is that identifying scenarios (let alone

assigning probabilities to them) is a daunting and difficult task; indeed, it is the focus

of an entire branch of stochastic programming theory. The second problem is that one

generally wants to identify a relatively small number of scenarios for computational rea-

sons, but this limits the range of options under which decisions are evaluated. But the

scenario approach generally results in more tractable models, and furthermore, it has

the advantage of allowing parameters to be statistically dependent, which is generally

not practical in the continuous parameter approach. Dependence is often necessary to

model reality, since, for example, demands are often correlated across time periods or

geographical regions and costs are often correlated among suppliers.

In general, the robust location models discussed in this section are NP-hard. Min-

expected-cost extensions of distance-based location models like the UFLP and P -median

problem (PMP)—for example, those discussed in Section 2.2.1.2 below—are relatively

easy to solve since they can often be treated as larger instances of deterministic problems.

For example, a problem with 100 nodes and 10 scenarios can be solved in approximately

the time required to solve a deterministic problem with 1000 nodes (several CPU minutes

using today’s state-of-the-art algorithms on a desktop computer). On the other hand,



12

problems with a minimax structure like those discussed in Section 2.2.2 are more difficult

to solve to optimality; today’s best algorithms are able to solve problems perhaps an order

of magnitude smaller than corresponding stochastic problems. This discrepancy parallels

the difference in difficulty between distance-based and minimax deterministic problems.

For example, relatively large instances of the UFLP and PMP may be solved quickly, but

the P -center problem, which has a minimax structure, is generally solved by embedding

a set-covering problem (which is itself NP-hard) inside a binary search routine.

2.2.1 Stochastic Location Problems

In this section, we discuss stochastic models for facility location. Most (though not all)

of these models have as an objective to minimize the expected cost of the system. These

models are solved using either special-purpose algorithms or more general stochastic

programming techniques, which we review below. More comprehensive surveys on facil-

ity location under uncertainty are contained in Owen and Daskin (1998), ReVelle and

Williams (2001), and Berman and Krass (2001). Daskin and Owen (1999) and Current,

Daskin, and Schilling (2001) overview both deterministic and stochastic facility loca-

tion. See the textbook by Birge and Louveaux (1997) for an introduction to stochastic

programming techniques.

Probably the first attempt to solve location problems under uncertainty is that of

Frank (1966), who extends the work of Hakimi (1964, 1965) to consider probabilistic

centers and medians on a graph with independent random demands. Frank presents

methods for finding “max probability” centers (points that maximize the probability



13

that the maximum weighted distance from the point is within a given limit) and medians

(points that maximize the probability that the total demand-weighted distance from the

point is within a given limit). Frank (1967) extends this analysis to jointly distributed

normal demands.

Sheppard (1974) was one of the first authors to propose a scenario approach to facility

location. He suggests selecting facility locations to minimize the expected cost, though

he does not discuss the issue at length. In any stochastic programming problem, one

must determine which decision variables are first-stage and which are second-stage; that

is, which variables must be set now and which may be set after the uncertainty has been

resolved. In stochastic location modeling, locations are generally first-stage decisions

while assignments of customers to facilities are second-stage decisions. (If both decisions

occur in the first stage, most problems can be reduced easily to deterministic problems

in which uncertain parameters are replaced by their means.)

2.2.1.1 Analytical Properties

Several of the early stochastic location papers were devoted to establishing whether the

Hakimi property holds. The Hakimi property (Hakimi 1964, 1965) states that there exists

an optimal solution to a network location problem in which the facilities are located on

the nodes of the network, not along the edges. Mirchandani and Odoni (1979) prove

the Hakimi property for a PMP on a network with shortest-path travel costs in which

the cost of a path may be any concave, non-decreasing function of its length, under a

mild homogeneity assumption. In their problem, both demands and transportation costs



14

may be uncertain. Mirchandani (1980) uses similar analysis to determine whether the

Hakimi property applies to stochastic versions of the PMP and uncapacitated fixed-charge

location problems (UFLP; Balinski 1965) under a variety of assumptions. Louveaux and

Thisse (1985) maximize expected utility of profit in a production–distribution system in

which they locate a single facility and set production levels in the first stage and make

distribution decisions in the second; they show that the Hakimi property applies when

the firm is risk-neutral (i.e., the utility function is linear) but not when it is risk-averse.

2.2.1.2 Special-Purpose Algorithms

Weaver and Church (1983) present a Lagrangian relaxation algorithm for the stochastic

PMP discussed by Mirchandani and Odoni (1979). Their formulation and algorithm are

similar to ours for the model presented in Chapter 3, so we will discuss it in a bit of

detail. Imagine a P -median problem with customer set I and facility set J . Demands

and distances are random, determined by scenarios. Let S be the set of scenarios, qs the

probability that scenario s occurs, his the demand of customer i in scenario s, and dijs

the distance from customer i to facility location j in scenario s. Define decision variables

Xj =



















1, if facility location j is chosen to be in the solution,

0, otherwise

for j ∈ J , and

Yijs =



















1, if a facility at location j serves customer i in scenario s,

0, otherwise



15

for i ∈ I, j ∈ J, s ∈ S. The stochastic P -median problem can be formulated as follows:

(SPMP) minimize
∑

s∈S

∑

i∈I

∑

j∈J

qshisdijsYijs (2.1)

subject to
∑

j∈J

Yijs = 1 ∀i ∈ I,∀s ∈ S (2.2)

Yijs ≤ Xj ∀i ∈ I, ∀j ∈ J,∀s ∈ S (2.3)

∑

j∈J

Xj = P (2.4)

Xj ∈ {0, 1} ∀j ∈ J (2.5)

Yijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,∀s ∈ S (2.6)

The objective function (2.1) minimizes the expected demand-weighted distance; con-

straints (2.2) require each customer to be assigned to exactly one facility in each scenario;

constraints (2.3) prohibit a customer from being assigned to a facility that has not been

opened; constraint (2.4) requires exactly P facilities to be opened; and constraints (2.5)

and (2.6) are standard integrality constraints.

Weaver and Church’s solution method for (SPMP) is to relax the assignment con-

straints (2.2), resulting in the following Lagrangian subproblem:

(LR-WC) maximizeλ minimizeX,Y

∑

s∈S

∑

i∈I

∑

j∈J

(qshisdijs − λis)Yijs +
∑

s∈S

∑

i∈I

λis (2.7)

subject to constraints (2.3)–(2.6), where λis is the Lagrange multiplier corresponding

to constraint (2.2) for customer i and scenario s. This problem can be solved easily.

Suppose Xj is set to 1. For a given i ∈ I and s ∈ S, Yijs will be set to 1 if and only if

qshisdijs−λis < 0. We can compute the benefit of opening facility j (i.e., the contribution



16

to the objective function if j is opened) as

γj =
∑

s∈S

∑

i∈I

min{0, qshisdijs − λis}.

To solve (LR-WC), we set Xj = 1 for the P facilities with smallest γj, and set Yijs = 1

if Xj = 1 and qshisdijs − λis < 0. The optimal objective value for (LR-WC) provides a

lower bound on the optimal objective value for (SPMP). Upper bounds are found using

a heuristic at each iteration, and the Lagrange multipliers are updated using subgradient

optimization. If the Lagrangian procedure terminates with the lower bound not equal to

the upper bound, branch-and-bound can be used to close the gap.

Essentially, Weaver and Church’s method treats the problem as a deterministic PMP

with |I||S| customers instead of |I| and then applies the standard Lagrangian relaxation

method for it (Cornuejols, Fisher, and Nemhauser 1977). We use a similar idea in Chapter

3, but our more complicated problem prohibits all of the customers from being lumped

together when computing the benefits; instead, they must be grouped by scenario.

Mirchandani, Oudjit, and Wong (1985) begin with the same formulation as Weaver

and Church, explicitly reformulating it as a deterministic PMP with |I||S| customers con-

tained in a new customer set I ′. Each customer in I ′ corresponds to a customer–scenario

pair in the original problem. If customer i′ ∈ I ′ corresponds to (i, s) in the (SPMP),

then hi′ = qshis and di′j = dijs for j ∈ J . Like Weaver and Church, Mirchandani, et

al. also suggest a Lagrangian relaxation method, but instead of relaxing the assignment

constraints, they relax the single P -median constraint (2.4). The resulting subproblem

is:

(LR-MOW) maximizef minimizeX,Y

∑

i′∈I′

∑

j∈J

hi′di′jYi′j + f





∑

j∈J

Xj − P



 (2.8)



17

subject to constraints (2.2), (2.3), (2.5), and (2.6). Ignoring the constant −fP in the

objective function, this problem is a UFLP in which all facilities have the same fixed cost

f . The authors solve this subproblem using Erlenkotter’s (1978) DUALOC algorithm

and update the multiplier f using a subgradient-type method. They prove that the

procedure is guaranteed to converge to the optimal f in no more than |I| − 1 iterations;

moreover, since the UFLP does not have the integrality property, the optimal objective

of (LR-MOW) is at least as large as the optimal objective of (LR-WC), meaning this

method provides a tighter lower bound (see Section 2.4). Computational results for this

method are very promising. It cannot be applied to our problems, however, since they

are based on the UFLP, rather than on the PMP; there is no P -median constraint to

relax in our models. The authors refer to their algorithm as a “nested dual approach”

since it involves first forming the Lagrangian dual and then solving it using Erlenkotter’s

dual-based method.

Berman and LeBlanc (1984) study a problem in which travel times are stochastic and

facilities may be relocated (at a cost) as conditions change. The objective is to minimize

expected transportation and relocation costs. The authors present a polynomial-time

heuristic that loops through the states, performs local exchanges within each state, and

then performs exchanges to tie the states to each other better in order to reduce relocation

costs. Carson and Batta (1990) present a case study of a similar problem in which

they relocate a single ambulance on SUNY Buffalo’s Amherst campus as the population

moves about the campus throughout the day (from classroom buildings to dining halls to

dorms, etc.). The authors point out that papers like Berman and LeBlanc’s are difficult to



18

apply in practical settings because they require knowledge of utility functions, probability

densities, and so on. Instead, Carson and Batta simply divide the day into four unequal

time periods and solve a 1-median problem in each. Relocation costs are not explicitly

considered, but the decision to use four time periods was arrived at as a tradeoff between

frequent relocation and increased response times. We wish to point out that the LMRP

and its stochastic extensions presented in this dissertation contain a large number of

parameters, but with few exceptions, these can be ignored (set to 0 or made equal for

each retailer and/or scenario), if desired. We attempt, whenever possible, to avoid the

data-requirement trap described by Carson and Batta.

2.2.1.3 Stochastic Programming Methods

Over the past few decades, the field of stochastic programming has become increasingly

well developed. The two-stage nature of many facility location problems (locate in the

first stage while parameters are still random, and make assignment or transportation

decisions in the second stage when uncertainties have been resolved) has made location

a popular application of general stochastic programming methods (as opposed to the

special-purpose models and algorithms described thus far).

Carbone (1974) uses chance-constrained programming to make facility location de-

cisions when demands are normally distributed, possibly correlated. The problem he

considers is to locate P facilities to minimize an upper bound on the total demand-

weighted distance that can be achieved with probability α; that is, to minimize K such



19

that

P

(

∑

i

∑

j

hidijYij ≤ K

)

≤ α,

where hi is the (random) demand of customer i, dij is the distance from customer i to

facility j, Yij is 1 if we assign customer i to facility j, and 0 ≤ α ≤ 1 is a constant.

Louveaux (1986) presents stochastic versions of the capacitated P -median problem

and capacitated fixed-charge location problem (CFLP) in which demand, production

costs, and selling prices are random. The goal is to choose facility locations, deter-

mine their capacities, and decide which customers to serve and from which facilities to

maximize the expected utility of profit. Since demands are random and facilities are

capacitated, the facilities chosen in the first stage may be insufficient to serve all of the

demands in the second stage; hence a penalty for unmet demand is included in the mod-

els. To formulate the stochastic capacitated PMP, the constraint requiring P facilities to

be opened is replaced by a budget constraint on the total cost (fixed cost, capacity cost,

and transportation cost) that must be satisfied under any realization of the demand; the

budget can be used to determine P . The author shows that under a particular type of

budget constraint, the two stochastic models (CFLP and capacitated PMP) are equiv-

alent. Louveaux and Peeters (1992) present a dual-based heuristic for the CFLP model

presented in Louveaux (1986), and Laporte, Louveaux, and van Hamme (1994) present

an optimal algorithm.

França and Luna (1982) use Benders decomposition to solve a problem that is a com-

bination of the CFLP and the stochastic transportation problem with random demands.

In the first stage, the firm chooses facility locations and decides how much to ship to each



20

demand point, and in the second stage it meets the demand, possibly incurring short-

age or holding costs. Jornsten and Bjorndal (1994) choose where and when to locate

facilities over time in order to minimize the expected time-discounted cost; production

and distribution costs are random. Their algorithm uses scenario aggregation and an

augmented Lagrangian approach and is practical for small problems. Eppen, Martin,

and Schrage (1989) solve a multi-period capacity planning problem with random de-

mand and selling prices; capacity levels are set in the first stage and production levels in

the second. The objective is to choose capacity configurations at each plant in each time

period, subject to a re-tooling cost for changing capacity, to maximize the expected time-

discounted profit subject to a limit on expected downside risk (EDR). Their algorithm

involves successively tightening the EDR constraint and re-solving, resulting in multiple

solutions; a decision maker can choose among these solutions based on the tradeoff be-

tween expected profit and EDR. The formulation presented in the paper is solved by

a general-purpose MIP solver but is very large—some parameters and variables have as

many as five subscripts—making it practical only for small problems.

2.2.1.4 Economic Models

Some of the earlier works on facility location under uncertainty used economic theory to

determine optimal facility locations or sizes. Recognizing that different firms may wish

to treat uncertainty differently, many of these models concentrate on incorporating a

firm’s level of risk aversion into the decision-making process. Jucker and Carlson (1976)

use a mean–variance objective function in a stochastic formulation of the uncapacitated



21

fixed-charge location problem (UFLP) in which selling price (and hence demand) may

be random. They present solution methods for four types of firms, all risk-averse, char-

acterized by which variables (e.g., price) they set and which others (e.g., demand) they

accept as a result. Hodder and Jucker (1985) extend Jucker and Carlson’s model to

allow for correlation among the random prices. Their model is a quadratic program-

ming problem but can be solved easily. Hodder (1984) incorporates the capital asset

pricing model (CAPM) objective into the UFLP and compares it to the mean–variance

objective. Manne (1961) uses economic arguments to determine plans for capacity ex-

pansion under uncertainty when future demands follow an upward trend with a random

walk. His work shows that it is sufficient to replace the randomness with its deterministic

trend. More recently, his work was extended by Bean, Higle, and Smith (1992), who use

stochastic programming theory to show similar results. Verter and Dincer (1992) review

the literature on stochastic facility location and capacity expansion problems, focusing

particularly on economics-based papers such as these. Hanink (1984) uses portfolio the-

ory to solve location problems, while Blanchini, Rinaldi, and Ukovich (1997) use game

theory. Cheung and Powell (1996) evaluate the attractiveness of a set of facility locations

by determining the competitive equilibrium that would result and the firm’s consequent

market share.

Cheung and Powell’s paper is related to another group of papers that seeks to evaluate

the “option value” of a given set of worldwide facility locations. Constructing facilities

in several countries gives a firm extra flexibility since it can shift production to coun-

tries with favorable exchange rates, local costs, labor availability, etc. Huchzermeier



22

and Cohen (1996) evaluate “operational options” (choices for a logistics network) over

multiple time periods under uncertainty in exchange rates. They build a Markov model

of exchange rates and solve a supply chain design problem for each scenario, then use

stochastic dynamic programming to determine the value of each option. Kogut and Ku-

latilaka (1994) similarly use dynamic programming to evaluate options when there is a

cost for switching production from one site to another. They discuss the threshold at

which switching becomes advantageous and make the observation that the model favors

countries with volatile exchange rates since they provide greater opportunity to take ad-

vantage of fluctuations. This counter-intuitive result illustrates the difference between

financial and operational hedging: while financial hedging seeks to eliminate volatility

in cash flows, operational hedging seeks to exploit it. Lowe, Wendell, and Hu (1999)

provide a decision-analysis approach for the operational hedging concept, illustrating its

use with a popular Harvard Business Review case. Gutiérrez and Kouvelis (1995) present

a model to choose suppliers internationally to hedge against changes in exchange rates

and local costs; unlike the first three models described in this paragraph, which are de-

scriptive, Gutiérrez and Kouvelis’s model is normative, though necessarily less rich than

the descriptive models. We discuss their model further in Section 2.2.4.

2.2.2 Minimax Location Models

When no probability information is known, the expected cost measure is irrelevant. Many

measures of robustness have been proposed in the literature for this situation. The two

most common are minimax cost and minimax regret, which are closely related to one



23

another and are discussed in this section. Other less common measures are discussed in

Section 2.2.3. The primary robustness measures are discussed in the recent text on robust

optimization by Kouvelis and Yu (1996), though they use somewhat different terminol-

ogy than we do. The minimax cost solution is the one that minimizes the maximum cost

across all scenarios. This measure is, on the one hand, overly conservative, emphasizing

the worst possible scenario, and on the other hand, somewhat reckless, since it may pro-

duce quite poor solutions for scenarios other than the one with maximum cost, especially

if the scenarios have a form like “small demand / moderate demand / large demand.” It

may be appropriate for situations in which, for example, a firm’s competitors will make

decisions that make the worst scenario come to pass for the firm.

The other two most common robustness measures consider the regret of a solution,

which is the difference (absolute or percentage) between the cost of a solution in a given

scenario and the cost of the optimal solution for that scenario. Models that seek to min-

imize the maximum (absolute or relative) regret across all scenarios are called minimax

(absolute or relative) regret models. Minimax regret models are commonly employed in

the literature. Generally such problems are solved using problem-specific algorithms,

though a general-purpose heuristic for minimax regret linear programs with interval data

was proposed by Mausser and Laguna (1999a) and an exact algorithm for the same prob-

lem was proposed by Mausser and Laguna (1999b). The optimal algorithm (1999b) relies

on the fact that for a given solution, each parameter is set to either its lower or upper

endpoint in the regret-maximizing scenario. To identify this scenario, the authors solve

a MIP that adds five constraints and one binary variable to the original problem for each



24

uncertain parameter; this approach is practical for small- to moderate-sized LPs. The

heuristic (1999a) is a greedy heuristic that contains some methods for diversification to

avoid local optima. It can be used on its own or in place of the exact solution to the MIP

described in (1999b). Minimax cost problems can often be transformed into minimax

regret problems, and vice-versa, since the cost and regret of a given scenario differ by a

constant. Solution approaches for one criterion are often applicable to the other, as well.

The regret criterion is usually applied in uncertainty situations. It has been discussed

in the context of risk situations as well, but minimizing expected regret is equivalent to

minimizing expected cost. To see this, consider a general min-expected-regret problem

with variables x1, . . . , xn, feasible set X, scenarios s ∈ S, objective function coefficients

cis, scenario probabilities qs, and optimal scenario objective values z∗s .

minimize
∑

s∈S

qsRs (2.9)

subject to Rs =
n

∑

i=1

cisxi − z∗s ∀s ∈ S (2.10)

x ∈ X (2.11)

Substituting the regret variables Rs into the objective function, we get

minimize
∑

s∈S

qs

(

n
∑

i=1

cisxi − z∗s

)

(2.12)

subject to x ∈ X (2.13)

The objective function of this revised problem is the min-expected-cost objective function

minus a constant. (This equivalence is sometimes overlooked in the literature.)

Regret-based problems tend to be more difficult than stochastic problems because

of their minimax structure. On the other hand, they lend themselves more easily to



25

analytical results, frequently in limited contexts such as 1-median problems or P -medians

on tree networks. For example, Chen and Lin (1998) present a polynomial-time algorithm

for the 1-median problem on a tree with random, interval-based edge lengths and node

weights. As in many minimax problems, the Hakimi property does not apply to this

problem. In Chen and Lin’s problem, node weights must be non-negative; Burkhard and

Dollani (2001) present a polynomial algorithm for the case in which node weights can be

positive or negative. Vairaktarakis and Kouvelis (1999) similarly consider 1-medians on

a tree, but in their problem, edge lengths and node weights may be linear over time (i.e.,

not stochastic but deterministic and dynamic) or random and scenario-based. They trace

the path of the solution over time (in the dynamic case) and present low-order polynomial

algorithms for both cases. Averbakh and Berman (2000) consider the minimax regret

1-median on a general network with random, interval-based demands. They present

the first polynomial-time algorithms for the problem on a general network and present

algorithms for tree networks that have lower complexity than those previously published.

Averbakh and Berman (1997) consider the minimax regret weighted P -center prob-

lem on a general network with uncertain, interval-based demands. (The deterministic

weighted P -center problem is to locate P facilities to minimize the maximum weighted

distance traveled by any customer to its nearest facility.) They show that the minimax

regret problem can be solved by solving n+1 deterministic weighted P -center problems:

n of them on the original network and 1 on an augmented network, where n is the number

of nodes in the problem. Since the weighted P -center problem can be solved in polyno-

mial time for the special cases in which P = 1 or the network is a tree, this leads to a



26

polynomial-time algorithm for the minimax problem in these cases.

In many minimax regret papers, the general strategy of the algorithm is as follows:

1. Choose a candidate solution x.

2. Determine the maximum regret across all scenarios if solution x is chosen. For

scenario-based uncertainty, this is easy: just compute the cost of the solution under

each scenario and compare it to the optimal cost for the scenario, then choose the

scenario with the greatest regret. For interval-based uncertainty, techniques for

finding the regret-maximizing scenario rely on the fact that this scenario typically

has all parameters set to an endpoint of their intervals. Still, this problem can

be quite difficult. Solving this problem is the crux of the algorithms by Mausser

and Laguna (1999a, 1999b), discussed above. On the other hand, Averbakh and

Berman (2000) develop an O(n2) algorithm to determine the regret-maximizing

scenario for their problem.

3. Either repeat steps 1 and 2 for all possible solutions (as in Averbakh and Berman

2000), or somehow find a new candidate solution whose regret is smaller than the

regret determined in step 2 (as in Mausser and Laguna 1999b).

We now turn our attention to problems with scenario-based uncertainty on general

networks. Serra, Ratick, and ReVelle (1996) solve the maximum capture problem (to lo-

cate P facilities in order to capture the maximum market share, given that the firm’s com-

petitors have already located their facilities) under scenario-based demand uncertainty.

They consider both maximizing the minimum market share captured (the maximization



27

analog of the “minimax cost” criterion described above) and minimizing maximum re-

gret. They present a heuristic that involves solving the deterministic problem for each

scenario, choosing an initial solution based on those results, and then using an exchange

heuristic to improve the solution. A similar approach is used by Serra and Marianov

(1998), who solve the minimax cost and minimax regret problems for a P -median prob-

lem, also under scenario-based demand uncertainty. They present a case study involving

locating fire stations in Barcelona. In the model presented by Current, Ratick, and ReV-

elle (1997), facilities are located over time, but the number of facilities that will ultimately

be located is uncertain. The model is called NOFUN (number of facilities uncertain).

The approach is scenario-based (scenarios dictate the number of facilities to open), and

the authors discuss the objectives of both minimizing expected regret and minimizing

maximum regret. The authors’ proposed formulation is based on the PMP and is solved

using a general-purpose MIP solver.

Not all deterministic problems that are polynomially solvable have robust versions

that are polynomially solvable. For example, the economic order quantity (EOQ) model

is still easy in its minimax regret form (Yu 1997), but the minimax regret shortest path

problem is NP-hard (Yu and Yang 1998). Daniels and Kouvelis (1995) solve a minimax

regret version of a machine scheduling problem whose deterministic form is easy. Their

algorithm follows the general form given above. For a given solution x, finding the

regret-maximizing scenario in step 2 turns out to be an assignment problem. Given

some bounds on the regret, finding a candidate solution in step 1 is done using surrogate

relaxation (Glover 1975). The basic idea is that by replacing the regret constraints with



28

their weighted sum, one obtains a deterministic scheduling problem whose solution can

be found quickly using the shortest-processing-time-first (SPT) rule. By changing the

weights systematically, we tighten the bounds that this problem provides.

2.2.3 Other Robustness Measures

2.2.3.1 Robustness and Stability

Several other robustness measures have been proposed. One of the earliest was proposed

by Gupta and Rosenhead (1968) and Rosenhead, Elton, and Gupta (1972). In these

papers, decisions are made over time, and a solution is considered more robust if it

precludes fewer good outcomes for the future. An example in the latter paper concerns a

facility location problem in which a firm wants to locate five facilities over time. Suppose

all possible five-facility solutions have been enumerated, and N of them have cost less

than or equal to some pre-specified value. If facility j is included in p of the N solutions,

then its robustness is p/N . One should construct the more robust facilities first, then

make decisions about future facilities as time elapses and information about uncertain

parameters becomes known. Now suppose that the first facility has been constructed and

the firm decides (because of budget, politics, shrinking demand, etc.) not to build any

of the other facilities. The stability of a facility is concerned with how well the facility

performs if it is the only one operating. Stability should be used to distinguish among

facilities that are nearly equally robust. Note that these definitions of robustness and

stability refer to individual facilities, not to solutions as a whole.

This robustness criterion is dissatisfying because it considers only decisions that evolve



29

over time and says little about decisions that must be made now but perform well in

the future. In addition, computing the measure requires enumerating all possible solu-

tions, which is generally not practical. Therefore, this measure has not been used much.

Schilling (1982) presents two location models that use this robustness measure, both us-

ing stochastic, scenario-based demands. The first model is a set-covering-type model that

maximizes the number of facilities in common across scenarios subject to all demands be-

ing covered in all scenarios and a fixed number of facilities being located in each scenario.

By varying this last parameter, one can obtain a tradeoff curve between the total number

of facilities constructed and the number of facilities that are common across scenarios. If

the firm is willing to build a few extra facilities, it may be able to substantially delay the

time until a single solution must be chosen, since the common facilities can be built first.

The second model is a max-covering-type model that maximizes the coverage in each

scenario subject to the number of common facilities exceeding some threshold. In this

case the tradeoff curve represents the balance between demand coverage and common

facilities. Unfortunately, Schilling’s models were shown by Daskin, Hopp, and Medina

(1992) to produce the worst possible results in some cases. To see why, imagine a firm

that wants to locate two distribution centers (DCs) to serve its three customers, in New

York, Boston, and Spokane. New York has either 45% or 35% of the demand and Boston

has 35% or 45% of the demand, depending on the scenario. The remaining 20% of the

demand is in Spokane, in either scenario. If the transportation costs are sufficiently large,

the optimal solution in scenario 1 is to locate in New York and Spokane, while the opti-

mal solution in scenario 2 is to locate in Boston and Spokane. Current’s method would



30

instruct the firm to build a DC in Spokane first, since that location is common to both

solutions, then wait until some of the uncertainty is resolved before choosing the second

site. But then all of the east-coast demand is served from Spokane for a time—clearly a

suboptimal result.

Rosenblatt and Lee (1987) use a similar robustness measure to solve a facility layout

problem. Unlike Rosenhead et al.’s measure, which considers the percentage of good

solutions that contain a given element (e.g., facility), Rosenblatt and Lee consider the

percentage of scenarios for which a given solution is “good,” i.e., has regret bounded

by some pre-specified limit. Like the previous measure, Rosenblatt and Lee’s measure

requires enumerating all solutions and evaluating each solution under every scenario,

making this measure practical only for very small problems.

2.2.3.2 Model and Solution Robustness

Mulvey, Vanderbei, and Zenios (1995) introduce a new framework for robust optimization

(RO). Their framework involves two types of robustness: solution robustness (the solution

is “nearly” optimal in all scenarios) and model robustness (the solution is “nearly” feasible

in all scenarios). The definition of “nearly” is left up to the modeler; their objective

function has very general penalty functions for both model and solution robustness,

weighted by a parameter intended to capture the modeler’s preference between the two.

The solution robustness penalty might be the expected cost, maximum regret, or von

Neumann–Morgenstern utility function. The model robustness penalty might be the

sum of the squared violations of the constraints. Uncertainty may be represented by



31

scenarios or intervals, with or without probability distributions. The authors discuss a

number of applications in which the RO framework has been applied. In one example,

a power company wants to choose the capacities of its plants to minimize cost while

meeting customer demand and satisfying certain physical constraints. In the RO model

for this problem, the objective function has the form

minimize E[cost] + λVar[cost] + ω[sum of squares of infeasibilities].

The first two terms represent solution robustness, capturing the firm’s desire for low

costs and its degree of risk-aversion, while the third term represents model robustness,

penalizing solutions that fail to meet demand in a scenario or violate other physical

constraints like capacity.

Because of the flexibility of the general RO model, we cannot expect to develop algo-

rithms that will solve every RO problem; algorithms will have to be somewhat problem-

specific. This makes the RO approach somewhat limited. Nevertheless, in the eight years

since Mulvey et al.’s paper was published, it has received a great deal of attention in the

literature. A recent citation search revealed over 50 articles citing their work. In part,

this is due to the generality of their model—nearly any stochastic or robust optimization

model can fit the RO framework. But the attention is also due to the fact that researchers

have increasingly begun to recognize the importance of robustness in a wide variety of

applications. The RO framework is explicitly used in applications as varied as parallel

machine scheduling with stochastic interruptions (Laguna et al. 2000), relocation of an-

imal species under uncertainty in population growth and future funding (Haight, Ralls,

and Starfield 2000), production planning (Trafalis, Mishina and Foote 1999), large-scale



32

logistics systems (Yu and Li 2000), and chemical engineering (Darlington et al. 2000).

Killmer, Anandalingam, and Malcolm (2001) use the RO framework to find solution-

and model-robust solutions to a stochastic noxious facility location problem.1 The RO

model for this problem minimizes the expected cost plus penalties for regret, unmet

demand, and unused capacity. The expected cost and regret penalty are the solution

robustness terms (encouraging solutions to be close to optimal), while the demand and

capacity violation penalties are model robustness terms (encouraging solutions to be

close to feasible). The non-linear programming model is applied to a small case study in

Albany, NY and is solved using MINOS.

2.2.3.3 Restricting Outcomes

One use of the model robustness term in the RO model is to penalize solutions for

being too different across scenarios (in terms of variables, not costs), thus encouraging

the resulting solution to be insensitive to uncertainties in the data. Vladimirou and

Zenios (1997) formulate several models for solving this particular realization of the RO

framework, which they call restricted recourse. Restricted recourse in itself is a valid and

interesting robustness measure. It might be appropriate, for example, in a production

planning context in which re-tooling in each period is costly. However, there may be a

substantial tradeoff between robustness (in this sense) and cost. The authors present

three procedures for solving such problems, each of which begins by forcing all second-
1Though the authors discuss their model solely in the context of noxious facility location, it is similar

to the UFLP and could be applied to much broader problems than noxious facility location.



33

stage solutions to be equal, and then gradually loosens that requirement until a feasible

solution is found. The stochastic programming problems are solved using standard integer

SP algorithms. The authors analyze the trade-off between robustness and cost, and often

find large increases in cost as the restricted recourse constraint is made more stringent.

In contrast, Paraskevopoulos, Karakitsos, and Rustem (1991) present a model for

robust capacity planning in which they restrict the sensitivity of the objective function

(rather than the variables) to changes in the data. Instead of minimizing expected

cost, Paraskevopoulos et al. minimize expected cost plus a penalty on the objective’s

sensitivity to changes in demand. The penalty is weighted based on the decision-maker’s

level of risk aversion. The advantage of this robustness measure is that the resulting

problem looks like the deterministic problem with the uncertain parameters replaced

by their means and with an extra penalty term added to the objective. Scenarios and

probability distributions do not enter the mix. The down-side is that computing the

penalty requires differentiating the cost with respect to the error in the data. For realistic

capacity-planning problems, even computing the expected cost (let alone its derivative)

is difficult and in some cases must be done via Monte Carlo simulation. For linear

models, including most location models, computing the expected cost may be easy, but

the penalty becomes a constant and the problem reduces to the deterministic problem in

which uncertain parameters are replaced by their means; this generally gives poor results.

Understandably, Paraskevopoulos et al.’s robustness measure has not been applied to

location problems.

The requirement that solutions be similar across scenarios in terms of cost (rather



34

than in terms of variables) has some similarity to the notion of p-robustness, defined

below in Section 2.2.4.

2.2.3.4 α-Reliability

Another extension to the concepts described above was developed by Daskin, Hesse,

and ReVelle (1997) and Owen (1999), who present the notion of α-reliability. The idea

behind α-reliability is that the minimax cost and minimax regret criteria tend to focus

on a few scenarios which may be catastrophic but are unlikely to occur. In the α-

reliable framework, the robustness criterion of choice (say minimax regret) is applied

only to a subset of scenarios, called the reliability set, whose total probability is at least

α. Therefore, the probability that a scenario that was not included in the objective

function comes to pass is bounded by 1−α. The parameter α is specified by the modeler

but the reliability set is chosen endogenously. The example given in the paper applies

the α-reliability concept to the minimax-regret P -median problem. The problems are

solved using standard LP/branch-and-bound techniques, though Owen (1999) develops

a genetic algorithm to solve the problem. α-reliability can be thought of as a hybrid

measure since it combines aspects of risk (scenario probabilities) and uncertainty (regret

criteria). The robustness measure we present in Chapter 4 is also a hybrid measure,

combining an expected cost objective with a constraint on regret.



35

2.2.4 p-Robustness

Kouvelis, Kurawarwala, and Gutiérrez (1992) present a new measure of robustness which

involves a constraint dictating that the relative regret in any scenario must be no greater

than p, where p ≥ 0 is an external parameter. In other words, the cost under each

scenario must be within 100(1 + p)% of the optimal cost for that scenario. We will refer

to this measure as p-robustness throughout this dissertation, though Kouvelis et al. refer

to it simply as “robustness.” Note that for small p, there may be no p-robust solutions

for a given problem. Thus p-robustness adds a feasibility issue not present in most other

robustness measures.

The problem considered in Kouvelis et al. (1992) is a facility layout problem in which

the goal is to construct a list of p-robust solutions, if they exist. The facility layout

problem is modeled as a quadratic assignment problem (QAP), and the proposed algo-

rithm is a modification of a standard branch-and-bound algorithm for the QAP. The

problem is solved separately for each scenario, and each time a feasible solution is found

in any of the branch-and-bound trees, its regret is computed for each scenario; if its

maximum regret is less than or equal to p, the solution is added to a list of p-robust

solutions. Nodes are fathomed from the branch-and-bound trees if (1− p)LB > UB, not

if LB > UB as in the usual branch-and-bound method. This algorithm is dissatisfying

for a number of reasons. First, there is no focused effort to find p-robust solutions—they

are simply a by-product of the searches for individual-scenario solutions. Second, there

is no guarantee that the resulting list of p-robust solutions is exhaustive, or even that a

p-robust solution will be found if one exists. The method suffers from the paradoxical



36

problem that it accomplishes its goal (finding p-robust solutions) best when the algo-

rithm performs poorly, since more iterations mean more candidate solutions considered

and more possible p-robust solutions. Third, there is no overall objective that helps a

decision-maker distinguish among the p-robust solutions returned. The computational

results indicate that as many as 400 p-robust solutions may be found for reasonable val-

ues of p. One solution to this problem is to reduce p; another is to rank the list in order

of expected cost (if probabilities are available) or maximum regret. We will avoid all of

these problems in our algorithm for the p-robust LMRP presented in Chapter 4.

The p-robust criterion is also used in two other papers: Gutiérrez and Kouvelis’s

(1995) paper on robust solutions for an international sourcing problem and Gutiérrez,

Kouvelis, and Kurawarwala’s (1996) paper on robust network design. All three papers

are also discussed in Kouvelis and Yu’s (1997) book. The international sourcing paper

(Gutiérrez and Kouvelis 1995) presents an algorithm that, for a given p and N , returns

either all p-robust solutions (if there are fewer than N of them) or the N solutions with

smallest maximum regret. The sourcing problem considered involves choosing suppliers

worldwide so as to hedge against changes in exchange rates and local prices. The problem

reduces to the uncapacitated fixed-charge location problem, so the authors are essentially

solving a p-robust version of the UFLP. Their algorithm maintains separate branch-and-

bound trees for each scenario, and all trees are explored and fathomed simultaneously.

Unfortunately, their algorithm contains an error. The authors implicitly make the faulty

assumption that the child of a node in the branch-and-bound tree cannot have an optimal

solution with smaller maximum regret than the solution at the node itself. This causes the



37

tree to be fathomed inappropriately, resulting in sub-optimal solutions being returned.

We discuss this problem in more detail in the Appendix.

The network design paper (Gutiérrez et al. 1996) uses Benders decomposition to

search for a p-robust solution to an uncapacitated network design problem. Like the lay-

out problem in Kouvelis et al. (1992), the problem in this paper is a feasibility problem

only—no objective function is used to differentiate among p-robust solutions. The algo-

rithm in this paper solves separate network design problems for each scenario, though

they are linked by feasibility cuts that are added simultaneously to all problems; it suffers

from the same problems as Kouvelis et al.’s (1992) algorithm.

2.3 Reliable Supply Chain Design

Though no models have been published to date that explicitly consider reliable supply

chain design, there are three main bodies of literature that are similar in spirit, if not in

modeling approach. The first is the literature on network reliability, most often applied

to telecommunications or power transmission networks. In a typical network reliability

problem, the edges (or, less frequently, the nodes) of a network are subject to failure

with a given probability, and the goal is to maximize (or simply estimate) the probability

that the network remains connected. The second body of literature concerns expected or

backup covering models, which are frequently used in locating emergency services vehicles

or facilities. Finally, our models can be seen as an outgrowth of a small body of literature

that discusses approaches for handling disruptions to supply chains but presents few, if



38

any, quantitative models. We discuss each of these three topics next.

2.3.1 Network Reliability

Network reliability theory is concerned with computing, estimating, or maximizing the

probability that a network (typically a telecommunications or power network, repre-

sented by a graph network) remains connected in the face of random failures. (See the

textbooks by Colbourn 1987, Shier 1991, or Shooman 2002.) Failures may be due to dis-

ruptions, congestion, or blockages. In almost all cases, failures occur only on the edges,

but occasional papers consider node failures as well (e.g., Eiselt, Gendreau, and Laporte

1996). Various measures of post-failure connectivity have been considered; for example,

two-terminal reliability (the probability that two given nodes s and t can communicate),

all-terminal reliability (the probability that all nodes can communicate), and node pair

resilience (the expected number of node pairs that can communicate).

The network reliability literature tends to focus either on computing reliability or

on optimizing it, i.e., designing reliable systems. Computing the reliability of a given

network is a non-trivial problem (see, e.g., Ball 1979), and various techniques have been

proposed for computing or estimating the desired probabilities. These include cut-set and

tie-set analysis (enumerating the cut-sets or tie-sets connecting the nodes of interest and

computing the probability that the sets required for connectivity remain in place) and

graph transformations that reduce a graph to a smaller one with equivalent reliability.

Because of the complications involved in computing reliability, reliability optimization

models rarely include explicit expressions for the reliability of the network. Instead,



39

they often attempt to find the minimum-cost network design with some desired struc-

tural property, such as 2-connectivity (Monma and Shallcross 1989, Monma, Munson,

and Pulleyblank 1990), k-connectivity (Bienstock, Brickell, and Monma 1990, Grötschel,

Monma, and Stoer 1995), or special ring structures (Fortz and Labbé 2002).

The key difference between the network reliability models discussed so far and the

models that we present in Chapters 5 and 6 is that these previous models are concerned

entirely with connectivity. The only costs considered are those to construct the network,

not the transportation cost after rerouting, which is the primary concern of our supply

chain reliability models. The literature on power network reliability, however, often does

consider the costs of power loss due to rerouting after a node or link failure. These models

have the added complication that power cannot be routed along a single path but follows

all paths in the network more or less uniformly (Hobbs et al. 2001).

2.3.2 Expected Covering Models

Several papers extend the classical maximum covering problem (Church and ReVelle

1974) to handle the randomness inherent in locating emergency services vehicles. The

classical maximum covering problem assumes that a vehicle is always available when

a call for service arrives, but this fails to model the congestion in such systems when

multiple calls are received by a facility with limited resources. Daskin (1982) formulates

the maximum expected covering location model (MEXCLM), which assumes a constant,

system-wide probability that a server is busy when a call is received and seeks to max-

imize the total expected coverage; he solves the problem heuristically in Daskin (1983).



40

Other authors have criticized the assumption that the availability probability is uniform

and have sought to improve on Daskin’s model. ReVelle and Hogan (1989) present the

maximum availability location problem (MALP), which allows the availability probabil-

ity to vary among facility sites. They present a MIP formulation of the MALP whose

LP relaxation frequently has integer optimal solutions, and they solve their model using

a standard MIP solver. Ball and Lin (1993) justify the form of the coverage constraints

in MEXCLM and MALP using reliability theory.

Larson (1974, 1975) introduced queuing-based location models which explicitly con-

sider customers waiting for service in congested systems. His “hypercube model” is useful

as a descriptive model, but because of its complexity, researchers have had difficulty in-

corporating it into optimization models. Berman, Larson, and Chiu (1985) incorporate

the hypercube idea into a simple optimization model, presenting theoretical results about

the trajectory of the optimal 1-median as the demand rate changes in a general network.

Daskin, Hogan, and ReVelle (1988) compare various stochastic covering problems in

which the objective is to locate facilities to maximize expected coverage or the degree

of backup coverage. Berman and Krass (2001) attempt to consolidate a wide range of

approaches to facility location in congested systems, presenting a complex model that is

illustrative but can be solved only for special cases.

2.3.3 Reliable Supply Chain Management

In the wake of the terrorist attacks on September 11, 2001, there has been a call for

techniques for designing and operating supply chains that are resilient to disruptions of



41

all sorts. Sheffi (2001), Simchi-Levi, Snyder, and Watson (2002), and Lynn (2002) make

compelling arguments that supply chains are particularly vulnerable to intentional or

accidental disruptions and suggest possible approaches for making them less so, but they

do not present any rigorous models. We view the models presented in Chapters 5 and 6

as an outgrowth of this call for supply chain reliability models.

2.3.4 Other Related Research

Two other topics found in the literature are related to our reliability models. The first

is the work on “a priori” optimization by Jaillet (1988, 1992) and Bertsimas, Jaillet, and

Odoni (1990), whose goal is to find solutions to combinatorial optimization problems

(e.g., the shortest path problem, minimum spanning tree problem, or traveling salesman

problem) in which not all nodes may be present when the solution is implemented. For

example, in the a priori traveling salesman problem, one wants a tour that is of minimum

cost given a certain probability that each node will need to be visited; nodes that do not

need to be visited are simply skipped. In general, the expected cost of a given solution

can be computed efficiently, but the optimization problem is NP-hard, even when the

underlying problem (e.g., the shortest path problem) is polynomially solvable.

The second related topic involves facility location problems in which each customer

is assigned to multiple facilities, a strategy that we use in the models in Chapters 5 and

6. One such problem is the fault-tolerant facility location problem (Swamy and Shmoys

2003), a variant of the UFLP in which each customer i must be assigned to at least

ri facilities, where ri is an input into the model. Most of the work on this problem is



42

concerned with finding approximation algorithms for it. Fault-tolerant facility location

problems are similar in spirit to ours since they require redundant backups to hedge

against facility failures. However, these problems do not explicitly consider failures, and

assignments are all given equal weight in the objective function. In our models, each

customer receives a “primary” facility that serves it normally and one or more “backup”

facilities that serve it when the primary facility fails. Our objective functions take this

prioritization into account.

Another similar model is the vector assignment P -median problem (VAPMP; Weaver

and Church 1983, Hooker and Garfinkel 1989), an extension of the PMP in which cus-

tomers are served by multiple facilities based on preference and availability. For example,

a given customer might receive 80% of its demand from its nearest facility, 15% from its

second-nearest, and 5% from its third-nearest. These percentages are inputs to the model.

In our reliability models in Chapters 5 and 6, the “higher-level” assignments are only

used when the primary facilities fail; there are no pre-specified fractions of demand served

by each facility.

2.4 Relaxation Methods for Facility Location Prob-

lems

In this section we review solution methods that have been proposed for facility location

problems, focusing especially on Lagrangian relaxation methods for the capacitated fixed-

charge location problem (CFLP). The goal is to familiarize the reader with some of the



43

approaches that have been suggested for this problem since some of the models presented

later in this dissertation entail similar challenges to those inherent in solving the CFLP.

We first discuss the uncapacitated fixed-charge location problem (UFLP) and the P -

median problem (PMP) and Lagrangian relaxation methods that have been proposed for

them. We then examine the CFLP and its relaxations (Lagrangian and otherwise).

Lagrangian relaxation involves two nested optimization problems. For a given set

of Lagrange multipliers, the inner optimization problem (the subproblem) provides a

lower bound on the optimal objective value of the original problem (assuming this is a

minimization problem). The outer optimization problem involves finding the best lower

bound, taken over all possible Lagrange multipliers. The optimal objective value of the

outer minimization problem is the theoretical lower bound provided by the Lagrangian

relaxation method. Throughout this discussion, we are careful to draw a distinction

between the theoretical lower bound and the practical lower bound—the best bound

attained by a given implementation, which may fall short of the theoretical lower bound.

For any minimization problem, if zLR is the theoretical bound from a Lagrangian

relaxation and zLP is the LP relaxation bound, then we have

zLR ≥ zLP. (2.14)

If the subproblem has the integrality property (i.e., it has an all-integer optimal solution

even when the integrality constraints are relaxed), then the inequality (2.14) holds at

equality—the Lagrangian bound is no better than the LP bound. On the other hand, if

the subproblem does not have the integrality property, then the inequality in (2.14) is

strict (Geoffrion 1974; Nemhauser and Wolsey 1988). Therefore it is desirable to develop



44

Lagrangian relaxations whose subproblems do not have the integrality property, provided

that the subproblems can be solved quickly.

2.4.1 The PMP and UFLP

We define the following notation for the P -median problem:

Sets

I = set of customers, indexed by i

J = set of potential facility locations, indexed by j

Parameters

hi = annual demand at customer i ∈ I

dij = cost per unit to ship from facility location j ∈ J to customer i ∈ I

P = desired number of facilities to locate

Decision Variables

Xj =



















1, if a facility is established at location j ∈ J

0, otherwise

Yij =



















1, if a facility at location j ∈ J serves customer i ∈ I

0, otherwise

The PMP is formulated as follows:



45

(PMP) minimize
∑

i∈I

∑

j∈J

hidijYij (2.15)

subject to
∑

j∈J

Yij = 1 ∀i ∈ I (2.16)

Yij ≤ Xj ∀i ∈ I, ∀j ∈ J (2.17)

∑

j∈J

Xj = P (2.18)

Xj ∈ {0, 1} ∀j ∈ J (2.19)

Yij ≥ 0 ∀i ∈ I, ∀j ∈ J (2.20)

The objective function (2.15) computes the total demand-weighted distance between

customers and their assigned facilities. Constraints (2.16) require each customer to be

assigned to a facility, and constraints (2.17) require that facility to be open. Constraint

(2.18) requires P facilities to be opened. Constraints (2.19) and (2.20) require the location

variables to be binary and the assignment variables to be non-negative.

The UFLP is formulated by replacing (2.15) with

∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

hidijYij (2.21)

and omitting constraint (2.18). In the UFLP, dij is generally taken to be a transportation

cost rather than simply a distance. In either problem, the linking constraints (2.17) are

sometimes replaced by
∑

i∈I

Yij ≤ nXj ∀j ∈ J, (2.22)

but these constraints are known to provide a weaker LP relaxation than (2.17).



46

The most common Lagrangian relaxation algorithm for these problems is to relax the

assignment constraints (2.16). This method was proposed for the UFLP by Geoffrion

(1974) and for the PMP by Cornuejols, Fisher, and Nemhauser (1977). For the PMP,

the Lagrangian subproblem is as follows:

(PMP-LR) maximize
λ≥0

minimize
X,Y

∑

i∈I

∑

j∈J

hidijYij +
∑

i∈I

λi



1−
∑

j∈J

Yij





=
∑

i∈I

∑

j∈J

(hidij − λi)Yij +
∑

i∈I

λi (2.23)

subject to Yij ≤ Xj ∀i ∈ I, ∀j ∈ I (2.24)

∑

j∈J

Xj = P (2.25)

Xj ∈ {0, 1} ∀j ∈ I (2.26)

Yij ≥ 0 ∀i ∈ I, ∀j ∈ I (2.27)

We can restrict λ ≥ 0 since if λi < 0, then hidij − λi > 0 and it is never advantageous to

set Yij = 1 for any j; thus if λi < 0, a tighter bound can always be attained by setting

λi = 0. To solve (PMP-LR) for a given λ, we compute the benefit (or contribution to the

objective function) of opening each facility j:

γj =
∑

i∈I

min{0, hidij − λi}. (2.28)

We then set Xj = 1 for the P facilities with the smallest γj and set Yij = 1 if Xj = 1

and hidij − λi < 0. To solve (PMP-LR), we must maximize over λ; this is done using

subgradient optimization (see Fisher 1981, 1985 or Daskin 1995).

This procedure can be modified to solve the UFLP by adding
∑

j∈J fjXj to the

objective function, removing constraint (2.25), and setting Xj = 1 if γj + fj < 0, or if



47

γk + fk ≥ 0 for all k ∈ J but is smallest for j, since at least one facility must be open in

any feasible solution. This method has been found to produce extremely tight bounds for

both problems. This is because the Lagrangian bound is equal to the LP bound (since

the Lagrangian subproblems have the integrality property), and both problems generally

have very tight LP bounds. An analytical result is known about the bound for the PMP:

Cornuejols et al. show that

ZG − ZLR

ZLR
≤

(

P − 1
P

)P

<
1
e
, (2.29)

where ZLR is the Lagrangian bound and ZG is the upper bound obtained from a particular

greedy heuristic.

Christofides and Beasley (1982) compare two Lagrangian relaxations of the P -median

problem, one in which the assignment constraints are relaxed (discussed above) and one

in which the linking constraints are relaxed. When the linking constraints are relaxed,

the subproblem decomposes into an X-problem and a Y -problem; both can be solved

easily for given λ. They find empirically that the former relaxation results in a tighter

bound (often 0%, but never more than 1% for their test problems) than the latter (which

attained bounds between 0% and 7.4%). The reason for the difference lies in the fact

that Christofides and Beasley use the “weak” linking constraints (2.22) instead of the

“strong” form (2.17). The subproblem produced by relaxing the assignment constraints

does not have the integrality property (for a given j, Xj will be set equal to
∑

i∈I Yij/n if

it is allowed to be fractional), whereas that produced by relaxing the linking constraints

does. Since the former subproblem is solved to integer optimality, a tighter bound is

attained. If the authors had used the strong linking constraints, the subproblems from



48

both relaxations would have had the integrality property, and the two relaxations would

have the same theoretical bound.

A different relaxation for the P -median problem was proposed by Hanjoul and Peeters

(1985), who relax constraint (2.25). The resulting subproblem that is equivalent to the

UFLP, which they solve using Erlenkotter’s (1978) DUALOC algorithm. This subprob-

lem is obviously harder than the subproblems that result when either (2.16) or (2.17) are

relaxed, but it needs to be solved fewer times since there is only a single Lagrange mul-

tiplier to optimize over. The authors compare this relaxation to the (PMP-LR) and find

the two to be roughly equivalent in terms of CPU time. They note that their relaxation

provides tighter bounds since the subproblem does not have the integrality property, but

they do not present any computational results to illustrate this claim. This method is

similar to that of Mirchandani, Oudjit, and Wong (1985) for the stochastic PMP (see

Section 2.2.1.2).

2.4.2 The CFLP: Notation and Formulation

We add following notation to that defined in Section 2.4.1:

Parameters

fj = annual fixed cost to establish a facility at location j ∈ J

bj = maximum annual capacity or throughput of a facility located at site j ∈ J

One formulation of the CFLP is as follows:



49

(CFLP) minimize
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

hidijYij (2.30)

subject to
∑

j∈J

Yij = 1 ∀i ∈ I (D)

Yij ≤ Xj ∀i ∈ I, ∀j ∈ J (B)

∑

i∈I

hiYij ≤ bjXj ∀j ∈ J (C)

∑

j∈J

bjXj ≥
∑

i∈I

hi (T)

Xj ∈ {0, 1} ∀j ∈ J (I)

0 ≤ Xj , Yij ≤ 1 ∀i ∈ I, ∀j ∈ J (N)

The letters labeling the constraints will be used to notate the various relaxations discussed

below; this notation is taken from Cornuejols, Sridharan, and Thizy (1991), which we

discuss in Section 2.4.3. The objective function (2.30) minimizes the sum of the fixed

costs for locating facilities and the transportation costs. The Demand constraints (D)

require each customer to be assigned to a facility. The variable upper-Bound constraints

(B) require that facility to be open. Constraints (C) require the total volume assigned to

facility j to be no more than its Capacity. Constraints (T) require the Total capacity of

the facilities opened to exceed the total demand; these constraints are redundant for the

IP formulation but tighten some of the relaxations discussed below. Finally, constraints

(I) and (N) require the location variables to be Integer and all variables to be Non-

negative.



50

Several variations of this model are possible. For example, some authors require the

assignment variables to be binary, enforcing a “single-sourcing” constraint. (Because of

the capacities, optimal solutions do not necessarily have integer Y variables, as they do in

the UFLP.) In some formulations, constraints (B) or (T) are omitted; they are redundant

in the IP formulation given above, but their inclusion makes for tighter LP or Lagrangian

relaxations. Other formulations replace constraints (C) with

∑

i∈I

hiYij ≤ bj ∀j ∈ J. (C′)

Let Z be the optimal IP objective value from (CFLP). Following Cornuejols et al.,

we will represent Lagrangian relaxations using subscripts and “complete” relaxations

(i.e., omitting the constraints entirely) using superscripts. Thus, ZD is the bound from

relaxing constraints (D) using Lagrangian relaxation, ZT is the bound from omitting the

total capacity constraints (T), and ZBI
C is the bound from omitting the linking constraints

(B) and the integrality constraints (I) and relaxing the capacity constraints (C).

2.4.3 The CFLP: Relaxations

Davis and Ray (1969) solve the CFLP using branch-and-bound, solving the dual of the

LP relaxation at each node using Dantzig–Wolfe decomposition, obtaining the bound

ZI , known as the “strong” LP relaxation of (CFLP). Akinc and Khumawala (1977) also

propose an LP-relaxation/branch-and-bound method to solve the CFLP; they solve the

“weak” LP relaxation in which (I) and (B) are omitted, but they tighten the formulation

using ad-hoc rules.



51

By far, the most common method for solving the CFLP is Lagrangian relaxation.

One of the first papers to propose such an algorithm is by Nauss (1978b). Nauss omits

constraints (B) and relaxes the assignment constraints (D). The resulting subproblem

reduces to a continuous knapsack problem (KP) for each j and a single 0–1 KP to

decide which facilities to open, obeying constraint (T). The bound obtained from Nauss’s

relaxation is ZB
D , though in his computational results, Nauss obtains a weaker bound

because he only solves the continuous version of the 0–1 KP.

Christofides and Beasley’s (1983) CFLP model is similar to Nauss’s but is somewhat

richer in that it includes minimum throughput constraints (as well as maximum through-

put (C)); it also replaces (T) with upper and lower bounds on the number of facilities

that may be opened. Like Nauss, Christofides and Beasley and relax (D), but their sub-

problem does not require a 0–1 KP because they omit constraints (T). We represent

the bound from their relaxation by Z ′
D. They also derive penalties for fixing variables

to 0 or 1 after processing at the root node. Sridharan (1991) enhances Christofides and

Beasley’s model (minus the min-throughput constraints) by allowing upper-bound con-

straints on disjoint subsets of the location variables; these side constraints allow one to

model multiple facility sizes at each location, at most one of which may be chosen. Their

algorithm is similar to Christofides and Beasley’s.

Klincewicz and Luss (1986) include integrality constraints for the Y variables and

solve (CFLP) by relaxing the capacity constraints (C). The resulting subproblem is

equivalent to the UFLP, and the authors solve it using Erlenkotter’s (1978) DUALOC

algorithm. They report LB–UB gaps of as high as 11%, though it is not clear whether the



52

size of the gap is due more to poor lower or upper bounds. Since their subproblem does not

have the integrality property (because it is equivalent to the UFLP, whose LP relaxation

is not guaranteed to produce integer solutions), the lower bound from Klincewicz and

Luss’s relaxation (ZC) is tighter than Z ′
D, suggesting that Klincewicz and Luss’s upper

bound is loose, rather than their lower bound. On the other hand, Darby-Dowman

and Lewis (1988) show that for a particular class of problems, Klincewicz and Luss’s

relaxation will always produce solutions that are capacity-infeasible, and that for these

problems, the lower bound produced will not be particularly tight. Fortunately, this class

of problems is somewhat limited: all problems in the class have the property that in their

uncapacitated form, the optimal solution has only a single facility open.

Van Roy (1986) also relaxes (C), but instead of solving via straightforward La-

grangian relaxation, he presents a cross-decomposition algorithm for the CFLP. Cross-

decomposition is a hybrid of Lagrangian relaxation and Benders decomposition. He

shows in this paper and an earlier one (Van Roy 1983) that the Lagrangian and Benders

subproblems are in a certain sense master problems for one another, and uses this result

to construct an inner algorithm in which the two methods “ping pong” off one another;

when this method stops making improvement, the algorithm reverts to an outer algo-

rithm, which is either a Benders or Dantzig–Wolfe master problem that provides a new

(primal or dual, respectively) variable to begin the inner algorithm again. His computa-

tional results are impressive, requiring few iterations of the outer algorithm and only a

few seconds of CPU time for problems with up to 100 facilities and 200 customers.

Barcelo, Fernandez, and Jörnsten (1991) propose an algorithm for the CFLP based on



53

variable-splitting (sometimes called Lagrangian decomposition). The idea is to introduce

a new set of variables W to mirror the assignment variables Y . Each set of constraints is

formulated using either Y or W to obtain a particular split. The W variables are forced

equal to the Y variables by a new set of constraints:

(CFLP-VS) minimize
∑

j∈J

fjXj + β
∑

i∈I

∑

j∈J

hidijYij + (1− β)
∑

i∈I

∑

j∈J

hidijWij (2.31)

subject to
∑

j∈J

Wij = 1 ∀i ∈ I (DW )

∑

i∈I

hiYij ≤ bjXj ∀j ∈ J (CXY )

∑

j∈J

bjXj ≥
∑

i∈I

hi (TX)

Wij = Yij ∀i ∈ I, ∀j ∈ J (V)

Xj ∈ {0, 1} ∀j ∈ J (IX)

0 ≤ Yij ≤ 1 ∀i ∈ I, ∀j ∈ J (NY )

0 ≤ Wij ≤ 1 ∀i ∈ I,∀j ∈ J (NW )

where 0 ≤ β ≤ 1 is a parameter. Only constraints (V) are relaxed using Lagrangian

relaxation. The resulting subproblem decomposes into two problems, one involving only

X and Y , which reduces to continuous knapsack problems for each j and a 0–1 KP to

decide which facilities to open (as in Nauss 1978b), and one involving only W , which

reduces to a trivial multiple-choice problem. Intuition suggests that by keeping all of the

“interesting” constraints and relaxing only the new constraints, one obtains a bound at

least as great as that from ordinary Lagrangian relaxation. This intuition is correct to a

point, but not entirely, as discussed below.



54

Table 2.1: Relaxations for the CFLP.

Reference Bound Comments
Davis and Ray (1969) ZI Solve dual of “strong” LP relaxation by Benders decomposition,

then branch-and-bound
Akinc and Khumawala ZBI Solve “weak” LP relaxation in branch-and-bound scheme with
(1977) ad-hoc tightening rules
Nauss (1978) ZB

D Subproblem = |J | continuous KPs and one 0–1 KP
Christofides and Z ′D Add min throughput constraints, min and max cardinality
Beasley (1983) constraints; remove (T); subproblem = |J | continuous KPs
Klincewicz and Luss ZC Single-sourcing; subproblem = UFLP
(1986)
Van Roy (1986) ZC Solves via cross-decomposition rather than Lagrangian relaxation
Sridharan (1991) N/A Includes side constraints to model multiple facility sizes;

extension of Christofides and Beasley’s algorithm
Barcelo, Fernandez, ZD/CT Variable-splitting algorithm
and Jörnsten (1991)

The relaxations discussed thus far in this section are summarized in Table 2.1.

Cornuejols, Sridharan, and Thizy (1991) provide dominance relationships among the

theoretical bounds from the various relaxations of (CFLP). As noted above, these re-

laxations include both Lagrangian relaxations, in which constraints are dualized, and

“complete” relaxations, in which constraints are omitted entirely. Their first result is

that of the 41 possible relaxations of (CFLP), only 7 yield distinct bounds. The relax-

ations discussed thus far (except that of Sridharan (1991)) relate as follows:

ZBI ≤ ZI ≤ ZC ≤ Z (2.32a)

Z ′
D ≤ ZB

D = ZD ≤ ZC (2.32b)

ZBI ≤ ZB
D = ZD (2.32c)

where Z is the optimal IP value. Moreover, each inequality in (2.32) is strict for some

instances. (We have not discussed any papers considering ZD; we include it here because

it figures into the discussion of variable-splitting that follows.)



55

Cornuejols et al. also discuss bounds obtained from variable-splitting, with some

surprising results. Let ZD/CT be the bound obtained by relaxing (V)—the notation

indicates that the Demand constraints are in one set of the “split,” the Capacity and

Total capacity constraints are in the other. Then

ZD/CT ≥ ZD and ZD/CT ≥ ZCT (2.33)

(see Guignard and Kim 1987), confirming the intuition that the variable-splitting bound is

at least as tight as the corresponding simple Lagrangian bound. On the other hand, Cor-

nuejols et al. show that the first inequality holds at equality, meaning variable-splitting

does not offer any advantage over the bound ZD. (The second inequality in (2.33) is

strict for some instances.) Moreover, they show that

ZD/CT ≤ ZC , (2.34)

and that this inequality is strict for some instances. In fact, they find empirically that

the relative error for ZC (i.e., (Z − ZC)/Z) is about half that for ZD = ZD/CT for

tightly constrained problems, and that the difference is even more pronounced for less

capacitated problems. On the other hand, both bounds tend to be quite tight: ZC ≤ 1%

and ZD ≤ 3% for all problems tested.

Geoffrion and McBride (1978) also offer a theoretical discussion of bounds for the

CFLP. They omit constraints (B) and (T) but include minimum throughput constraints

as well as any Additional linear constraints on the X and Y variables, which we will

denote (A). (A) may include, for example, cardinality constraints (open between 3 and

8 facilities), precedence constraints (don’t open facility 4 if facility 2 is opened), and so



56

on. They relax the demand constraints (D) and the additional constraints (A), attaining

the bound ZBT
DA. The subproblem reduces to a continuous KP for each facility j. Their

main result is that

ZIBT ≤ ẐBT
DA ≤ ZBT

DA = ZIT ≤ Z, (2.35)

where ZIBT is the LP relaxation of their formulation, ẐBT
DA is the Lagrangian bound

attained by relaxing (D) and (A) and setting the Lagrange multipliers equal to the

corresponding optimal dual values from the LP relaxation, ZBT
DA is the optimal Lagrangian

bound (i.e., maximizing over the Lagrange multipliers), ZIT is the LP bound when the

linking constraints (B) are included in the formulation, and Z is the optimal IP value.

The authors find empirically that the gap between ZIBT and Z averages around 7%, and

that about 70% of this gap is accounted for by the first inequality. The optimal Lagrange

multipliers provide a tighter bound, which is equal to the “strong” LP relaxation bound

ZIT . (Above, we listed ZI as the strong LP relaxation, but Cornuejols et al. show

ZIT = ZI .) According to Geoffrion and McBride, the last inequality entails an average

gap of only 0.6% or so.

Another interesting variation on Lagrangian relaxation that has been proposed for

the CFLP is an algorithm proposed by Barahona and Chudak (1999a), which extends a

similar algorithm (Barahona and Chudak 1999b) for the UFLP. Barahona and Chudak’s

algorithm is a heuristic that combines the volume algorithm and randomized rounding.

The volume algorithm (Barahona and Anbil 2000) is essentially a Lagrangian method

that gradually builds a solution that is close to feasible by taking convex combinations

of the solutions found so far. Although each solution found by the Lagrangian procedure



57

is binary, the “combined” solution will be fractional and will approximate the solution

to the LP relaxation, based on a theorem in linear programming duality. The Lagrange

multipliers are updated using an enhanced version of subgradient optimization. The idea

behind randomized rounding (Raghavan and Thompson 1987) is to take the fractional

solutions from the LP relaxation (or, in this case, from the approximate LP solution

found using the volume algorithm) and round the facility location variable Xj to 1 with

probability Xj and to 0 with probability 1 − Xj. Once facilities have been opened

by randomized rounding, assignments are made by solving a transportation problem.

Computational results on problems with up to 1000 nodes show less than 1% relative

error, but long run times.

Nozick (2001) considers a model that adds a coverage constraint of the form

∑

i∈I

∑

j∈J

hiqijYij ≤ V (C′′)

to the UFLP, where qij is 0 if facility j is within a given coverage distance of customer i

and V is a desired bound on the total demand not served by a facility within the coverage

distance. This constraint is like an aggregated form of (C′). She tests two Lagrangian

relaxations, one in which (D) and (C′′) are relaxed and one in which (B) and (C′′) are

relaxed (constraints (C) and (T) are omitted). She finds the latter relaxation to yield

consistently tighter bounds. This is surprising since both relaxations have the integrality

property and have the same theoretical bound; since the set (B) contains more constraints

than (D), one would expect the subgradient optimization procedure to converge faster

for the former relaxation.

Finally, we mention the informative article by Holmberg (1998), which discusses the-



58

oretical aspects of Lagrangian relaxation, Dantzig–Wolfe decomposition, Benders decom-

position, cross decomposition, variable-splitting, and another technique called constraint

duplication (essentially the dual of variable splitting), illustrating each with its applica-

tion to the CFLP. The reader is referred to this article for more information about these

techniques and how they relate to one another.

2.5 Location–Inventory Models

The location model with risk pooling (LMRP) presented in this section draws from

classical inventory theory (see the general texts of Graves, Rinnooy Kan, and Zipkin

(1993), Nahmias (2001), or Zipkin (1997)). In particular, it draws from the seminal

work by Eppen (1979) on risk pooling. Eppen showed that if demands are normally

distributed and uncorrelated, the cost of a newsboy-type inventory system increases

with the square root of the number of DCs. The LMRP itself was first developed by

Shen (2000) and Shen, Coullard, and Daskin (2003); both references present a column

generation algorithm for solving the LMRP. Daskin, Coullard, and Shen (2002) present

a Lagrangian-relaxation–based algorithm for the same problem. The algorithms in both

papers make the simplifying assumption that the variance-to-mean ratio is the same for

all retailers’ demands. This assumption makes the subproblems easy to solve. Without

this assumption, the problem can still be solved, but Shen et al.’s algorithm for the

subproblem in this case runs in O(n7 log n) time, where n is the number of retailers. A

faster, O(n2 log n), algorithm is presented by Shu, Teo, and Shen (2001).



59

A handful of other location–inventory models have appeared in the literature. Bara-

hona and Jensen (1998) use Dantzig–Wolfe decomposition coupled with subgradient op-

timization to solve a location problem with a fixed inventory cost for stocking a given

product at a given DC. Their model is tractable but not very rich. Erlebacher and Meller

(2000) use various heuristic techniques to solve a joint location–inventory problem with

a highly non-linear objective function, with limited success. Teo, Ou, and Goh (2001)

present a
√

2-approximation algorithm for the problem of choosing DCs to minimize

location and inventory costs, ignoring transportation costs.

Nozick and Turnquist (2001b) present a model to choose DC locations, allocations,

and stocking policies in a multi-product system. Their model can be used, for example,

to decide which products to stock at a central plant, which to stock at regional DCs,

and which not to stock at all (i.e., produce in a make-to-order fashion). They propose

an iterative approach that alternately solves a UFLP (with inventory accounted for by a

linear approximation, justified by Nozick and Turnquist 1998) and a stocking problem (for

a fixed set of DC locations); both problems are solved heuristically. Nozick and Turnquist

(2001a) consider a multi-objective model that embeds inventory cost and coverage into

the UFLP, again linearizing the inventory cost. These models are similar in spirit to the

LMRP, but they do not handle risk-pooling since inventory costs are linearized (removing

the concavity necessary for risk-pooling to be effective) and DC–retailer allocations are

made based only on distance, not inventory.

In the remainder of this section we describe the LMRP.



60

2.5.1 LMRP: Problem Statement

Shen, Coullard, and Daskin (“SCD”; 2003) and Daskin, Coullard, and Shen (“DCS”;

2002) formulate a location model with risk pooling, which we will refer to as the LMRP.

Given a set of retailers, the problem is to choose a subset of the retailers to serve as

distribution centers (DCs) for the other retailers.2 (We will use the terms “DC” and

“facility” interchangeably.) These DCs will order a single product from a single supplier

at regular intervals and distribute the product to the retailers. The DCs will hold working

inventory representing product that has been ordered from the supplier but not yet

requested by the retailers and safety stock inventory designed to buffer the system against

stockouts during ordering lead times, which are fixed and deterministic.

Let I be the set of retailers, which face independent normal random demands. The

firm pays a fixed location cost for establishing a DC at a retailer, as well as a fixed cost

for each order placed at a DC and a holding cost for inventory. There are fixed and

variable costs for shipping from the supplier to DCs and a variable cost for shipping from

DCs to retailers. We wish to choose DC locations to minimize the sum of all of these

costs. The notation is as follows:

2 The set of potential DC locations need not be the same as the set of retailers, but throughout our

discussion of the LMRP and its stochastic extensions, we will assume WLOG that they are equal. If

there are retailers that are not potential DC sites, their fixed location costs can be set to ∞, and if there

are DC sites that are not retailers, their demand can be set to 0.



61

Parameters

Demand

µi = mean daily demand at retailer i, for i ∈ I

σ2
i = variance of daily demand at retailer i, for i ∈ I

Costs

dij = per-unit cost to ship from a DC located at retailer j to retailer i, for

i, j ∈ I

fj = fixed cost per year of locating a DC at retailer j, for j ∈ I

Fj = fixed cost per order placed to the supplier by a DC located at retailer

j, for j ∈ I

gj = fixed cost per shipment from the supplier to a DC located at retailer

j, for j ∈ I

aj = per-unit cost to ship from the supplier to a DC located at retailer j,

for j ∈ I

h = inventory holding cost per unit per year

Weights

β = weight factor associated with transportation cost, β ≥ 0

θ = weight factor associated with inventory cost, θ ≥ 0

Other Parameters

α = desired percentage of retailer lead-time orders satisfied

zα = standard normal deviate such that P (z ≤ zα) = α

Lj = lead time in days for orders placed by a DC located at retailer j,



62

for j ∈ J

χ = number of days per year

In the notation above (and the analysis below), the time horizon of the model is assumed

to be one year. However, one could easily choose a different time horizon, adjusting the

values of fj, h, and χ accordingly.

Suppose for the moment that we know which retailers are assigned to facility j. Let S

be the set of retailers assigned to facility j, and let D be the expected annual demand of

retailers in S: D = χ
∑

i∈S µi. Let n be the (as yet undetermined) number of orders that

DC j places each year; then the expected size of a shipment is D/n. Using the notation

above, we can compute the annual cost of ordering, transporting, and holding inventory

at distribution center j:

Fjn + β
(

gj +
ajD
n

)

n + θ
hD
2n

. (2.36)

The first term represents the fixed cost of placing n orders; the second represents the cost

of transporting n orders of size D/n; and the third term represents the cost of holding

an average of D/2n units of inventory per year. To determine the optimal number of

orders per year, n∗, we take the derivative of (2.36) with respect to n:

Fj + βgj − θ
hD
2n2 . (2.37)

Setting (2.37) equal to 0 and solving for n, we get n∗ =
√

θhD
2(Fj+βgj)

. Plugging n∗ into

(2.36), we get a total cost of

Fj

√

θhD
2(Fj + βgj)

+ β

(

gj

√

θhD
2(Fj + βgj)

+ ajD

)

+ θ
hD
2

√

2(Fj + βgj)
θhD



63

=
√

2θhD(Fj + βgj) + βajD. (2.38)

This expression represents the total cost of obtaining working inventory at facility j,

assuming j follows the optimal EOQ-style inventory ordering policy. To compute the

total expected annual cost, we still need to add the fixed cost of opening facility j, the

cost of transporting product from the DC to the retailers, and the safety stock cost at j.

The fixed cost is simply equal to fj. The DC–retailer transportation cost is given by

βχ
∑

i∈S

dijµi.

To compute the safety stock cost, note that the variance of demand during the lead time

is Lj
∑

i∈S σ2
i since the retailers’ demands are independent. The amount of safety stock

needed to ensure that stockouts occur during the lead time with a probability no greater

than α is

zα

√

Lj

∑

i∈S

σ2
i ,

and the cost of holding this much safety stock is

θhzα

√

Lj

∑

i∈S

σ2
i .

Note that we do not need to figure the safety stock in the derivation of the working

inventory cost (2.38) because the level of safety stock has no impact on the size or

frequency of orders placed by facility j.

Combining all costs, we get a total expected annual cost of operating facility j:

fj + βχ
∑

i∈S

dijµi +
√

2θhD(Fj + βgj) + βajD + θhzα

√

Lj

∑

i∈S

σ2
i . (2.39)



64

But this cost assumes that we know the retailers assigned to facility j. Instead, we want

to determine the set S within the model and compute the expected cost “on the fly.”

To this end, we define the following variables:

Decision Variables

Xj =



















1, if we locate a DC at retailer j

0, otherwise

Yij =



















1, if retailer i is served by a DC at retailer j

0, otherwise

We can now formulate the location model with risk pooling (LMRP):

(LMRP) minimize
∑

j∈I

fjXj + βχ
∑

j∈I

∑

i∈I

dijµiYij

+
∑

j∈I

√

2θhχ(Fj + βgj)
∑

i∈I

µiYij + βχ
∑

j∈I

∑

i∈I

ajµiYij

+ θhzα

∑

j∈I

√

∑

i∈I

Ljσ2
i Yij

=
∑

j∈I

fjXj + βχ
∑

j∈I

∑

i∈I

µi(dij + aj)Yij

+
∑

j∈I

√

2θhχ(Fj + βgj)
∑

i∈I

µiYij + θhzα

∑

j∈I

√

∑

i∈I

Ljσ2
i Yij

=
∑

j∈I







fjXj +
∑

i∈I

d̂ijYij + Kj

√

∑

i∈I

µiYij + Θ
√

∑

i∈I

Ljσ2
i Yij







(2.40)



65

subject to
∑

j∈I

Yij = 1 ∀i ∈ I (2.41)

Yij ≤ Xj ∀i ∈ I, ∀j ∈ I (2.42)

Xj ∈ {0, 1} ∀j ∈ I (2.43)

Yij ∈ {0, 1} ∀i ∈ I, ∀j ∈ I (2.44)

The notation in the last line of the objective function is as follows:

d̂ij = βχµi(dij + aj)

Kj =
√

2θhχ(Fj + βgj)

Θ = θhzα

The objective function (2.40) sums the fixed cost of locating facilities, the DC–retailer

transportation cost, the working inventory cost (which includes ordering, supplier–DC

transportation, and holding costs), and the safety stock cost. Constraints (2.41) require

each retailer be assigned to exactly one DC. Constraints (2.42) prohibit a retailer from

being assigned to a DC that has not been opened. Constraints (2.43) and (2.44) are

standard integrality constraints.

Note that if θ = 0, problem (LMRP) is identical in form to the classical UFLP.

Therefore, the LMRP is NP-hard. Unfortunately, the square-root terms in the objective

function make the standard algorithms for the UFLP inapplicable to the problem when

θ > 0. However, SCD and DCS both use modifications of standard algorithms to solve

this problem. Their algorithms depend on the following assumption:

Assumption 2.1 The variance-to-mean ratio σ2
i /µi is identical for all retailers. That



66

is, for all i ∈ I, σ2
i /µi = γ for some constant γ ≥ 0.3

This assumption allows us to further simplify the objective function

∑

j∈I







fjXj +
∑

i∈I

d̂ijYij + Kj

√

∑

i∈I

µiYij + Θ
√

∑

i∈I

Ljσ2
i Yij







=
∑

j∈I







fjXj +
∑

i∈I

d̂ijYij + Kj

√

∑

i∈I

µiYij + Θ
√

∑

i∈I

LjγµiYij







=
∑

j∈I







fjXj +
∑

i∈I

d̂ijYij + K̂j

√

∑

i∈I

µiYij







(2.45)

where

K̂j = Kj + Θ
√

Ljγ.

This revised objective function, with one square-root term instead of two, will make the

solution procedure more efficient, though Shu, Teo, and Shen (2001) later reduced the

complexity of the algorithm for the two-square-root objective function. If demands are

Poisson, Assumption 2.1 is satisfied exactly. If not, the assumption may still be satisfied

approximately. Another effect of Assumption 2.1 is that the optimal solution will never

open retailer j as a DC but serve demands at j from a different DC, an odd circumstance

that can happen if Assumption 2.1 is not satisfied. (See SCD for an example and DCS for

a proof that the situation cannot arise if Assumption 2.1 holds.) Even with Assumption

2.1, however, it is possible that a retailer is served from a facility other than its closest.

For the remainder of this section, we will assume that Assumption 2.1 holds.
3Or µi = σ2

i = 0. This is useful for implementing the modeling trick described in footnote 2.



67

2.5.2 LMRP: Solution Procedure

SCD use a set-covering/column-generation approach to solve (LMRP), which we omit

here. DCS propose a Lagrangian-relaxation–based algorithm for solving (LMRP). This

algorithm serves as the basis for algorithms developed later in this dissertation. The

algorithm is an extension of the standard Lagrangian relaxation algorithm for the UFLP

(Geoffrion 1974).

2.5.2.1 Lower Bound

If we relax constraints (2.41), we obtain the following problem:

(LMRP-LR) maximize
λ≥0

Lλ = minimize
X,Y

∑

j∈I







fjXj +
∑

i∈I

d̂ijYij + K̂j

√

∑

i∈I

µiYij







+
∑

i∈I

λi



1−
∑

j∈I

Yij





=
∑

j∈I







fjXj +
∑

i∈I

(d̂ij − λi)Yij + K̂j

√

∑

i∈I

µiYij







+
∑

i∈I

λi (2.46)

subject to Yij ≤ Xj ∀i ∈ I,∀j ∈ I (2.47)

Xj ∈ {0, 1} ∀j ∈ I (2.48)

Yij ∈ {0, 1} ∀i ∈ I, ∀j ∈ I (2.49)

For fixed Lagrange multipliers λ, we can solve this problem by determining, for each

j ∈ I, the benefit of opening a facility at retailer j. This benefit can be computed by



68

solving the following subproblem:

(SPj) minimize Ṽj =
∑

i∈I

biZi +
√

∑

i∈I

ciZi (2.50)

subject to Zi ∈ {0, 1} ∀i ∈ I (2.51)

where

bi = d̂ij − λi

ci = K̂2
j µi

Zi = Yij.

Note that ci ≥ 0 for all i. This subproblem, which also arises as the pricing problem for

the column-generation algorithm in SCD, is a non-linear integer program, but SCD show

that it can be solved using the following O(|I| log |I|) algorithm:

Algorithm 2.1 (PRICING)

Step 1: Partition I into three sets as follows:

I+ = {i|bi ≥ 0}

I0 = {i|bi < 0 and ci = 0}

I− = {i|bi < 0 and ci > 0}

Step 2: Sort the elements of I− such that

b1

c1
≤ b2

c2
≤ · · · ≤ bn

cn
,

where n = |I−|.



69

Step 3: Compute the partial sums

Sm =
∑

i∈I0

bi +
√

∑

i∈I0

ci +
m

∑

i=1
i∈I−

bi +

√

√

√

√

m
∑

i=1
i∈I−

ci

for m = 0, . . . , n. (Note that the first square-root term will equal 0 by the definition

of I0.)

Step 4: Select the value of m that results in the minimum value of Sm, and set

Zi =































1, if i ∈ I0

1, if i ∈ I− and i ≤ m

0, otherwise

For each retailer j, the benefit of opening facility j is given by Ṽj, the optimal solution

to (SPj). The location variable Xj is set to 1 if

Ṽj + fj < 0,

that is, if the net benefit after adding the fixed cost is still negative. (If no facility has

a negative net benefit, we set Xj = 1 for the facility with the smallest net benefit.) The

assignment variable Yij is set to 1 if Xj = 1 and Zi = 1 in the optimal solution to (SPj).

The Lagrange multipliers are updated using subgradient optimization (see Fisher 1981,

1985 or Daskin 1995). The best value of Lλ found during the Lagrangian process serves

as a lower bound on (2.40).

2.5.2.2 Upper Bound

Each time we solve (LMRP-LR), the current solution (X̂, Ŷ ) is used to obtain a feasible

solution to (LMRP) greedily. If the cost of the resulting solution is less than the best



70

upper bound found so far, DCS apply two improvement heuristics to it. In brief, the first

heuristic involves re-assigning retailers from their currently assigned facility to a different

one if doing so reduces the total cost. If at some point all of the demand assigned to

a facility has been removed from the facility, one saves the fixed cost associated with

the facility in addition to the other costs. The second procedure involves swapping a

facility out of the solution in favor of a facility not currently in the solution, if doing so

reduces the total cost; this procedure is similar to Teitz and Bart’s (1968) procedure for

the P -median problem.

2.5.2.3 Branch and Bound

If, when the Lagrangian procedure terminates, the best lower bound found is equal to

the best upper bound (to within some pre-specified tolerance), we have found an optimal

solution to (LMRP). Otherwise, a branch-and-bound procedure is employed to close the

gap, with branching performed on the Xj (location) variables. At each node of the

branch-and-bound tree, the facility selected for branching is the unfixed facility with the

greatest assigned demand, or, if all facilities in the solution have already been forced

open, we branch on an arbitrarily selected unforced facility. The variable is first forced

to 0 and then to 1. Branching is done in a depth-first manner. The tree is fathomed at a

given node if the lower bound at that node is greater than or equal to the objective value

of the best feasible solution found anywhere in the tree to date, or if all facilities have

been forced open or closed. A simple variable-fixing test is performed after processing at

the root node to force some variables to 0 or 1 before any branching is performed. This



71

test is very effective and takes negligible CPU time. It is described in greater detail for

the SLMRP in Section 3.2.4.

2.5.2.4 Tightness of the Bound

As mentioned in the previous section, the lower bound from (LMRP-LR) tends to be

extremely tight. To see why this might be so, first imagine that θ = 0, that is, that we

are dealing with a pure UFLP. Many location problems, including the UFLP, have a

very tight LP-relaxation bound (ReVelle and Swain 1970, Schrage 1975), at least when

the distance matrix satisfies the triangle inequality. Furthermore, it is well known that

the theoretical Lagrangian bound is not less than the LP bound (see Nemhauser and

Wolsey 1988 or Fisher 1981). Therefore the Lagrangian bound should also be very tight

for the UFLP, and this property seems to hold for the non-linear LMRP, even when θ is

large relative to β (and hence the objective function has a high degree of non-linearity).

2.6 Chapter Summary

In this chapter we reviewed the literature on robust optimization, focusing especially on

location problems. We used “robust” to refer to problems that optimize based on uncer-

tain future conditions, rather than the more narrow definition that uses robust to refer

only to problems in which no probabilistic information is known. We discussed several

different measures of robustness and presented examples of each from the literature. Of

particular interest among the robustness measures is that of p-robustness, which we will

return to in Chapter 4.



72

Although no models for reliable supply chain design (in the sense in which we define

it) have appeared in the literature, we discussed several streams of research that relate to

the reliability models we present in Chapters 5 and 6, including network reliability models

and expected covering models. We also discussed relaxation methods for facility location

problems, especially Lagrangian relaxation. Finally, we discussed location–inventory

models, especially the location model with risk pooling (LMRP), which will serve as the

basis for models formulated later in this dissertation.



Chapter 3

The Stochastic Location Model with

Risk Pooling (SLMRP)

The LMRP model discussed in the previous chapter involves random demands, but es-

timates of demand means and variances (µi and σ2
i ) may be inaccurate due to poor

forecasts, measurement errors, or changing demand patterns. In this chapter we present

a model that allows the modeler to specify several possible future states, or scenarios.

Each scenario dictates the demand and cost information that drives the supply chain

model. This allows us to hedge against forecast errors or changes in parameters over

time.

As we discussed in Chapter 1, uncertain parameters are modeled using either discrete

scenarios or continuous distributions. We chose the scenario approach for a number of

reasons. The primary reason is that it allows us to model dependence among random

parameters. Future demands are likely to be correlated, as are costs. Under the continu-

73



74

ous approach, such correlation could be modeled, but in all likelihood the problem would

be intractable. Even without dependence, stochastic models with continuous parameters

are extremely difficult to solve, and stochastic programming researchers have generally

stayed away from them. Computational tractability is our second reason for using sce-

narios, as the solution techniques previously published for the LMRP can be extended to

handle the scenario problem. Finally, as we discuss in Section 3.3, the scenario framework

can be interpreted in a number of different ways, allowing us to use it to model and solve

multi-commodity and multi-period versions of the LMRP.

3.1 Formulation

Suppose that demand means and variances, distances, and costs are random and are

described by scenarios, each with a specified probability of occurrence. Location decisions

(X) are scenario-independent: they must be made before it is known which scenario

will be realized. Assignment decisions (Y ) are scenario-dependent, so Yij becomes Yijs.

Inventory decisions are also scenario-dependent, in that the levels of cycle and safety

stock change once assignments are made and demand means and variances are known,

though there are no explicit inventory variables. Note that there are now two levels of

randomness: scenarios determine the means and variances of the demands, but once the

scenario has been realized, demands are still random according to the specified probability

distribution. Our goal is to choose facility locations to minimize the expected cost of the

system.



75

Let S be the set of scenarios, indexed by s. We modify the notation from Section

2.5.1 as follows:

Parameters

Demand

µis = mean daily demand at retailer i in scenario s, for i ∈ I, s ∈ S

σ2
is = variance of daily demand at retailer i in scenario s, for i ∈ I, s ∈ S

Costs

dijs = per-unit cost to ship from a DC located at retailer j to retailer i in

scenario s, for i, j ∈ I, s ∈ S

Probabilities

qs = probability that scenario s occurs, for s ∈ S

Variables

Assignment Variables

Yijs =



















1, if retailer i is served by a DC at retailer j in scenario s

0, otherwise

In fact, any of the costs (aj, gj, etc.) other than fj and any of the other parameters

(Lj, χ, etc.) can be scenario-dependent (ajs, gjs, Ljs, χs, etc.); the analysis to follow can

be modified in a straightforward way to incorporate these costs. For simplicity, however,

we will assume that only demand means and variances and DC–retailer transportation

costs are scenario-dependent.



76

We can now formulate the stochastic location model with risk pooling (SLMRP):

(SLMRP) minimize
∑

s∈S

∑

j∈I

qs

{

fjXj + βχ
∑

i∈I

µis(dijs + aj)Yijs

+
√

2θhχ(Fj + βgj)
∑

i∈I

µisYijs + θhzα

√

∑

i∈I

Ljσ2
isYijs







=
∑

s∈S

∑

j∈I

qs







fjXj +
∑

i∈I

d̂ijsYijs + Kj

√

∑

i∈I

µisYijs

+ Θ
√

∑

i∈I

Ljσ2
isYijs







(3.1)

subject to
∑

j∈I

Yijs = 1 ∀i ∈ I,∀s ∈ S (3.2)

Yijs ≤ Xj ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (3.3)

Xj ∈ {0, 1} ∀j ∈ I (3.4)

Yijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (3.5)

The objective function (3.1) computes the expected value of the individual-scenario costs

given in (2.40), with subscripts s added to the appropriate parameters and variables. In

the last line of the objective function, one additional piece of notation is used:

d̂ijs = βχ(dijs + aj)µis.

Constraints (3.2) require each retailer to be assigned to exactly one DC in each scenario.

Constraints (3.3) prohibit a retailer from being assigned to a given DC in any scenario

unless that DC has been opened. Constraints (3.4) and (3.5) are standard integrality

constraints. Since the SLMRP reduces to the LMRP when |S| = 1, the SLMRP is

NP-hard.



77

We will make the following assumption, which is the stochastic version of Assumption

2.1:

Assumption 3.1 In each scenario s ∈ S, the variance-to-mean ratio σ2
is/µis is identical

for all retailers. That is, for each s ∈ S, there exists γs ≥ 0 such that σ2
is/µis = γs for

all i ∈ I.

Note that the variance-to-mean ratio γs may differ from scenario to scenario. This as-

sumption allows us to rewrite the objective function (3.1) as follows:

∑

s∈S

∑

j∈I

qs







fjXj +
∑

i∈I

d̂ijsYijs + Kj

√

∑

i∈I

µisYijs + Θ
√

∑

i∈I

Ljσ2
isYijs







=
∑

s∈S

∑

j∈I

qs







fjXj +
∑

i∈I

d̂ijsYijs + Kj

√

∑

i∈I

µisYijs + Θ
√

∑

i∈I

LjγsµisYijs







=
∑

s∈S

∑

j∈I

qs







fjXj +
∑

i∈I

d̂ijsYijs + K̂js

√

∑

i∈I

µisYijs







(3.6)

where

K̂js = Kj + Θ
√

Ljγs.

Problem (SLMRP) looks like (LMRP) with |I||S| retailers instead of |I| and some

of the parameters multiplied by the constant qs. We will utilize this structure in our

solution procedure.

3.2 Solution Procedure

As in the algorithm for (LMRP), we will relax the assignment constraints and use La-

grangian relaxation to solve (SLMRP).



78

3.2.1 Lower Bound

Relaxing constraints (3.2) with Lagrange multipliers λis, we get the following Lagrangian

problem:

(SLR) maximize
λ≥0

Lλ = minimize
X,Y

∑

s∈S

∑

j∈I

qs







fjXj +
∑

i∈I

d̂ijsYijs + K̂js

√

∑

i∈I

µisYijs







+
∑

s∈S

∑

i∈I

λis



1−
∑

j∈I

Yijs





=
∑

s∈S

∑

j∈I

{

qsfjXj +
∑

i∈I

(qsd̂ijs − λis)Yijs

+ qsK̂js

√

∑

i∈I

µisYijs







+
∑

s∈S

∑

i∈I

λis (3.7)

subject to Yijs ≤ Xj ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (3.8)

Xj ∈ {0, 1} ∀j ∈ I (3.9)

Yijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (3.10)

We can restrict λ ≥ 0 since if λis < 0, then qsd̂ijs − λis > 0 and it is never advantageous

to set Yijs = 1 for any j; if we set λis = 0, the last term of the objective function increases

without affecting any of the other terms, thus tightening the Lagrangian bound.

For fixed values of λ, this problem decomposes by j and s. Ignoring for now the fixed

location costs fj, we can compute the benefit of using facility j in scenario s by solving

(SSPjs) minimize Ṽjs =
∑

i∈I

biZi +
√

∑

i∈I

ciZi (3.11)

subject to Zi ∈ {0, 1} ∀i ∈ I (3.12)



79

where

bi = qsd̂ijs − λis

ci = q2
sK̂

2
jsµis

Zi = Yijs

This problem is equivalent to (SPj), and for given j, s, it can be solved using Shen’s

algorithm, described in Section 2.5.2.

Now, if facility j is opened in one scenario, it must be opened in every scenario.

Therefore the overall benefit of opening facility j is equal to the sum of all of the scenario-

specific benefits:

Ṽj =
∑

s∈S

Ṽjs.

To solve (SLR) for fixed λ, we compute Ṽjs for each j ∈ I, s ∈ S, then compute Ṽj for

each j. The fixed cost to open facility j is equal to fj
∑

s∈S qs = fj since the scenario

probabilities sum to 1. Therefore, we set Xj = 1 if

Ṽj + fj < 0. (3.13)

If Ṽj + fj ≥ 0 for all j ∈ I, then we set Xj = 1 for the j that minimizes Ṽj + fj since at

least one facility must be open in any feasible solution. We set Yijs = 1 if Xj = 1 and

Zi = 1 in the optimal solution to (SSPjs). To solve the overall problem (SLR), we find

the optimal values of λ using subgradient optimization (Fisher 1981, 1985; Daskin 1995).

The best value of Lλ found during the Lagrangian process serves as a lower bound on

(3.1).



80

Shen’s algorithm for (SSPjs) has complexity O(n log n), where n = |I|. (If Assumption

3.1 does not hold, (SSPjs) has an additional square-root term in the objective function

and can be solved in O(n2 log n) time (Shu, Teo, and Shen 2001).) At each iteration of

the Lagrangian procedure, we must solve this problem for all j ∈ I, s ∈ S, so the total

complexity required to solve (SLR) for a given λ is O(n2|S| log n).

3.2.2 Upper Bound

Each time we solve (SLR), we use the current solution (X̂, Ŷ ) to obtain a feasible solution

to (SLMRP). For each j ∈ I, we open a DC at j if X̂j = 1 in the optimal solution to

(SLR). In each scenario s, we assign retailers to facilities as follows. We first loop through

all retailers i with
∑

j∈I Ŷijs ≥ 1 and assign i to the facility j with Ŷijs = 1 that increases

the objective function least based on the assignments made so far. Next we loop through

retailers with
∑

j∈I Ŷijs = 0 and assign each retailer to the open DC that increases the

objective function least. In both cases we loop through retailers in decreasing order of

mean demand µis. The resulting solution is feasible for (SLMRP) and its cost provides

an upper bound on (3.1).

If the cost of the solution obtained using this procedure is less than the best upper

bound found so far, we apply a retailer re-assignment heuristic to it. This heuristic is

similar to that described by Daskin, Coullard, and Shen (2002) and involves re-assigning

retailers from their currently assigned facility to a different one in a given scenario if doing

so reduces the total cost. This is done for each scenario, since retailers may be assigned

to different facilities in different scenarios. If at some point all of the demand assigned



81

to a facility has been removed from the facility, one saves the fixed cost associated with

the facility in addition to the other costs.

Daskin, Coullard, and Shen also describe a facility-exchange heuristic that involves

swapping a facility out of the solution in favor of a facility not currently in the solution

if doing so reduces the total cost; this procedure is similar to Teitz and Bart’s (1968)

procedure for the P -median problem. We did not use this heuristic in our computational

tests because it is computationally expensive and the algorithm performed well without

it.

3.2.3 Branch and Bound

If, when the Lagrangian procedure terminates, the best known lower bound is equal to

the best known upper bound (to within some pre-specified tolerance), we have found the

optimal solution to (SLMRP). Otherwise, a branch-and-bound procedure is employed to

close the gap, with branching performed on the Xj (location) variables. At each node of

the branch-and-bound tree, the facility selected for branching is the unfixed facility with

the greatest assigned expected demand; if all facilities in the solution have already been

forced open, we branch on an arbitrarily selected unforced facility. The variable is first

forced to 0 and then to 1. Branching is done in a depth-first manner. The tree is fathomed

at a given node if the lower bound at that node is greater than or equal to the objective

value of the best feasible solution found anywhere in the tree to date, or if all facilities

have been forced open or closed. In theory, if the overall lower bound is still not equal to

the best upper bound found when the branch-and-bound procedure terminates, we must



82

branch on the Yijs (assignment) variables, but this has never occurred in computational

testing.

3.2.4 Variable Fixing

Suppose that the Lagrangian procedure terminates at the root node of the branch-and-

bound tree with the lower bound strictly less than the upper bound. Let UB be the

best upper bound found, let Ṽj be the facility benefits under a particular set of Lagrange

multipliers λ, and let LB be the lower bound (the objective value of (SLR)) under the

same λ. Suppose further that Xj = 0 in the solution to (SLR) found using λ. If

LB + Ṽj + fj > UB (3.14)

then candidate site j cannot be part of the optimal solution, so we can fix Xj = 0. To

see why this is true, imagine that we chose to branch on Xj. Clearly LB + Ṽj + fj is a

valid lower bound for the “Xj = 1” node (it would be the first lower bound found if we

use λ as the initial multipliers at the new child node), so we would fathom the tree at

this new node and never again consider setting Xj = 1.

Similarly, suppose Xj = 1 in the solution to (SLR) found using λ. If

LB− (Ṽj + fj) > UB (3.15)

then candidate site j must be part of the optimal solution, so we can fix Xj = 1. Note

that in this case, Ṽj + fj < 0 (otherwise we would have opened j), which is why the

left-hand side might exceed UB.



83

We perform these variable-fixing checks twice after processing has terminated at the

root node, once using the optimal multipliers λ and once using the most recent multipliers,

as suggested by Daskin, Coullard, and Shen (2002). This procedure is quite effective in

forcing variables open or closed because (SLR) tends to produce very tight lower bounds,

making (3.14) or (3.15) hold for many facilities j. The time required to perform these

checks is negligible.

3.2.5 Relationship to Weaver and Church’s Algorithm

In Section 2.2.1.2, we discussed Weaver and Church’s (1983) algorithm for the stochastic

PMP. Essentially, their algorithm treats the multi-scenario PMP as a deterministic PMP

with |I||S| customers instead of |I| and solves the resulting problem using Lagrangian

relaxation. Our approach is very similar. The difference is that Weaver and Church solve

the Lagrangian subproblem for each j, not segregating by scenario. In the SLMRP, this

would amount to solving

minimize Ṽj =
∑

s∈S





∑

i∈I

bisZis +
√

∑

i∈I

cisZis





subject to Zis ∈ {0, 1} ∀i ∈ I, ∀s ∈ S

for all j in place of problem (SSPjs), where bis = qsd̂ijs − λis and cis = q2
sK̂

2
jsµis, and

Zis = 1 if retailer i is assigned to facility j in scenario s. The difficulty with this problem

is that the objective function contains |S| square root terms instead of one, and our

solution method relies on there being a single square root term. Fortunately, the problem

given above decomposes by s, so we can solve the problem for each facility–scenario pair

individually and sum over scenarios to obtain the benefit of each facility, as described



84

above.

Similar reasoning explains why the DC–customer assignments must be scenario de-

pendent in our model. If they were scenario independent, we would have assignment

variables Yij, and the pricing problem would not decompose by s:

minimize Ṽj =
∑

s∈S





∑

i∈I

bisZi +
√

∑

i∈I

cisZi





subject to Zi ∈ {0, 1} ∀i ∈ I

The coefficients bis and cis are as defined above, but now Zi = 1 if retailer i is assigned to

facility j in all scenarios. Again, this problem has |S| square root terms, making it much

more difficult to solve. (An algorithm by Shu, Teo, and Shen (2001) can be extended to

solve this problem, but it would require O(n|S| log n) operations for each j, s.)

3.3 Multi-Commodity and Multi-Period Problems

Suppose we wanted to solve the LMRP for multiple commodities simultaneously. Since

there are no capacity constraints, one might be tempted to aggregate the products and

model them as one. But this strategy falsely assumes that risk-pooling benefits apply

across products; that is, that holding inventory of one product protects against stockouts

of another. However, the stochastic LMRP framework can be used to model this multi-

commodity problem by letting S represent the set of products (instead of scenarios),

letting qs = 1 for all s ∈ S, and replacing fj by fj/|S| in the objective function (3.1).

The objective function (3.1) is then interpreted as adding the (product-independent)

fixed location costs and the (product-dependent) transportation and inventory costs.



85

Constraints (3.2) say that each retailer must receive each product from exactly one DC

(though it may receive different products from different DCs), and constraints (3.3) say

that no retailer may receive any product from a DC that has not been opened. The

solution method for the SLMRP is the same under this multi-commodity interpretation,

except that now equation (3.13) is replaced by

Ṽj + fj|S| < 0 (3.16)

since the qs now sum to |S| instead of 1.

The problem with this interpretation is that it assumes each product is ordered in-

dividually, following a lot-sizing schedule based on the solutions to |S| individual EOQ

problems. Moreover, DCs pay fixed ordering and shipment costs (F and g) for each prod-

uct, when in reality, DCs are likely to pay these costs for each order, regardless of the

number of products ordered. In other words, this formulation does not take into account

the economies of scale that can result from solving a multi-product lot-sizing problem to

coordinate the ordering of multiple products simultaneously. Fortunately, our solution

methodology requires only that the replenishment cost is concave in the aggregate de-

mand served. This assumption appears to hold for a variety of multi-product lot-sizing

problems; see, for example, the case problem mentioned in Chapter 8 of Chopra and

Meindl (2001). Future research should focus on incorporating lot-sizing into the SLMRP

framework.

This framework does allow us to model tooling costs tjs for stocking a given product

s at a given DC j. Since the benefit Ṽjs is computed for each facility–product pair (j, s),

we can add the tooling cost to Ṽjs and only use DC j for product s if the benefit is still



86

negative. Then the definition of the benefit of facility j is

Ṽj =
∑

s∈S

min{0, Ṽjs + tjs}. (3.17)

Tooling costs are often encountered in practice and are frequently difficult to model since

many supply chain design models do not already have binary variables for DC–product

pairs. (See, for example, Geoffrion and Graves 1974, or Section 12.4 of Bramel and

Simchi-Levi 1997.)

The SLMRP framework can also be used to model multi-period problems in which the

parameters vary from period to period in a deterministic way. In this case, S is the set of

time periods and parameter values are specified for each period. Again we set qs = 1 for

all s and replace fj by fj/|S| for all j. Note that in this multi-period model, facilities are

located before period 1, while assignments and inventory policies may change over time.

It is not a truly dynamic model in which facilities may be opened or relocated over time.

The tooling cost tjs could still be used in this case, representing a fixed cost for using a

DC in a given time period, but it is unlikely that a firm would want to construct a DC

but let it remain idle in any period. This similarly makes the tooling cost unnecessary

in the standard SLMRP.

3.4 Computational Results

3.4.1 Experimental Design

We tested our algorithm for the SLMRP on the 49-node, 88-node, and 150-node data sets

described by Daskin (1995). The 49-node data set represents the capitals of the lower



87

48 United States plus Washington, DC; the 88-node data set contains the 49-node data

set plus the 50 largest cities in the 1990 U.S. census, minus duplicates; and the 150-node

data set contains the 150 largest cities in the 1990 U.S. census.

For each data set, we generated 3-, 5-, and 9-scenario problems. We computed the

“base” demand by dividing the population given by Daskin by 1000; these base demands

were used to compute scenario-specific demands for 9 scenarios following the method

described by Daskin, Hesse, and ReVelle (1997); in brief, this method involves defining

an “attractor” point for each scenario and scaling each retailer’s demand based on its

distance to the attractor point. The total mean demand is the same in all scenarios

for a given problem. The demand variance was set equal to the demand mean in all

cases (i.e., γs = 1 for all s). Following Daskin, Hesse, and ReVelle, fixed location costs

(fj) were obtained by dividing the fixed cost given by Daskin by 10 for the 49-scenario

problem and by 100 for the 88-node problem; for the 150-node problem, fixed costs for all

retailers were set to 100. Fixed costs were chosen in this manner to provide a reasonable

tradeoff between fixed costs and transportation and inventory costs. Retailer locations

for scenario 1 were taken directly from Daskin for all three problems; for scenarios 2–9,

the latitude and longitude values from scenario 1 were multiplied by a random number

drawn uniformly from U [0.95, 1.05]. This has the effect of making the distances scenario

specific. In all cases, great-circle distances were used.

As mentioned in Section 3.1, the ordering and shipping costs may be scenario-specific;

we utilized this feature in our test problems. The fixed ordering and shipping costs (Fjs

and gjs, respectively) were set to 10 and the variable shipping cost (ajs) was set to 5 for



88

all retailers in scenario 1. In scenarios 2–9, Fjs and gjs were set to a random number

drawn uniformly from U [7.5, 12.5] and ajs was set to a random number drawn uniformly

from U [3.75, 6.25] (i.e., the costs were perturbed by up to 25% in either direction).

The holding cost h, the lead time Lj, and the days per year χ were set to 1. (χ = 1

may seem unrealistic, but the weights β and θ can serve to translate daily parameters

into yearly ones instead of χ.) zα was set to 1.96 (guaranteeing at least a 97.5% service

level). We tested five values of the weights β and θ.

The scenario probabilities for the 9-scenario problems are given by Daskin et al.

(1997); they are: 0.01, 0.04, 0.15, 0.02, 0.34, 0.14, 0.09, 0.16, 0.05. To obtain the 3-

scenario problem, we used the first 3 scenarios and scaled the probabilities so they sum

to 1 (the new probabilities are 0.05, 0.2, 0.75), and similarly for the 5-scenario problem

(obtaining probabilities 0.018, 0.071, 0.268, 0.036, 0.607).

The parameters used for the Lagrangian relaxation procedure are given in Table 3.1.

For a more detailed description of these parameters, see Daskin (1995). The notation

µ̄ in the table stands for the average mean demand, taken across all retailers and all

scenarios. We terminated the branch-and-bound procedure when the optimality gap was

less than 0.1%, or when 2,000 CPU seconds had elapsed.

We coded the algorithm in C++ and performed the computational tests on a Dell

Inspiron 7500 notebook computer with a 500 MHz Pentium III processor and 128 MB

memory.



89

Table 3.1: Parameters for Lagrangian relaxation procedure: SLMRP.

Parameter Value
Maximum number of iterations at root node 1200
Maximum number of iterations at other nodes 400
Number of non-improving iterations before halving α 12
Initial value of α 2
Minimum value of α 0.00000001
Minimum LB–UB gap 0.1%
Initial value for λis 10µ̄ + 10fi

3.4.2 Algorithm Performance

Table 3.2 describes the algorithm’s performance for our computational experiments. The

columns are as follows.

# Ret The number of retailers in the problem.

# Scen The number of scenarios in the problem.

β The value of β.

θ The value of θ.

Overall LB The lower bound obtained from the branch-and-bound process.

Overall UB The objective value of the best feasible solution found during the branch-

and-bound process.

Overall Gap The percentage difference between the overall upper and lower bounds.

Root LB The best lower bound obtained during the Lagrangian process at the root

node.



90

Root UB The objective value of the best feasible solution found during the Lagrangian

process at the root node.

Root Gap The percentage difference between the root-node upper and lower bounds.

# Lag Iter The total number of Lagrangian relaxation iterations performed during the

algorithm.

# BB Nodes The number of branch-and-bound nodes explored during the algorithm.

CPU Time (sec.) The number of CPU seconds that elapsed before the algorithm ter-

minated.

The optimal1 solution was found (and proven to be optimal) at the root node in 29 out

of 45 test problems. For the remaining problems, fewer than 10 branch-and-bound nodes

were generally needed, though for a few problems more were necessary. In all but three

cases, the optimality gap at the root node was less than 1%, and the root-node gap was

always less than 3.1%, indicating that the bound provided by the Lagrangian relaxation

process is very tight and that even without branch-and-bound, the Lagrangian procedure

can be relied upon to generate a good feasible solution. For the two smaller data sets, the

algorithm reached a provably optimal solution within the 2000-second limit in all but one

case (in fact, in under two minutes in most cases). The algorithm’s performance for the

150-node data set was slightly less impressive, with CPU times occasionally exceeding

2000 seconds and the algorithm terminating without a provably optimal solution. This is

not surprising since these problems are quite large—for example, the 9-scenario problem
1If the optimality gap is less than or equal to 0.1%, we refer to the solution as optimal.



91

Table 3.2: SLMRP algorithm performance.

CPU
# # Overall Overall Overall Root Root Root # Lag # BB Time

Ret Scen β θ LB UB Gap LB UB Gap Iter Nodes (sec.)
49 3 0.001 0.1 149,741 149,888 0.10% 149,741 149,888 0.10% 123 1 5.7
49 5 0.001 0.1 151,161 151,302 0.09% 150,925 152,282 0.90% 3186 11 153.2
49 9 0.001 0.1 155,347 155,502 0.10% 154,945 159,655 3.04% 5754 19 486.2
49 3 0.005 0.1 303,327 303,626 0.10% 303,327 303,626 0.10% 44 1 2.9
49 5 0.005 0.1 303,527 303,827 0.10% 303,527 303,827 0.10% 205 1 12.5
49 9 0.005 0.1 316,541 316,847 0.10% 316,541 316,847 0.10% 70 1 10.1
49 3 0.005 0.5 312,658 312,970 0.10% 312,658 312,970 0.10% 76 1 5.4
49 5 0.005 0.5 312,191 312,500 0.10% 312,191 312,500 0.10% 188 1 11.9
49 9 0.005 0.5 325,883 326,205 0.10% 325,883 326,205 0.10% 120 1 15.8
49 3 0.005 1 321,280 321,421 0.04% 321,280 321,421 0.04% 37 1 2.6
49 5 0.005 1 320,041 320,351 0.10% 320,041 320,351 0.10% 87 1 7.9
49 9 0.005 1 334,340 334,666 0.10% 334,340 334,666 0.10% 63 1 8.1
49 3 0.005 20 498,378 498,775 0.08% 498,378 498,775 0.08% 76 1 6.0
49 5 0.005 20 493,292 493,771 0.10% 493,292 493,771 0.10% 104 1 7.4
49 9 0.005 20 512,453 512,953 0.10% 512,453 512,953 0.10% 198 1 20.2
88 3 0.001 0.1 25,318 25,320 0.01% 25,318 25,320 0.01% 979 1 58.6
88 5 0.001 0.1 24,487 24,509 0.09% 24,474 24,509 0.14% 1282 3 109.0
88 9 0.001 0.1 25,644 25,668 0.09% 25,597 26,065 1.83% 3578 13 529.6
88 3 0.005 0.1 55,928 55,983 0.10% 55,928 55,983 0.10% 523 1 36.9
88 5 0.005 0.1 54,067 54,120 0.10% 54,067 54,120 0.10% 729 1 71.9
88 9 0.005 0.1 57,998 58,025 0.05% 57,998 58,025 0.05% 1185 1 194.2
88 3 0.005 0.5 60,671 60,684 0.02% 60,671 60,684 0.02% 195 1 19.0
88 5 0.005 0.5 58,628 58,687 0.10% 58,628 58,687 0.10% 628 1 64.7
88 9 0.005 0.5 62,678 62,740 0.10% 62,497 62,740 0.39% 7299 27 1115.3
88 3 0.005 1 64,796 64,859 0.10% 64,796 64,859 0.10% 129 1 12.5
88 5 0.005 1 62,740 62,802 0.10% 62,740 62,802 0.10% 235 1 30.3
88 9 0.005 1 66,839 66,905 0.10% 66,803 66,986 0.27% 13506 53 > 2000.0
88 3 0.005 20 138,876 138,943 0.05% 138,876 138,943 0.05% 455 1 32.0
88 5 0.005 20 136,717 136,775 0.04% 136,717 136,862 0.11% 1041 3 103.1
88 9 0.005 20 142,272 142,370 0.07% 142,272 142,370 0.07% 328 1 66.8

150 3 0.001 0.1 14,847 14,917 0.47% 14,847 14,917 0.47% 15972 47 > 2000.0
150 5 0.001 0.1 15,141 15,155 0.09% 15,140 15,160 0.13% 8071 30 1319.7
150 9 0.001 0.1 15,794 16,210 2.63% 15,794 16,216 2.67% 5269 14 > 2000.0
150 3 0.005 0.1 23,739 23,763 0.10% 23,739 23,763 0.10% 1105 1 132.4
150 5 0.005 0.1 23,858 23,882 0.10% 23,817 23,882 0.27% 1890 5 340.4
150 9 0.005 0.1 24,137 24,161 0.10% 24,137 24,161 0.10% 1054 1 304.8
150 3 0.005 0.5 32,970 32,992 0.07% 32,969 33,016 0.14% 1223 3 157.7
150 5 0.005 0.5 33,044 33,077 0.10% 32,988 33,080 0.28% 1839 5 319.2
150 9 0.005 0.5 33,691 33,725 0.10% 33,691 33,725 0.10% 994 1 306.5
150 3 0.005 1 40,804 40,843 0.09% 40,804 40,843 0.09% 876 1 124.5
150 5 0.005 1 40,943 40,984 0.10% 40,876 40,987 0.27% 1831 5 309.9
150 9 0.005 1 41,876 41,918 0.10% 41,876 41,918 0.10% 997 1 322.5
150 3 0.005 20 155,653 155,781 0.08% 155,653 155,781 0.08% 227 1 37.0
150 5 0.005 20 157,380 157,508 0.08% 157,134 157,595 0.29% 3029 9 644.9
150 9 0.005 20 161,542 161,812 0.17% 161,369 161,983 0.38% 6107 18 > 2000.0



92

Table 3.3: SLMRP algorithm performance summary.

# Ret # Scen Avg. Overall Gap Avg. CPU Time
49 3 0.08% 4.5

5 0.10% 38.6
9 0.10% 108.1

Avg 0.09% 50.4
88 3 0.05% 31.8

5 0.09% 75.8
9 0.08% 797.9

Avg 0.07% 301.8
150 3 0.16% 499.6

5 0.09% 586.8
9 0.62% 1011.5

Avg 0.29% 699.3

has the equivalent of |I||S| = 1350 retailers. In addition, the size of the problem increases

the time required at each iteration, hence the number of nodes that can be processed

before the time limit is reached decreases as |I| and |S| increase.

The results in Table 3.2 are summarized in Table 3.3, in which the Overall Gap and

CPU Time fields are averaged over β and θ and reported for each number of retailers

and scenarios.

3.4.3 Variable Fixing and DC Locations

Table 3.4 gives information about the variable-fixing routine and the number of facilities

opened. The first four columns are as described above. The other columns are as follows:

# Fixed Open The number of facilities fixed open by the variable-fixing routine after

processing at the root node.

# Fixed Closed The number of facilities fixed closed by the variable-fixing routine

after processing at the root node.



93

Total # Fixed The sum of the previous two columns.

Root Gap The percentage difference between the root-node upper and lower bounds,

repeated here for reference.

# Facil The number of facilities open in the best solution found.

As one might expect, the number of facilities forced into or out of the solution by the

variable-fixing routine is larger for problems that have a smaller optimality gap at the

root node. (Note that for problems that were solved to optimality at the root node, the

variable-fixing routine is unnecessary; we performed it simply for completeness.)

For given values of β and θ, the number of DCs open in the optimal solution does not

seem to increase or decrease with any regularity as the number of scenarios increases.

However, it is evident that as β increases (from 0.001 to 0.005), the number of DCs

increases. This is because when β is large, the transportation term becomes more sig-

nificant in the objective function, making it desirable to have more DCs. Similarly, as θ

increases, the number of DCs decreases because inventory becomes more expensive and

risk-pooling becomes more attractive. These trends confirm results reported by Shen,

Coullard, and Daskin (2003).

The results in Table 3.4 are summarized in Table 3.5, which reports, for each number

of retailers and scenarios, the average percentage of facilities fixed open or closed by

the variable-fixing routine and the average number of facilities open in the best solution

found.



94

Table 3.4: SLMRP: variable-fixing and DC locations.

# Fixed # Fixed Total
# Ret # Scen β θ Open Closed # Fixed Root Gap # Facil

49 3 0.001 0.1 6 36 42 0.10% 10
49 5 0.001 0.1 0 16 16 0.90% 11
49 9 0.001 0.1 0 4 4 3.04% 10
49 3 0.005 0.1 15 17 32 0.10% 30
49 5 0.005 0.1 8 14 22 0.10% 26
49 9 0.005 0.1 3 8 11 0.10% 30
49 3 0.005 0.5 12 15 27 0.10% 30
49 5 0.005 0.5 4 15 19 0.10% 26
49 9 0.005 0.5 3 9 12 0.10% 30
49 3 0.005 1 17 17 34 0.04% 30
49 5 0.005 1 7 15 22 0.10% 26
49 9 0.005 1 7 8 15 0.10% 30
49 3 0.005 20 9 18 27 0.08% 21
49 5 0.005 20 9 19 28 0.10% 22
49 9 0.005 20 5 10 15 0.10% 24
88 3 0.001 0.1 9 69 78 0.01% 13
88 5 0.001 0.1 1 59 60 0.14% 15
88 9 0.001 0.1 0 14 14 1.83% 16
88 3 0.005 0.1 14 31 45 0.10% 44
88 5 0.005 0.1 10 26 36 0.10% 41
88 9 0.005 0.1 15 30 45 0.05% 45
88 3 0.005 0.5 36 41 77 0.02% 41
88 5 0.005 0.5 6 29 35 0.10% 41
88 9 0.005 0.5 0 7 7 0.39% 43
88 3 0.005 1 14 29 43 0.10% 42
88 5 0.005 1 4 28 32 0.10% 40
88 9 0.005 1 0 9 9 0.27% 41
88 3 0.005 20 7 61 68 0.05% 19
88 5 0.005 20 2 55 57 0.11% 17
88 9 0.005 20 0 40 40 0.07% 20

150 3 0.001 0.1 0 0 0 0.47% 53
150 5 0.001 0.1 0 25 25 0.13% 52
150 9 0.001 0.1 0 0 0 2.67% 58
150 3 0.005 0.1 50 0 50 0.10% 133
150 5 0.005 0.1 4 0 4 0.27% 138
150 9 0.005 0.1 23 0 23 0.10% 146
150 3 0.005 0.5 16 0 16 0.14% 123
150 5 0.005 0.5 4 0 4 0.28% 124
150 9 0.005 0.5 11 0 11 0.10% 131
150 3 0.005 1 14 4 18 0.09% 108
150 5 0.005 1 3 0 3 0.27% 115
150 9 0.005 1 7 0 7 0.10% 127
150 3 0.005 20 1 0 1 0.08% 34
150 5 0.005 20 2 0 2 0.29% 33
150 9 0.005 20 0 0 0 0.38% 40



95

Table 3.5: SLMRP: variable-fixing and DC locations summary.

# Ret # Scen Avg. % Fixed Avg. # Facil
49 3 66.1% 24.2

5 43.7% 22.2
9 23.3% 24.8

Avg 44.4% 23.7
88 3 70.7% 31.8

5 50.0% 30.8
9 26.1% 33.0

Avg 48.9% 31.9
150 3 11.3% 90.2

5 5.1% 92.4
9 5.5% 100.4

Avg 7.3% 94.3

3.4.4 Stochastic vs. Deterministic Solutions

Table 3.6 indicates the differences between the stochastic (i.e., min-expected-cost) so-

lutions and the individual scenario solutions. The first four columns are as described

above, and the remaining columns are as follows:

# DCs Different The average, minimum, and maximum (across scenarios) number

of DC locations in the stochastic solution that are different from locations in the

single-scenario solutions, computed as the number of facilities in the stochastic

solution that are not in the scenario solution plus the number of facilities in the

scenario solution that are not in the stochastic solution.

% Regret The average, minimum, and maximum (across scenarios) percentage regret

that would result from implementing the best stochastic solution found instead of

the optimal solution for a given scenario.

# Scen-Spec Assign The number of retailers that are assigned to different DCs in



96

different scenarios in the best stochastic solution found.

Clearly, the stochastic solution and the single-scenario solutions differ substantially

in their choices of DC locations. This suggests that each of the single-scenario solutions

would perform poorly in long-run expected cost. Furthermore, quite a few retailers—

roughly half on average, but up to 97%—are assigned to different DCs in different sce-

narios, indicating the value of allowing retailer assignments to be scenario dependent.

Finally, we note that implementing the stochastic solution will entail roughly 8% regret

on average and nearly 25% regret in the worst case. This suggests the need for a way to

bound the regret while still minimizing expected cost; the model presented in the next

chapter does just that.

The results in Table 3.6 are summarized in Table 3.7, which reports, for each number

of retailers and scenarios, the averages across β and θ of the “Avg # DCs Different,”

“Avg % Regret,” and “# Scen-Spec Assign” columns.

3.5 Chapter Summary

In this chapter we extended the LMRP to handle stochastic demands and costs. The

random parameters are described by discrete scenarios, each with a known probability of

occurrence; the objective is to minimize total expected cost. Facility location decisions

must be made in the first stage, but allocation and inventory decisions are made in

the second stage, after the uncertainties have been resolved. The model can also be

used to solve multi-commodity and multi-period problems. We presented a Lagrangian-



97

Table 3.6: SLMRP: stochastic vs. deterministic solutions.

# DCs Different % Regret # Scen-Spec
# Ret # Scen β θ Avg Min Max Avg Min Max Assign

49 3 0.001 0.1 8.3 1 13 6.5% 0.5% 12.1% 29
49 5 0.001 0.1 12.4 8 16 10.4% 3.9% 21.2% 36
49 9 0.001 0.1 9.0 5 13 7.2% 4.1% 11.1% 36
49 3 0.005 0.1 7.3 4 9 5.7% 0.6% 8.2% 18
49 5 0.005 0.1 11.2 2 16 10.2% 0.9% 16.6% 23
49 9 0.005 0.1 10.6 6 14 9.5% 4.9% 18.9% 19
49 3 0.005 0.5 9.0 4 13 5.5% 0.7% 8.1% 18
49 5 0.005 0.5 11.2 3 16 9.8% 0.9% 16.1% 23
49 9 0.005 0.5 10.7 7 13 9.3% 4.9% 18.4% 19
49 3 0.005 1 10.0 7 13 5.4% 0.8% 8.1% 18
49 5 0.005 1 11.2 3 15 9.5% 0.9% 15.6% 23
49 9 0.005 1 11.7 7 16 9.2% 4.9% 18.0% 19
49 3 0.005 20 10.0 1 16 8.4% 0.1% 14.3% 28
49 5 0.005 20 12.2 8 16 7.1% 2.3% 12.3% 29
49 9 0.005 20 12.4 8 20 7.1% 3.6% 11.8% 32
88 3 0.001 0.1 10.0 2 15 7.7% 0.1% 12.4% 48
88 5 0.001 0.1 14.0 8 20 8.5% 2.2% 12.6% 61
88 9 0.001 0.1 13.1 8 16 7.6% 2.6% 12.3% 70
88 3 0.005 0.1 16.0 4 26 8.5% 0.6% 15.4% 36
88 5 0.005 0.1 22.2 11 25 9.9% 1.8% 15.5% 47
88 9 0.005 0.1 22.8 16 29 11.1% 5.6% 17.9% 43
88 3 0.005 0.5 16.7 5 28 8.5% 0.5% 17.2% 38
88 5 0.005 0.5 22.2 12 28 9.0% 1.9% 14.4% 47
88 9 0.005 0.5 23.2 18 30 10.5% 6.2% 17.5% 46
88 3 0.005 1 18.0 10 24 8.3% 0.5% 16.6% 37
88 5 0.005 1 22.2 11 26 8.8% 2.0% 15.5% 49
88 9 0.005 1 23.0 16 33 10.5% 5.2% 19.9% 51
88 3 0.005 20 12.7 5 18 3.4% 0.4% 5.9% 56
88 5 0.005 20 14.6 7 20 5.4% 0.7% 8.1% 65
88 9 0.005 20 16.7 12 23 5.8% 2.7% 9.8% 75

150 3 0.001 0.1 37.0 14 54 10.6% 1.3% 20.7% 94
150 5 0.001 0.1 42.4 21 53 10.4% 1.0% 20.8% 105
150 9 0.001 0.1 43.7 33 51 13.2% 5.7% 23.7% 109
150 3 0.005 0.1 33.7 10 64 10.2% 0.8% 24.4% 31
150 5 0.005 0.1 28.0 17 55 8.2% 2.1% 22.2% 26
150 9 0.005 0.1 24.9 16 55 5.6% 2.8% 19.9% 23
150 3 0.005 0.5 38.3 14 63 9.2% 0.8% 20.2% 60
150 5 0.005 0.5 35.0 24 56 7.5% 1.8% 19.0% 66
150 9 0.005 0.5 32.9 23 57 6.7% 2.8% 18.8% 73
150 3 0.005 1 43.3 21 65 8.8% 0.6% 19.6% 73
150 5 0.005 1 38.6 21 58 6.7% 1.6% 14.6% 75
150 9 0.005 1 38.6 29 58 6.5% 3.0% 16.1% 83
150 3 0.005 20 25.7 13 40 1.6% 0.8% 3.0% 130
150 5 0.005 20 29.4 16 39 2.8% 0.7% 5.1% 134
150 9 0.005 20 34.9 25 48 2.8% 1.2% 5.4% 146



98

Table 3.7: SLMRP: stochastic vs. deterministic solutions summary.

# Ret # Scen Avg # DCs Different Avg % Regret Avg # Scen-Spec Assign
49 3 8.9 6.3% 22.2

5 11.6 9.4% 26.8
9 10.9 8.5% 25.0

Avg 10.5 8.0% 24.7
88 3 14.7 7.3% 43.0

5 19.0 8.3% 53.8
9 19.8 9.1% 57.0

Avg 17.8 8.2% 51.3
150 3 35.6 8.1% 77.6

5 34.7 7.1% 81.2
9 35.0 7.0% 86.8

Avg 35.1 7.4% 81.9

relaxation–based algorithm for solving the stochastic LMRP. Optimal solutions to this

problem will have the best possible long-run expected cost but its performance may be

quite variable across scenarios. Many decision makers want solutions that will perform

well regardless of which scenario comes to pass—they want the regret across scenarios

to be bounded while still keeping the expected cost down. The model we present in the

next chapter addresses this problem.



Chapter 4

The p-Robust Stochastic Location

Model with Risk Pooling

(p-SLMRP)

The stochastic LMRP (SLMRP) discussed in the previous chapter seeks to minimize the

total expected cost of a supply chain network across all scenarios. The optimal solution

may be excellent for some scenarios but quite poor for others. In many situations, decision

makers are evaluated ex post, after the uncertainty has been resolved and costs have been

realized. In such situations, decision makers are often motivated to seek minimax regret

solutions that appear effective no matter which scenario is realized. The robustness

measure we discuss in this section combines the advantages of both the min-expected-

cost and minimax regret measures by seeking the least-cost solution (in the expected

value) that bounds the regret by a pre-specified limit.

99



100

Let us make this concept more rigorous. Let (Ps) be a deterministic (i.e., single-

scenario) optimization problem, indexed by the scenario index s. (That is, for each

scenario s, there is a different problem (Ps). The structure of these problems is identical;

only the data are different.) For each s ∈ S, let z∗s be the optimal objective value for

(Ps).

Definition 4.1 Let p ≥ 0 be a constant. Let X be a solution to (Ps) for all s ∈ S, and

let zs(X) be the objective value of problem (Ps) under solution X. X is called p-robust

if for all s ∈ S,

zs(X)− z∗s
z∗s

≤ p (4.1)

or, equivalently,

zs(X) ≤ (1 + p)z∗s . (4.2)

We will say that scenario s is p-feasible for a given solution X if equation (4.2) holds and

p-infeasible otherwise.

The notion of p-robustness was introduced by Kouvelis, Kurawarwala, and Gutiérrez

(1992) and used subsequently in several other papers (see Section 2.2.4 for a description).

These papers do not refer to this robustness measure as p-robustness, but simply as “ro-

bustness.” We will adopt the term “p-robustness” to distinguish this robustness measure

from others.

In this chapter, we formulate and solve the problem of finding the minimum-expected-

cost p-robust solution to the stochastic LMRP. We call this problem the p-SLMRP. Since

the LMRP reduces to the UFLP when θ = 0, our method also solves a p-robust version



101

of the stochastic UFLP. As discussed below in Section 4.3, this method can be used

iteratively as a heuristic to solve the minimax regret LMRP or UFLP.

Our Lagrangian relaxation algorithm for the p-SLMRP cannot provide lower bounds

that are tighter than the continuous relaxation bound because the Lagrangian subproblem

has the integrality property. In Section 4.4, we show that two classical facility location

problems, the P -median problem and the uncapacitated fixed-charge location problem,

can be solved using a variable-splitting method whose subproblem does not have the

integrality property, resulting in tighter theoretical bounds.

4.1 Formulation

To formulate the p-SLMRP, we need to introduce two additional parameters:

Parameters

p = the desired bound on the relative regret of a solution, p ≥ 0

z∗s = the optimal objective value of problem (LMRP) under the data from scenario

s, for s ∈ S

The optimal scenario objectives z∗s are inputs to the model; they may be read in as data

or computed in a pre-processing step using any algorithm for the LMRP. We need to add

one additional set of constraints to (SLMRP) to ensure p-robustness. These constraints

appear in the formulation below as (4.6). (Throughout this chapter, we continue to

assume that Assumption 3.1 holds.)



102

(p-SLMRP) minimize
∑

s∈S

∑

j∈I

qs







fjXj +
∑

i∈I

d̂ijsYijs + K̂js

√

∑

i∈I

µisYijs







(4.3)

subject to
∑

j∈I

Yijs = 1 ∀i ∈ I, ∀s ∈ S (4.4)

Yijs ≤ Xj ∀i ∈ I, ∀j ∈ I,∀s ∈ S (4.5)

∑

j∈I







fjXj +
∑

i∈I

d̂ijsYijs + K̂js

√

∑

i∈I

µisYijs







≤ (1 + p)z∗s ∀s ∈ S (4.6)

Xj ∈ {0, 1} ∀j ∈ I (4.7)

Yijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (4.8)

Constraints (4.6) require the relative regret of the solution in each scenario to be no

greater than p. The objective function and the other constraints are as described in

Section 3.1. Since the p-SLMRP reduces to the SLMRP when p is large, it is NP-hard.

For convenience, define

zs(X,Y ) =
∑

j∈I







fjXj +
∑

i∈I

d̂ijsYijs + K̂js

√

∑

i∈I

µisYijs







.

zs(X,Y ) is the cost of solution (X, Y ) in scenario s. The objective function (4.3) can be

re-written as
∑

s∈S

qszs(X, Y ) (4.9)

and constraints (4.6) can be re-written as

zs(X, Y ) ≤ (1 + p)z∗s ∀s ∈ S. (4.10)



103

4.2 Solution Procedure

As in the solution procedure for the SLMRP, we will use Lagrangian relaxation to find

a lower bound for (p-SLMRP), relaxing both the assignment constraints and the p-

robustness constraints. Several complications arise when solving this problem that do not

arise in the SLMRP. First, finding an upper bound is not trivial, since for small p, it may

be difficult to find a feasible solution, and for even smaller p, none may exist. Second, the

subgradient optimization procedure relies on having an upper bound at each iteration

for use in the numerator of the step-size calculation, so we need some proxy if no feasible

solution has yet been found. Finally, it may not be clear from the outset whether the

problem is infeasible, so we need some mechanism for detecting infeasibility, otherwise

the branch-and-bound procedure may explore the entire tree before terminating. We will

resolve these issues in the following sections.

4.2.1 Lower Bound

4.2.1.1 Lagrangian Relaxation

If we relax constraints (4.4) and (4.6), we get the following problem:



104

(p-SLR) maximize
λ,π≥0

Lλ,π =

minimize
X,Y

∑

s∈S

zs(X,Y ) +
∑

s∈S

∑

i∈I

λis



1−
∑

j∈I

Yijs





+
∑

s∈S

πs [zs(X,Y )− (1 + p)z∗s ]

=
∑

s∈S

∑

j∈I

{

(qs + πs)fjXj +
∑

i∈I

[

(qs + πs)d̂ijs − λis

]

Yijs

+ (qs + πs)K̂js

√

∑

i∈I

µisYijs







+
∑

s∈S

∑

i∈I

λis −
∑

s∈S

πs(1 + p)z∗s

=
∑

s∈S

∑

j∈I







f̃jsXj +
∑

i∈I

d̃ijsYijs + K̃js

√

∑

i∈I

µisYijs







+ C (4.11)

subject to Yijs ≤ Xj ∀i ∈ I,∀j ∈ I, ∀s ∈ S (4.12)

Xj ∈ {0, 1} ∀j ∈ I (4.13)

Yijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (4.14)

The multipliers λ and π correspond to constraints (4.4) and (4.6), respectively. The

notation in the last line of the objective function is as follows:

f̃js = (qs + πs)fj

d̃ijs = (qs + πs)d̂ijs − λis

K̃js = (qs + πs)K̂js

C =
∑

s∈S

∑

i∈I

λis −
∑

s∈S

πs(1 + p)z∗s

As before, we can restrict λ ≥ 0. Since (4.6) is a “less-than-or-equal-to” constraint in

a minimization problem, the multipliers π are also restricted to be non-negative. The



105

constraints are identical to their counterparts in (SLR). This problem has the same form

as (SLR) and can be solved in the same manner. (p-SLR) decomposes by j and s. For

given j ∈ I, s ∈ S, we solve

(p-SSPjs) minimize Ṽjs =
∑

i∈I

biZi +
√

∑

i∈I

ciZi (4.15)

subject to Zi ∈ {0, 1} ∀i ∈ I (4.16)

where

bi = d̃ijs

ci = K̃2
jsµis

Zi = Yijs

For given j, s, we can solve this problem using the technique described in Section 2.5.2

and make open/close decisions as described in Section 3.2.1. In particular, we open a

DC at location j if its benefit exceeds its fixed cost, that is, if

Ṽj + f̃j < 0,

where Ṽj =
∑

s∈S Ṽjs and f̃j =
∑

s∈S f̃js =
(

1 +
∑

s∈S πs
)

fj.

4.2.1.2 Subgradient Optimization

Subgradient optimization has been widely and successfully used to update multipliers in

Lagrangian relaxation algorithms for location problems, and the details of the method

are usually similar to those outlined by Fisher (1981, 1985) or Daskin (1995). For the

p-SLMRP, however, the performance of our algorithm can be improved by modifying the

standard subgradient optimization procedure.



106

Assume for now that at the current iteration (say n) of the Lagrangian procedure,

at least one feasible solution has been found and that UB is the objective value of the

best solution found. (In Section 4.2.2 we describe what to do if no feasible solution has

been found as of iteration n.) Let Ln be the value of the lower bound found during

iteration n and let (Xn, Y n) be the optimal solution to problem (p-SLR) at iteration n.

The standard subgradient step-size tn is computed as follows:

tn =
αn(UB− Ln)

∑

s∈S

∑

i∈I

(

1−
∑

j∈I Y n
ijs

)2
+

∑

s∈S (zs(X, Y )− (1 + p)z∗s)
2

(4.17)

where αn is a constant on the nth iteration. Typically, α1 is set to a given value and

halved after a given number R of consecutive iterations have failed to improve the lower

bound Ln; we use α1 = 2 and R = 20 in our computational testing. The denominator

sums the squared deviations of both sets of relaxed constraints. The Lagrange multipliers

are updated as follows:

λn+1
is = max

{

0, λn
is + tn

(

1−
∑

j∈I

Y n
ijs

)}

πn+1
s = max {0, πn

s + tn (cs(Xn, Y n)− (1 + p)z∗s)}

Unfortunately, the denominator in (4.17) is badly scaled because the first term is on

the order of magnitude of the number of retailers times the number of scenarios (typically

in the hundreds), while the second is on the order of magnitude of the solution cost

squared (typically in the millions or more). This leads to slower than desired convergence

of the Lagrangian procedure. To avoid this problem, we “normalize” the second term

by dividing constraints (4.6) by νz∗s before solving (p-SLR), where ν > 0 is a constant,



107

yielding the following constraint:

1
νz∗s

zs(X, Y ) ≤ 1 + p
ν

.

The notation in the objective function (4.11) then becomes:

f̃js =
(

qs +
πs

νz∗s

)

fj

d̃ijs =
(

qs +
πs

νz∗s

)

d̂ijs − λis

K̃js =
(

qs +
πs

νz∗s

)

K̂js

C =
∑

s∈S

∑

i∈I

λis −
∑

s∈S

πs

ν
(1 + p)

The problem is solved in the same manner as before. The step-size calculation (4.17)

now becomes:

tn =
αn(UB− Ln)

∑

s∈S

∑

i∈I

(

∑

j∈I 1− Y n
ijs

)2
+

∑

s∈S

(

zs(X,Y )
νz∗s

− 1+p
ν

)2 (4.18)

We discuss our method for choosing a value for ν in Section 4.5.1.2.

A similar adjustment was used by Beasley (1993) and by Maŕın and Pelegŕın (1999),

both in the context of capacitated location problems, and by Nozick (2001) in the context

of a multi-objective model that is equivalent to the UFLP with an aggregated capacity

constraint. These authors scale the capacity constraints by dividing them by the right-

hand side.

Another way to handle the difference in scale between the two sets of relaxed con-

straints is to allow each set to have its own step size during the subgradient optimization

procedure. In particular, we can compute step sizes tnλ and tnπ for λ and π, respectively,



108

as

tnλ =
αn(UB− Ln)

∑

s∈S

∑

i∈I

(

∑

j∈I 1− Y n
ijs

)2 (4.19a)

tnπ =
αn(UB− Ln)

∑

s∈S (zs(X,Y )− (1 + p)z∗s)
2 (4.19b)

Note that if the step sizes are separated as in (4.19), there is no need to divide (4.6)

by νz∗s since the difference in scales is only a problem when they appear together in

the denominator of a pooled step size. We have not found any previous use of this

idea in the literature when more than one set of constraints is relaxed in a Lagrangian

relaxation algorithm. We present a comparison of the two step-size calculations, as well

as of different values of ν, in Section 4.5.

4.2.2 Detecting Infeasibility

The procedure outlined in the previous section assumes that we have found a feasible

solution with objective value UB. But finding a p-robust solution is not always easy, even

if such solutions exist. Let

Q =
∑

s∈S

qs(1 + p)z∗s . (4.20)

Theorem 4.1 If (p-SLMRP) is feasible, then Q is an upper bound on its optimal objec-

tive value.

Proof. Let (X∗, Y ∗) be an optimal solution for (p-SLMRP). The objective value under

solution (X∗, Y ∗) is
∑

s∈S

qszs(X∗, Y ∗) ≤
∑

s∈S

qs(1 + p)z∗s = Q



109

by constraints (4.6).

Theorem 4.1 has two important uses. First, if no feasible solution has been found as

of iteration n, we set UB = Q in the step-size calculation (4.17), (4.18), or (4.19) in the

subgradient optimization procedure. Second, we can use Theorem 4.1 to detect when

problem (p-SLMRP) is infeasible. In particular, if the Lagrangian procedure and/or the

branch-and-bound procedure yield a lower bound greater than Q, we can terminate the

procedure and conclude that the problem is infeasible. One would like the Lagrangian

procedure to yield bounds greater than Q whenever (p-SLMRP) is infeasible, providing a

test for feasibility in every case. Unfortunately, there are infeasible instances for which the

Lagrangian bound is less than Q. In the next section, we investigate the circumstances

under which we can expect to find λ, π such that Lλ,π > Q.

4.2.3 Unboundedness of (p-SLR)

Let (p-SLMRP) be the continuous relaxation of (p-SLMRP), that is, (p-SLMRP) with

constraints (4.7) and (4.8) replaced by

0 ≤ Xj ≤ 1 ∀j ∈ I (4.21)

0 ≤ Yijs ≤ 1 ∀i ∈ I,∀j ∈ I,∀s ∈ S (4.22)

It is possible that (p-SLMRP) is infeasible but (p-SLMRP) is feasible. When this is the

case, the optimal objective value of (p-SLR) is equal to that of (p-SLMRP) (since it has

the integrality property), which is less than or equal to Q. It is our conjecture that if

(p-SLMRP) is infeasible, then (p-SLR) is unbounded, meaning that we can always find



110

λ, π such that Lλ,π > Q.

Conjecture 4.1 If (p-SLMRP) is infeasible, then (p-SLR) is unbounded; that is, for any

M ∈ R, there exists λ, π such that Lλ,π > M .

We can prove this conjecture for linear programs, including the (p-SLMRP) when

θ = 0—the LP relaxation of the p-robust stochastic UFLP:

Theorem 4.2 Let (P) be a linear program of the form

(P) minimize cx

subject to Ax = b

Dx ≤ e

x ≥ 0

with c ≥ 0, and let (LR) be the Lagrangian relaxation obtained by relaxing the constraints

Ax = b. If (P) is infeasible, then (LR) is unbounded.

Proof. Suppose (P) is infeasible. The linear programming dual of (P) is given by

(D) maximize −bu + ev

subject to −uA + vD ≤ c

u unrestricted

v ≤ 0

(In standard form, the coefficients of u would be +1 instead of −1, but since u is unre-

stricted, we can replace u with −u in the formulation.) From standard duality theory,



111

we know that when (P) is infeasible, (D) is either infeasible or unbounded. Since c ≥ 0,

(D) is always feasible because u = v = 0 is a solution; therefore if (P) is infeasible, (D)

is unbounded.

The Lagrangian relaxation of (P) is given by

(LR) maximize
u

minimize
x

cx + u(Ax− b)

subject to Dx ≤ e

x ≥ 0

where u is the vector of Lagrange multipliers. We need to show that for any M ∈ R,

there exists some u∗ such that

min
x
{cx + u∗(Ax− b)|Dx ≤ e, x ≥ 0} > M.

Since (D) is unbounded, there exists u∗, v∗ such that −bu∗+ ev∗ > M , −u∗A+ v∗D ≤ c,

and v∗ ≤ 0. Then

min
x
{cx + u∗(Ax− b)|Dx ≤ e, x ≥ 0}

= min
x
{(c + u∗A)x− u∗b|Dx ≤ e, x ≥ 0}

= max
v
{ve− u∗b|vD ≤ c + u∗A, v ≤ 0} (by strong duality)

= max
v
{−u∗b + ve| − u∗A + vD ≤ c, v ≤ 0}

≥ − u∗b + v∗e (since v∗ is feasible for (D))

>M (by choice of u∗, v∗)

Therefore (LR) is unbounded.



112

The upshot of Theorem 4.2 is that when the objective function has non-negative

costs, the Lagrangian dual behaves like the LP dual in the sense that when the problem

is infeasible, the dual problem is unbounded. We have not been able to locate this result

in the literature, although surely it must have been proven previously; we do not claim

that this is the first proof of Theorem 4.2 to appear.

Let (p-SLMRP
0
) be the problem attained by setting θ = 0 in (p-SLMRP):

(p-SLMRP0) minimize
∑

s∈S

∑

j∈I

qs

{

fjXj +
∑

i∈I

d̂ijsYijs

}

(4.23)

subject to
∑

j∈I

Yijs = 1 ∀i ∈ I, ∀s ∈ S (4.24)

Yijs ≤ Xj ∀i ∈ I,∀j ∈ I, ∀s ∈ S (4.25)

∑

j∈I

{

fjXj +
∑

i∈I

d̂ijsYijs

}

≤ (1 + p)z∗s ∀s ∈ S (4.26)

0 ≤ Xj ≤ 1 ∀j ∈ I (4.27)

0 ≤ Yijs ≤ 1 ∀i ∈ I, ∀j ∈ I,∀s ∈ S (4.28)

Note that (p-SLMRP
0
) is the LP relaxation of a p-robust version of the UFLP.

Corrolary 4.1 If (p-SLMRP
0
) is infeasible, then the Lagrangian relaxation obtained by

relaxing constraints (4.24) and (4.26) is unbounded.

The proof of this corollary is immediate by applying Theorem 4.2. Although constraints

(4.26) are inequality constraints, not equality constraints as in the statement of Theorem

4.2, they can be converted to equality constraints through the use of slack variables.

Theorem 4.2 applies only to linear programs, not to non-linear programs like (p-SLMRP).

If (p-SLMRP
0
) were always infeasible when (p-SLMRP) is infeasible, Conjecture 4.1



113

Table 4.1: Facility data for example problem.

Value
Parameter Facility 1 Facility 2
Fixed cost (fj) 2 2
Distance to retailer, scenario 1 1 2
Distance to retailer, scenario 2 2 1

Table 4.2: Other data for example problem.

Parameter Value
Demand mean, scenarios 1 and 2 (µs) 1
Demand variance, scenarios 1 and 2 (σ2

s) 1
Variance-to-mean ratio, scenarios 1 and 2 (γs) 1
β 1
θ 1
zα 1
Holding cost (h) 1
Lead time (L) 1

would hold because the objective function value of the Lagrangian relaxation of (p-SLMRP)

is greater than or equal to that of the Lagrangian relaxation of (p-SLMRP
0
). Unfor-

tunately, however, it is possible that (p-SLMRP) is infeasible but its “linear” version

(p-SLMRP
0
) is feasible.

4.2.4 Example

In this section we present an example in which Conjecture 4.1 holds. Consider an instance

of (p-SLMRP) with two potential facility locations and one retailer. There are two

scenarios with equal probability (q1 = q2 = 1
2). The data for the problem are given in

Tables 4.1 and 4.2. All costs not listed in the table are equal to 0. Note that the distances

are scenario dependent. The example instance is pictured in Figure 4.1.

Using the parameters in Table 4.2, we get K̂js = 1 for all j, s. In scenario 1, the

optimal solution is to locate at facility 1, and in scenario 2 it is to locate at facility 2.



114

Figure 4.1: An infeasible (p-SLMRP) instance with unbounded (p-SLR).

1 ��
��

2
f1 = 2 f2 = 2µ = 1

d11 = 1
d12 = 2

d21 = 2
d22 = 1

Optimal scenario solution costs are z∗1 = z∗2 = 4. In both cases the regret for locating

at the “wrong” facility is 1. Let p = 0.01; then the right-hand side of constraints (4.6)

is 4.04. For simplicity, remove the index i from the allocation variables; Yjs = 1 if the

single retailer is served by facility j in scenario s. Then (p-SLMRP) is as follows:

(p-SLMRP) minimize 2X1 + 2X2 + 1
2

[

Y11 + 2Y12 + 2Y21 + Y22

+
√

Y11 +
√

Y12 +
√

Y21 +
√

Y22

]

(4.29)

subject to Y11 + Y21 = 1 (4.30)

Y12 + Y22 = 1 (4.31)

Y11 ≤ X1 (4.32)

Y21 ≤ X2 (4.33)

Y12 ≤ X1 (4.34)

Y22 ≤ X2 (4.35)

2X1 + 2X2 + Y11 + 2Y21 +
√

Y11 +
√

Y21 ≤ 4.04 (4.36)

2X1 + 2X2 + 2Y12 + Y22 +
√

Y12 +
√

Y22 ≤ 4.04 (4.37)

X, Y ∈ {0, 1} (4.38)

This problem is infeasible: constraint (4.36) implies X1 = Y11 = 1, but then constraint

(4.37) is impossible to satisfy. The reader can easily verify that its continuous relaxation,

too, is infeasible. Since Yjs = 0 or 1, we can replace
√

Yjs with Yjs throughout. The



115

Lagrangian subproblem is as follows:

(p-SLR) maximize
λ,π≥0

minimize
X,Y

2X1 + 2X2 + Y11 + 3
2Y12 + 3

2Y21 + Y22

+λ1(1− Y11 − Y21) + λ2(1− Y12 − Y22)

+π1(2X1 + 2X2 + 2Y11 + 3Y21 − 4.04)

+π2(2X1 + 2X2 + 3Y12 + 2Y22 − 4.04) (4.39)

subject to Y11 ≤ X1 (4.40)

Y21 ≤ X2 (4.41)

Y12 ≤ X1 (4.42)

Y22 ≤ X2 (4.43)

X,Y ∈ {0, 1} (4.44)

Rewrite the objective function as

(2 + 2π1 + 2π2)
︸ ︷︷ ︸

≡f̃1

X1 + (2 + 2π1 + 2π2)
︸ ︷︷ ︸

≡f̃2

X2 + (1− λ1 + 2π1)
︸ ︷︷ ︸

≡d̃11

Y11 + (3
2 − λ2 + 3π2)

︸ ︷︷ ︸

≡d̃12

Y12

+ (3
2 − λ1 + 3π1)

︸ ︷︷ ︸

≡d̃21

Y21 + (1− λ2 + 2π2)
︸ ︷︷ ︸

≡d̃22

Y22 + λ1 + λ2 − 4.04π1 − 4.04π2 (4.45)

Now let

λ1 = 14ζ λ2 = 14ζ π1 = 2ζ π2 = 4ζ

for some constant ζ. Then

f̃1 = 2 + 4ζ + 8ζ = 2 + 12ζ

f̃2 = 2 + 4ζ + 8ζ = 2 + 12ζ



116

d̃11 = 1− 14ζ + 4ζ = 1− 10ζ

d̃12 = 3
2 − 14ζ + 12ζ = 3

2 − 2ζ

d̃21 = 3
2 − 14ζ + 6ζ = 3

2 − 8ζ

d̃22 = 1− 14ζ + 8ζ = 1− 6ζ

Suppose ζ > 9
4 . Then d̃js < 0 for j = 1, 2, s = 1, 2 and the benefits for the facilities

are

Ṽ1 = d̃11 + d̃12 = 5
2 − 12ζ

Ṽ2 = d̃21 + d̃22 = 5
2 − 14ζ

Ṽ1 + f̃1 = 9
2 > 0, so we set X1 = Y11 = Y12 = 0. Similarly, Ṽ2 + f̃2 = 9

2 − 2ζ < 0 because

ζ > 9
4 , so we set X2 = Y21 = Y22 = 1. Therefore the objective value is

(Ṽ2 + f̃2) + (λ1 + λ2)− (4.04π1 + 4.04π2) = (9
2 − 2ζ) + (28ζ)− (24.24ζ) = 4.5 + 1.76ζ

By making ζ large, we can make the objective value arbitrarily large, so (p-SLR) is

unbounded.

(Note that if we had used, say, 5 instead of 4.04 in the right-hand side of the p-robust

constraints, the problem would have been feasible, and the Lagrangian would not have

been unbounded because the objective value would decrease as ζ increases.)

4.2.5 Upper Bound

To attempt to find an upper bound, we start with the facilities opened in the lower-bound

solution at each iteration and assign retailers to them as described in Section 3.2.2. The



117

resulting solution may not be feasible. If this solution has a lower cost than the best

feasible solution found to date (regardless of whether the solution is itself feasible), we

attempt to improve it using the retailer re-assignment heuristic described in Section

3.2.2. We also apply a DC exchange heuristic. This heuristic is similar to that described

by Daskin, Coullard, and Shen (2002), except that now one must decide under what

circumstances one is willing to make a DC swap that will improve the solution in some

scenarios but hurt it in others. For example, suppose scenario 1 is p-feasible under the

current solution but scenario 2 is p-infeasible. Are we willing to make a DC exchange if

it will help scenario 2 but hurt scenario 1? What if it will make scenario 1 p-infeasible?

We use the following rule for DC exchanges. A DC exchange may be made provided that

all three of the following conditions hold:

• It decreases the overall expected cost or it decreases the cost of a p-infeasible

scenario

• It does not make any p-feasible scenario p-infeasible

• It does not increase the cost of any p-infeasible scenario

We make several other modifications to the DC exchange method described by Daskin,

Coullard, and Shen. Suppose we are considering swapping facility j out of the solution.

We only consider replacing it with facility k if k is one of the 8 nearest facilities to j.

The reasoning is that profitable swaps usually involve facilities that are close to each

other. Also, when we consider swapping facility j out and facility k in, we do not re-

assign all of the retailers. Instead, we re-assign all retailers currently assigned to j to



118

their nearest open facility (including k), and we re-assign any retailer to k if k is closer

than the retailer’s current facility. Note that we are making these assignments based

on distance only, not based on inventory savings. Finally, rather than executing the

DC exchange heuristic every time a new feasible solution is found, we only execute it

every 10 times we find a solution whose objective value is 1.2UB or less, where UB

is the cost of the best feasible solution found at the current node; the DC exchange

heuristic is also performed at the end of the Lagrangian procedure at each node. (The

size of the “neighborhood” considered for swapping (8), the threshold value (1.2), and

the “frequency” (every 10 iterations) are parameters of the algorithm that can be easily

adjusted. In general, increasing the neighborhood size, threshold, and frequency results

in higher-quality solutions and longer run times.)

4.2.6 Branch and Bound

If the bounds returned by the Lagrangian relaxation procedure are larger than the desired

optimality gap, or if no feasible solution has been found and the lower bound is not

greater than Q, then we use branch-and-bound as described in Section 3.2.3. The branch-

and-bound procedure may terminate with either a feasible solution having been found

or none having been found. If one has been found and the lower and upper bounds

from the branch-and-bound tree are within the desired tolerance, then the algorithm

terminates; an optimal solution has been found. If a feasible solution has been found

but the optimality gap is too large, we must branch on the assignment (Y ) variables to

close the gap, even if all facilities have been fixed open or closed by the variable-fixing



119

routine (as in the algorithms for the LMRP and the SLMRP). If, on the other hand, no

feasible solution has been found when the branch-and-bound procedure terminates, we

must examine the best overall lower bound. If this lower bound is greater than Q, we

can stop and claim that the problem is infeasible. But if the lower bound is not greater

than Q, we cannot conclude whether the problem is feasible or infeasible, and we must

again branch on the Y variables to resolve the issue.

As in the previous algorithms, the variable chosen for branching is the unfixed facility

with the largest assigned demand in the best feasible solution found at the current node.

If no feasible solution has been found at the current node but a feasible solution has

been found elsewhere in the branch-and-bound tree, that solution is used instead. If no

feasible solution has been found anywhere in the tree, the unfixed facility with the largest

expected demand (of the retailer located at that facility) is chosen for branching.

4.2.7 Variable Fixing

The variable-fixing procedure described in Section 3.2.3 can be used within the branch-

and-bound method for the p-SLMRP. However, one can also perform variable fixing

in the pre-processing step. Recall that during pre-processing, the values z∗s must be

computed; this entails solving |S| single-scenario LMRP problems. When each problem

has been solved, we perform the following test. For a given scenario, let Ṽjs be the facility

benefits (the optimal objective values of the problems (SPjs)) under a particular set of

Lagrange multipliers λ, and let LB be the lower bound (the objective value of (LR))



120

under the same λ. Suppose that Xj = 0 in the solution to (LR) under λ. If

LB + Ṽjs + fj > (1 + p)z∗s ,

then the scenario under consideration cannot be p-feasible if candidate site j is open, so

we can fix Xj = 0. Similarly, if Xj = 1 and

LB− (Ṽj + fj) > (1 + p)z∗s ,

then site j must be open in every p-robust solution, so we can fix Xj = 1. By performing

this check for each facility j and each scenario s, we obtain two lists, one containing

facilities that must be closed and the other containing facilities that must be opened.

The corresponding variables may be fixed before beginning to solve (p-SLMRP). If any

facility is contained in both lists, we can terminate the algorithm and conclude that the

problem is infeasible. This variable-fixing routine serves to shrink the solution space,

even before the algorithm proper begins processing.

If facility j is fixed closed for one scenario and open for another, the problem is

infeasible for the current value of p and any smaller value. We can use a method like

the one just described to obtain a lower bound on the smallest value of p for which the

problem is feasible. Let s ∈ S be fixed, λ a given set of multipliers for the deterministic

problem for scenario s, LB the objective value of (LR) under λ, and Ṽjs the benefits

under the same λ. If Xj = 0 in the solution to (LR) under λ, let

ps
0(j) =

LB + (Ṽjs + fj)
z∗s

− 1.

If Xj = 1, let

ps
1(j) =

LB− (Ṽjs + fj)
z∗s

− 1.



121

(Let ps
0(j) = 0 if Xj = 1 and ps

1(j) = 0 if Xj = 0.) If p < ps
0(j) then we must have Xj = 0

for scenario s to be p-feasible, and if p < ps
1(j) then we must have Xj = 1. For each j,

let

p0(j) = max
s∈S

{ps
0(j)}

p1(j) = max
s∈S

{ps
1(j)}.

Then for p < p(j) = min{p0(j), p1(j)}, the problem is infeasible since j must be both

open and closed. Therefore, let

p̂ = max
j∈I

{p(j)}.

For any p < p̂, the problem is infeasible, so p̂ provides a lower bound on the minimum

value of p for which the problem is feasible. The calculations required to find p̂ can be

done very quickly using values already available. This method gives us a starting point

for finding a good p if we find that our chosen p is too small. It also gives us a lower

bound for the minimax regret heuristic discussed in the next section.

4.3 The Minimax Regret Problem

For a given optimization problem with random parameters, the minimax regret problem

is to find a solution that minimizes the maximum regret across all scenarios or parameter

ranges. One can solve the minimax (relative) regret problem for the LMRP heuristically

by systematically varying p and solving (p-SLMRP) for each value. (p-SLMRP) does

not need to be solved to optimality: the algorithm can terminate as soon as a feasible

solution is found for the current p. The smallest value of p for which the problem is



122

feasible is the minimax regret value. If θ = 0, this procedure serves as a heuristic for the

minimax regret UFLP.

We have introduced this method as a heuristic, rather than an exact algorithm. For

small or large values of p, it is easy to determine whether (p-SLMRP) is feasible, but

for intermediate-range values of p, (p-SLMRP) may be infeasible while its continuous

relaxation is feasible. As discussed in Section 4.2.3, infeasibility cannot be detected from

the Lagrangian method in this case, and may not be detected until a sizable portion of

the branch-and-bound tree has been explored.

Our heuristic for solving the minimax regret LMRP returns two values, pL and pU ;

the minimax relative regret is guaranteed to be in the range (pL, pU ]. The heuristic

also returns a solution whose maximum regret is pU . It works by maintaining four

values, pL ≤ p̄L ≤ p̄U ≤ pU (see Figure 4.2). At any point during the execution of the

heuristic, the problem is known to be infeasible for p ≤ pL and feasible for p ≥ pU ;

for p ∈ [p̄L, p̄U ], the problem is indeterminate (i.e., feasibility has been tested but could

not be determined); and for p ∈ (pL, p̄L) or (p̄U , pU), feasibility has not been tested. At

each iteration, a value of p is chosen in (pL, p̄L) or (p̄U , pU) (whichever range is larger),

progressively reducing these ranges until they are both smaller than some pre-specified

tolerance ε.

Figure 4.2: Ranges maintained by the minimax-regret heuristic.

-
0 pL p̄L p̄U pU

infeasible not tested indeterminate not tested feasible



123

Algorithm 4.1 (MINIMAX-REGRET)

0. Determine a lower bound pL for which (p-SLMRP) is known to be infeasible and

an upper bound pU for which (p-SLMRP) is known to be feasible. Let (X∗, Y ∗) be

a feasible solution with maximum regret pU . Mark p̄L and p̄U as undefined.

1. If p̄L and p̄U are undefined, let p ← (pL + pU)/2; else if p̄L − pL > pU − p̄U , let

p ← (pL + p̄L)/2; else, let p ← (p̄U + pU)/2.

2. Determine the feasibility of (p-SLMRP) under the current value of p. If it is feasible,

let p∗ be the maximum relative regret of the solution found.

2.1 If (p-SLMRP) is feasible, let pU ← p∗, let (X∗, Y ∗) be the solution found in

step 2, and go to step 3.

2.2 Else if (p-SLMRP) is infeasible, let pL ← p and go to step 3.

2.3 Else [(p-SLMRP) is indeterminate]: If p̄L and p̄U are undefined, let p̄L ← p

and p̄U ← p and mark p̄L an p̄U as defined; else if p ∈ (pL, p̄L), let p̄L ← p;

else [p ∈ (p̄U , pU)], let p̄U ← p. Go to step 3.

3. If p̄L − pL < ε and pU − p̄U < ε, stop and return pL, pU , (X∗, Y ∗). Else, go to step

2.

Several comments are in order. In step 0, the lower bound pL can be determined

either by choosing a small enough value that the problem is known to be infeasible (e.g.,

0) or by setting pL ← p̂ found using the method described in Section 4.2.7. The upper

bound pU can be determined by solving the SLMRP (i.e., setting p = ∞) and setting



124

pU equal to the maximum regret value from the solution found; this solution can also be

used as (X∗, Y ∗). In step 1, we are performing a binary search on each region. More

efficient line searches, such as the Golden Section search, would work as well, but we

use the binary search for ease of exposition. In step 2, the instruction “determine the

feasibility...” is to be carried out by solving (p-SLMRP) until (a) a feasible solution has

been found [the problem is feasible], (b) the lower bound exceeds the artificial upper

bound Q [the problem is infeasible], or (c) a pre-specified stopping criterion has been

reached [the problem is indeterminate]. This stopping criterion may be specified as a

number of Lagrangian iterations, a number of branch-and-bound nodes, a time limit,

or any other criterion desired by the user. In general, if the stopping criterion is more

generous (i.e., allows the algorithm to run longer), fewer problems will be indeterminate,

and the range (pL, pU ] returned by the heuristic will be smaller.

4.4 p-Robust Stochastic Location Problems

The Lagrangian subproblem for (p-SLMRP) discussed in Section 4.2.1.1 has the inte-

grality property, and consequently, the (theoretical) Lagrangian bound is equal to the

continuous relaxation bound. In this section we discuss p-robust versions of both the

P -median problem (PMP) and the UFLP and present a Lagrangian relaxation algorithm

whose subproblem does not have the integrality property, and hence provides tighter

bounds. This method can be used in step 2 of Algorithm 4.1 to solve the minimax regret

PMP or UFLP heuristically.



125

4.4.1 p-Robust Stochastic PMP

The p-robust stochastic P -median problem (p-SPMP)1 is the problem of locating P

facilities and assigning retailers to them in a multi-scenario environment to minimize the

total expected transportation cost to the retailers from their assigned facilities, subject to

a constraint requiring the maximum relative regret to be no more than p. This problem

can be thought of as a variation of the p-SLMRP in which all costs except the DC–retailer

transportation costs dijs are equal to 0 and a limit is placed on the number of facilities

that can be located. The p-SPMP is formulated as follows:

(p-SPMP) minimize
∑

s∈S

∑

i∈I

∑

j∈I

qsµisdijsYijs (4.46)

subject to
∑

j∈I

Yijs = 1 ∀i ∈ I, ∀s ∈ S (4.47)

Yijs ≤ Xj ∀i ∈ I,∀j ∈ I, ∀s ∈ S (4.48)

∑

i∈I

∑

j∈I

µisdijsYijs ≤ (1 + p)z∗s ∀s ∈ S (4.49)

∑

j∈I

Xj = P (4.50)

Xj ∈ {0, 1} ∀j ∈ I (4.51)

Yijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (4.52)

We propose a variable-splitting approach to solve (p-SPMP). (See Section 2.4.3 for a

description of variable-splitting applied to capacitated facility location problems.) We

add a variable W that will be forced equal to Y ; by choosing which set of variables is
1The reader is cautioned not to confuse lower-case p, the robustness coefficient, with capital P , the

number of facilities to locate.



126

used in each set of constraints, we obtain a formulation that decomposes nicely when

the constraints requiring W = Y are relaxed. The variable-splitting formulation of the

(p-SPMP) is as follows:

(p-SPMP-VS) minimize β
∑

s∈S

∑

i∈I

∑

j∈I

qsµisdijsYijs

+(1− β)
∑

s∈S

∑

i∈I

∑

j∈I

qsµisdijsWijs (4.53)

subject to
∑

j∈I

Wijs = 1 ∀i ∈ I, ∀s ∈ S (4.54)

Yijs ≤ Xj ∀i ∈ I,∀j ∈ I,∀s ∈ S (4.55)

∑

i∈I

∑

j∈I

µisdijsWijs ≤ (1 + p)z∗s ∀s ∈ S (4.56)

∑

j∈I

Xj = P (4.57)

Wijs = Yijs ∀i ∈ I,∀j ∈ I, ∀s ∈ S (4.58)

Xj ∈ {0, 1} ∀j ∈ I (4.59)

Yijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (4.60)

Wijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ I,∀s ∈ S (4.61)

The parameter 0 ≤ β ≤ 1 ensures that both Y and W are included in the objective

function; since Y = W , the objective function (4.53) is the same as that of (p-SPMP).

To solve (p-SPMP-VS), we relax constraints (4.58) with Lagrange multipliers λijs.

Note that in this case, λ is unrestricted in sign. For fixed λ, the resulting subproblem

decomposes into an XY -problem and a W -problem:



127

XY -Problem:

minimize
∑

s∈S

∑

i∈I

∑

j∈I

(βqsµisdijs − λijs)Yijs (4.62)

subject to Yijs ≤ Xj ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (4.63)

∑

j∈I

Xj = P (4.64)

Xj ∈ {0, 1} ∀j ∈ I (4.65)

Yijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (4.66)

W -Problem:

minimize
∑

s∈S

∑

i∈I

∑

j∈I

[(1− β)qsµisdijs + λijs]Wijs (4.67)

subject to
∑

j∈I

Wijs = 1 ∀i ∈ I, ∀s ∈ S (4.68)

∑

i∈I

∑

j∈I

µisdijsWijs ≤ (1 + p)z∗s ∀s ∈ S (4.69)

Wijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (4.70)

To solve the XY -problem, we compute the benefit Ṽj of opening each facility j:

Ṽj =
∑

s∈S

∑

i∈I

min{0, βqsµisdijs − λijs}. (4.71)

We set Xj = 1 for the P facilities with smallest Ṽj and set Yijs = 1 if Xj = 1 and

βqsµisdijs − λijs < 0.

The W -problem reduces to |S| instances of the multiple-choice knapsack problem

(MCKP), an extension of the classical knapsack problem in which the items are parti-

tioned into classes and exactly one item must be chosen from each class. The MCKP does



128

not have the integrality property, making the bound from this relaxation tighter than

the bound that would be obtained by relaxing (4.47) and (4.49), as we did in Section

4.2.1.1. We describe the MCKP and some of the algorithms that have been proposed to

solve it in Appendix B.

The W -problem can be formulated using the MCKP as follows. For each scenario

s ∈ S, there is an instance of the MCKP. Each instance contains |I| classes, each

representing a retailer i ∈ I. Each class contains |I| elements, each representing a facility

j ∈ I. Item j in class i has objective function coefficient (1 − β)qsµisdijs + λijs and

constraint coefficient µisdijs. The right-hand side of the knapsack constraint is (1 + p)z∗s .

Either the MCKP must be solved to optimality, or, if a heuristic is used, one must

be chosen that returns a lower bound on the optimal objective value; otherwise, the

Lagrangian subproblem cannot be guaranteed to produce a lower bound for the problem

at hand. If the problem is solved heuristically, the variables may be set using the heuristic

solution, but then the lower bound used in the subgradient optimization method does

not match the actual value of the solution to the Lagrangian subproblem. We have found

this mismatch to lead to substantial convergence problems. A better method is to use

a lower-bound solution, not just the lower bound itself, to set the variables. Not all

heuristics that return lower bounds also return lower-bound solutions, however, so care

must be taken when making decisions about which MCKP algorithm to use and how to

set the variables.

Since the MCKP is NP-hard, we have elected to solve it heuristically by terminating

the branch-and-bound procedure of Armstrong et al. (1983), described below, when it



129

reaches a 0.1% optimality gap. This method can be modified to keep track not only

of the best lower bound at any point in the branch-and-bound tree, but also a solution

attaining that bound. These solutions, which are generally fractional, are then used as

the values of W in the Lagrangian subproblem.

Once the XY - and W -problems have been solved, the two objectives are added to

obtain a lower bound on the objective function (4.46). An upper bound is obtained

using the method outlined in Section 4.2.5. The Lagrange multipliers are updated using

subgradient optimization; the method is standard, but the implementation is slightly

different than in most Lagrangian algorithms for facility location problems since the

lower-bound solution may be fractional.

4.4.2 p-Robust Stochastic UFLP

If θ = 0 in the p-SLMRP, one obtains a p-robust version of the UFLP (p-SUFLP). This

problem, too, can be solved using variable-splitting, splitting both the Y variables and the

X variables (using variables W and Z, respectively). In addition, the location variables

X and Z are indexed by scenario, and a constraint forces locations to be the same in

different scenarios:

(p-SUFLP-VS)

minimize β





∑

s∈S

∑

j∈I

qsfjXjs +
∑

s∈S

∑

i∈I

∑

j∈I

qsµisdijsYijs





+(1− β)





∑

s∈S

∑

j∈I

qsfjZjs +
∑

s∈S

∑

i∈I

∑

j∈I

qsµisdijsWijs



 (4.72)



130

subject to
∑

j∈I

Wijs = 1 ∀i ∈ I, ∀s ∈ S (4.73)

Yijs ≤ Xjs ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (4.74)

Xjs = Xjt ∀j ∈ I, ∀s ∈ S, ∀t ∈ S (4.75)

∑

j∈I

fjZjs +
∑

i∈I

∑

j∈I

µisdijsWijs ≤ (1 + p)z∗s ∀s ∈ S (4.76)

Zjs = Xjs ∀j ∈ I, ∀s ∈ S (4.77)

Wijs = Yijs ∀i ∈ I, ∀j ∈ I,∀s ∈ S (4.78)

Xjs ∈ {0, 1} ∀j ∈ I, ∀s ∈ S (4.79)

Zjs ∈ {0, 1} ∀j ∈ I,∀s ∈ S (4.80)

Yijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (4.81)

Wijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ I,∀s ∈ S (4.82)

Relaxing constraints (4.77) and (4.78) with multipliers λ and π, respectively, we obtain

a Lagrangian subproblem that decomposes into an XY -problem and a ZW -problem:

XY -Problem:

minimize
∑

s∈S

∑

j∈I

(βqsfj − πjs)Xjs +
∑

s∈S

∑

i∈I

∑

j∈I

(βqsµisdijs − λijs)Yijs (4.83)

subject to Yijs ≤ Xjs ∀i ∈ I, ∀j ∈ I,∀s ∈ S (4.84)

Xjs = Xjt ∀j ∈ I, ∀s ∈ S, ∀t ∈ S (4.85)

Xjs ∈ {0, 1} ∀j ∈ I, ∀s ∈ S (4.86)

Yijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (4.87)



131

ZW -Problem:

minimize
∑

s∈S

∑

j∈I

[(1− β)qsfj + πjs]Zjs+
∑

s∈S

∑

i∈I

∑

j∈I

[(1− β)qsµisdijs + λijs] Wijs

(4.88)

subject to
∑

j∈I

Wijs = 1 ∀i ∈ I, ∀s ∈ S (4.89)

∑

j∈I

fjZjs +
∑

i∈I

∑

j∈I

µisdijsWijs ≤ (1 + p)z∗s ∀s ∈ S (4.90)

Zjs ∈ {0, 1} ∀j ∈ I, ∀s ∈ S (4.91)

Wijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ I, ∀s ∈ S (4.92)

The XY -problem can be solved by computing the benefit of opening facility j:

Ṽj =
∑

s∈S

(βqsfj − πjs) +
∑

s∈S

∑

i∈I

min{0, βqsµisdijs − λijs}. (4.93)

We set Xjs = 1 for all s ∈ S (or, equivalently, set Xj = 1 in the original problem) if

Ṽj < 0, or if Ṽk ≥ 0 for all k but is smallest for j. We set Yijs = 1 if Xjs = 1 and

βqsµisdijs < 0.

The ZW -problem reduces to |S| MCKPs, one for each scenario. As in the p-SPMP,

there is a class for each retailer i, each containing an item for each facility j, representing

the assignments Wijs; these items have objective function coefficient (1 − β)qsµisdijs +

λijs and constraint coefficient µisdijs. In addition, there is a class for each facility j,

representing the location decisions Zjs; these classes contain two items each, one with

objective function coefficient (1− β)qsfj + πjs and constraint coefficient fj, representing

opening the facility, and one with objective function and constraint coefficient equal to

0, representing not opening the facility. The right-hand side of the knapsack constraint



132

equals (1 + p)z∗s .

We note that the p-SUFLP had even greater convergence problems than the p-SPMP

did when an upper-bound solution was used to set the variables, rather than a lower-

bound solution, as discussed in Section 4.4.1. This makes the selection of an MCKP

algorithm a critical issue for this problem.

4.5 Computational Results

4.5.1 p-SLMRP

4.5.1.1 Experimental Design

We tested our algorithm for the p-SLMRP on the 49-node, 5-scenario data set described

in Section 3.4.1, using the same five values of β and θ. The initial value of p is set slightly

smaller than the maximum regret from the optimal SLMRP solution. Subsequent values

are set as follows. If a feasible solution was found for the previous value of p, the new

value of p is set slightly lower than the maximum relative regret from the best solution

found; otherwise, the previous p is divided by 2. The process is continued until p < 0.001.

Each problem is solved until a solution is found within 1% of optimality, or the problem

is proved infeasible, or 1000 CPU seconds have elapsed. Other algorithm parameters

are given in Table 4.3. The retailer re-assignment and DC exchange heuristics were

performed as described in Section 4.2.5.



133

Table 4.3: Parameters for Lagrangian relaxation algorithm: p-SLMRP.

Parameter Value
Maximum number of iterations at root node 1200
Maximum number of iterations at other nodes 400
Initial value of α 2
Number of non-improving iterations before halving α 20
Minimum value of α 0.00000001
Minimum LB–UB gap 1%
Initial value for λis 10µ̄ + 10fi

4.5.1.2 Subgradient Optimization Modifications

Our first step was to settle on a good strategy for subgradient optimization. In Sec-

tion 4.2.1.2, we discussed two modifications to the standard subgradient optimization

procedure: dividing the p-robust constraints by a constant ν times z∗s , and updating

the multipliers λ and π using separate step sizes. In this section we report briefly on

the effectiveness of these modifications. We tested the 49-node, 5-scenario problem with

β = 0.001, θ = 0.1 and β = 0.005, θ = 1, and with four different values of p. We tested

pooling vs. separating the step-size calculations. For pooled step-size calculations, we

tested several values of ν. (When the step-size calculations are separate, the difference in

orders of magnitudes of the constraint violations is irrelevant, so varying ν has no effect.)

The results are summarized in Table 4.4. The first two columns indicate whether the

same step size was used for both sets of multipliers (“Same Step” = Y for pooled, N for

separated) and the value of the constraint divisor ν (if the constraints are not divided,

this column reads “—”). The remaining columns indicate the lower bound attained for

each problem after processing at the root node (the column headers give the value of p).

For the sake of compactness, the lower bounds have been divided by 1000. The maximum



134

Table 4.4: Subgradient optimization modifications.

β = 0.001, θ = 0.1 β = 0.005, θ = 1
Same Step ν 0.05 0.09 0.12 0.15 0.05 0.09 0.12 0.15

Y — -24414 -26663 -28349 -30042 -12073 -14025 -15481 -16936
Y 0.01 -330 -1679 -3246 -4824 229 -383 -1345 -2415
Y 0.1 176 -138 -855 -1426 412 79 -370 -376
Y 1 174 104 -45 -191 354 277 102 -65
Y 10 168 170 168 166 347 351 346 342
Y 100 168 168 168 168 347 350 350 350
Y 1000 168 168 168 168 347 350 350 350
Y 10000 168 168 168 168 347 350 350 350
N — 168 170 168 159 347 348 336 333

value in each column is given in boldface; this is the best lower bound found.

The first row of the table represents the standard subgradient optimization method—

pooling the step sizes and not dividing the constraints. This method produces terrible

bounds. Separating the step size calculations appears to be an effective technique, though

not as effective as pooling the step sizes and choosing ν well. For larger values of p, large

values of ν are the most effective in the pooled step-size calculation: if the constraints

are generally non-binding, it pays to largely ignore them by dividing them by a large

constant. On the other hand, when p is small, the p-robustness constraints must be

given greater weight, so smaller values of ν are most effective. Unfortunately, no single

value of ν is consistently superior for all values of p. Therefore, we have chosen to use the

pooled step-size calculation and to set ν as follows. Let pmax be the maximum relative

regret from the optimal solution with p = ∞ (i.e., the optimal SLMRP solution). If

p ≥ 0.75pmax, we set ν = 100; else if p ≥ 0.5pmax, we set ν = 10; else if p ≥ 0.25pmax, we

set ν = 1; else, we set ν = 0.1.



135

4.5.1.3 Algorithm Performance

The algorithm’s performance on the test problems is summarized in Table 4.5. Most of

the columns are as described in Section 3.4.2; additional columns are as follows:

p The value of the robustness coefficient, p.

Q The value of the artificial upper bound given in formula (4.20).

Proved Opt? Was the optimal solution found (or was the problem proved infeasible)?

Proved Feas? Was the feasibility of the problem conclusively proved?

When “INFEAS” appears in the Overall UB column, it indicates that the algorithm

proved that the problem is infeasible; when it appears in the Root UB column, the

algorithm proved infeasibility at the root node. When “DDP” appears in the Overall LB

or Root LB columns, it indicates that infeasibility was detected during pre-processing by

the variable-fixing routine described in Section 4.2.7. When ∞ appears in the Overall

UB or Root UB columns, it indicates that the algorithm did not find a feasible solution,

nor did it prove that the problem is infeasible. The desired outcome for each problem is

a “Y” in the “Proved Opt?” column—this indicates that an optimal solution was found

(within 1%), or the problem was proved infeasible. This outcome holds for 47 of the 75

problems tested (63%). For the 28 problems for which optimality (or infeasibility) could

not be proved within the 1000-second time limit, the “Proved Feas?” column indicates

whether the feasibility of the problem was established. For 7 of the 75 problems (8%),



136

Table 4.5: p-SLMRP: Upper and lower bounds.

Overall Overall Overall Root Root Root Proved Proved
β θ p LB UB Gap LB UB Gap Q Opt? Feas?

0.001 0.1 0.187 168,470 170,131 0.99% 168,402 170,835 1.45% 189,762 Y Y
0.001 0.1 0.153 168,523 170,194 0.99% 168,424 172,270 2.28% 184,413 Y Y
0.001 0.1 0.153 168,424 169,728 0.77% 168,424 177,403 5.33% 184,387 Y Y
0.001 0.1 0.151 168,818 170,506 1.00% 168,425 177,217 5.22% 184,072 N Y
0.001 0.1 0.144 168,430 171,331 1.72% 168,430 177,403 5.33% 182,896 N Y
0.001 0.1 0.130 167,284 176,627 5.59% 167,284 ∞ — 180,720 N Y
0.001 0.1 0.130 167,307 ∞ — 167,307 ∞ — 180,663 N N
0.001 0.1 0.065 173,205 INFEAS — 173,205 INFEAS — 170,295 Y Y
0.001 0.1 0.032 242,266 INFEAS — 242,266 INFEAS — 165,111 Y Y
0.001 0.1 0.016 185,641 INFEAS — 185,641 INFEAS — 162,519 Y Y
0.001 0.1 0.008 DDP INFEAS — DDP INFEAS — 161,223 Y Y
0.001 0.1 0.004 DDP INFEAS — DDP INFEAS — 160,575 Y Y
0.001 0.1 0.002 DDP INFEAS — DDP INFEAS — 160,251 Y Y
0.001 0.1 0.001 DDP INFEAS — DDP INFEAS — 160,089 Y Y
0.005 0.1 0.197 326,927 329,441 0.77% 326,927 329,441 0.77% 372,094 Y Y
0.005 0.1 0.177 328,180 330,887 0.83% 328,180 330,887 0.83% 365,925 Y Y
0.005 0.1 0.165 329,065 330,022 0.29% 329,064 335,425 1.93% 362,217 Y Y
0.005 0.1 0.161 329,070 332,171 0.94% 329,070 333,743 1.42% 360,734 Y Y
0.005 0.1 0.133 324,677 333,083 2.59% 324,508 338,866 4.42% 352,041 N Y
0.005 0.1 0.133 325,181 333,659 2.61% 324,511 335,180 3.29% 352,013 N Y
0.005 0.1 0.127 325,677 334,158 2.60% 325,374 339,342 4.29% 350,220 N Y
0.005 0.1 0.123 326,774 335,038 2.53% 325,944 340,504 4.47% 348,997 N Y
0.005 0.1 0.121 326,714 335,538 2.70% 326,119 342,748 5.10% 348,486 N Y
0.005 0.1 0.119 327,583 335,730 2.49% 326,515 340,656 4.33% 347,764 N Y
0.005 0.1 0.114 328,631 335,955 2.23% 327,947 341,707 4.20% 346,118 N Y
0.005 0.1 0.110 328,137 337,623 2.89% 327,775 ∞ — 344,969 N Y
0.005 0.1 0.108 330,870 336,737 1.77% 328,923 ∞ — 344,294 N Y
0.005 0.1 0.104 331,709 337,169 1.65% 328,694 ∞ — 343,148 N Y
0.005 0.1 0.101 332,957 337,343 1.32% 328,995 ∞ — 342,346 N Y
0.005 0.1 0.099 333,468 340,769 2.19% 329,380 ∞ — 341,737 N Y
0.005 0.1 0.099 330,505 ∞ — 329,293 ∞ — 341,719 N N
0.005 0.1 0.089 282,090 ∞ — 277,574 ∞ — 338,479 N N
0.005 0.1 0.044 396,307 INFEAS — 396,307 INFEAS — 324,648 Y Y
0.005 0.1 0.034 422,734 INFEAS — 422,734 INFEAS — 321,384 Y Y
0.005 0.1 0.017 330,338 INFEAS — 330,338 INFEAS — 316,100 Y Y
0.005 0.1 0.009 372,586 INFEAS — 372,586 INFEAS — 313,458 Y Y
0.005 0.1 0.004 DDP INFEAS — DDP INFEAS — 312,137 Y Y
0.005 0.1 0.002 DDP INFEAS — DDP INFEAS — 311,477 Y Y
0.005 0.1 0.001 DDP INFEAS — DDP INFEAS — 311,146 Y Y
0.005 0.5 0.184 336,974 340,105 0.93% 336,974 340,105 0.93% 379,885 Y Y
0.005 0.5 0.168 338,253 340,573 0.69% 338,253 340,573 0.69% 374,518 Y Y
0.005 0.5 0.148 340,184 342,153 0.58% 339,858 347,429 2.23% 368,220 Y Y
0.005 0.5 0.129 336,284 343,469 2.14% 335,364 343,469 2.42% 362,246 N Y
0.005 0.5 0.119 342,394 345,656 0.95% 336,961 348,633 3.46% 358,752 Y Y
0.005 0.5 0.105 341,319 350,391 2.66% 339,633 ∞ — 354,280 N Y
0.005 0.5 0.094 249,785 ∞ — 242,277 ∞ — 351,024 N N
0.005 0.5 0.047 375,940 INFEAS — 375,940 INFEAS — 335,877 Y Y
0.005 0.5 0.024 377,956 INFEAS — 377,956 INFEAS — 328,304 Y Y
0.005 0.5 0.012 424,774 INFEAS — 424,774 INFEAS — 324,517 Y Y
0.005 0.5 0.006 419,226 INFEAS — 419,226 INFEAS — 322,624 Y Y
0.005 0.5 0.003 DDP INFEAS — DDP INFEAS — 321,677 Y Y
0.005 0.5 0.001 DDP INFEAS — DDP INFEAS — 321,204 Y Y
0.005 1 0.196 346,773 349,833 0.88% 346,773 349,833 0.88% 395,743 Y Y
0.005 1 0.181 347,787 349,777 0.57% 347,787 349,777 0.57% 390,579 Y Y
0.005 1 0.164 346,672 350,120 1.00% 346,672 350,120 1.00% 385,043 Y Y
0.005 1 0.145 343,085 351,374 2.42% 342,988 351,374 2.45% 378,616 N Y
0.005 1 0.126 345,548 352,554 2.03% 345,281 358,120 3.72% 372,370 N Y
0.005 1 0.112 347,191 354,420 2.08% 347,191 366,626 5.60% 367,740 N Y
0.005 1 0.095 241,748 361,172 49.40% 236,407 361,172 52.78% 362,072 N Y

(continued on next page)



137

Table 4.5: p-SLMRP: Upper and lower bounds (cont’d).

Overall Overall Overall Root Root Root Proved Proved
β θ p LB UB Gap LB UB Gap Q Opt? Feas?

0.005 1 0.084 304,258 ∞ — 299,187 ∞ — 358,543 N N
0.005 1 0.042 420,008 INFEAS — 420,008 INFEAS — 344,674 Y Y
0.005 1 0.021 409,763 INFEAS — 409,763 INFEAS — 337,740 Y Y
0.005 1 0.010 438,592 INFEAS — 438,592 INFEAS — 334,273 Y Y
0.005 1 0.005 485,106 INFEAS — 485,106 INFEAS — 332,539 Y Y
0.005 1 0.003 409,536 INFEAS — 409,536 INFEAS — 331,672 Y Y
0.005 1 0.001 392,755 INFEAS — 392,755 INFEAS — 331,239 Y Y
0.005 20 0.095 555,919 556,799 0.16% 555,919 572,861 3.05% 586,245 Y Y
0.005 20 0.075 555,434 565,753 1.86% 555,414 ∞ — 575,540 N Y
0.005 20 0.065 556,334 ∞ — 556,333 ∞ — 570,062 N N
0.005 20 0.032 557,190 INFEAS — 557,190 INFEAS — 552,708 Y Y
0.005 20 0.016 601,997 INFEAS — 601,997 INFEAS — 544,031 Y Y
0.005 20 0.008 581,270 INFEAS — 581,270 INFEAS — 539,692 Y Y
0.005 20 0.004 675,890 INFEAS — 675,890 INFEAS — 537,523 Y Y
0.005 20 0.002 679,004 INFEAS — 679,004 INFEAS — 536,438 Y Y
0.005 20 0.001 DDP INFEAS — DDP INFEAS — 535,896 Y Y

no feasible solution could be found anywhere within the branch-and-bound tree, but the

problem could not be proven infeasible.

The optimality gaps are larger for the p-SLMRP than for the SLMRP. In general, the

root-node gaps were on the order of 1% for the loosely-constrained problems and 3-4%

for the more tightly constrained problems. As a result, a great deal of branching was

required, and in many cases the procedure timed out after 1000 seconds, before coming

to a successful resolution. (See Table 4.7 for a summary of Lagrangian iterations, branch-

and-bound nodes, CPU times, and variable-fixing.) The branch-and-bound process was

often only marginally successful in increasing the lower bound over that found at the

root node. We believe that the continuous relaxations of problems with moderately tight

p provide weak bounds, but that the lower bounds we find at the root node are close to

the theoretical bound.

It is worth noting that in most cases in which infeasibility was proved, it was proved at

the root node, with no branching required, after a reasonably small number of Lagrangian



138

iterations. For very small values of p, the variable-fixing routine was able to prove

infeasibility during pre-processing.

One curious feature of these results is that for moderately tight values of p, the lower

bound barely increases as p decreases. This makes problems with p values in that range

very difficult to solve. We have experimented with small problems and found that in

this range, the continuous relaxation bound stays more or less constant as p decreases,

until a sharp increase just before the problem becomes infeasible. This means that the

Lagrangian bound will be stagnant in the flat range, as well. The insensitivity of the

continuous relaxation bound to the tightening of the constraints is an issue worthy of

further study.

In Table 4.6, we summarize the performance of the algorithm for each β/θ pair by

reporting the values of pL, p̄L, p̄U , and pU from the minimax regret heuristic (see Figure

4.2). Note that this table does not contain the results of running the minimax-regret

heuristic (those results are given in Table 4.9, below); it is simply intended to summarize

the ability of the algorithm to determine feasibility for the p values tested. Recall that

the problem is known to be infeasible for p ≤ pL; feasibility was not tested for p ∈ (pL, p̄L)

or p ∈ (p̄U , pU); feasibility was tested but could not be determined for p ∈ [p̄L, p̄U ]; and

the problem is known to be feasible for p ≥ pU .

Table 4.7 summarizes the performance of the algorithm. The first six columns are self

explanatory. The next three columns indicate the number of facilities fixed open by the

variable-fixing routine after processing at the root node, the number fixed closed, and

the total number fixed, respectively. The last three columns give the same values for the



139

Table 4.6: p-SLMRP: Performance summary.

β θ pL p̄L p̄U pU

0.001 0.1 0.065 0.130 0.130 0.130
0.005 0.1 0.044 0.890 0.990 0.990
0.005 0.5 0.047 0.094 0.094 0.105
0.005 1 0.042 0.084 0.084 0.095
0.005 20 0.032 0.065 0.065 0.075

variable-fixing routine during pre-processing.

From the table it is clear that for the more tightly constrained problems, the larger

root-node optimality gaps led to more Lagrangian iterations and branch-and-bound

nodes, longer run times, and fewer variables fixed by the variable-fixing routines. The

pre-processing routine is effective in forcing facilities open and closed for the smaller

values of p, and this decreased the number of iterations required to prove infeasibility

since the solution space is reduced by eliminating certain variables. For larger values

of p the routine has limited success. Nevertheless, because the variable-fixing checks

are extremely fast to execute, the pre-processing variable-fixing routine is still worth

implementing.

4.5.2 Expected Cost vs. Maximum Regret

The key purpose of the p-SLMRP is to reduce the maximum regret (by the choice of p)

with as little increase in expected cost as possible. Figure 4.3 illustrates this tradeoff.

Each curve represents a given value of (β, θ) (as indicated by the legend), and each data

point represents the best feasible solution found for a given value of p. (The curve for β =

0.005, θ = 20 is omitted from the chart for scaling reasons and because it contains only



140

Table 4.7: p-SLMRP algorithm performance.

CPU # Fixed # Fixed Total # # Fixed # Fixed Total #
# Lag # BB Time Open Closed Fixed Open Closed Fixed

β θ p Iter Nodes (sec) Root Root Root Preproc Preproc Preproc
0.001 0.1 0.187 2463 9 117.3 0 11 11 0 0 0
0.001 0.1 0.153 16412 69 681.0 0 9 9 0 0 0
0.001 0.1 0.153 15517 67 772.1 0 0 0 0 0 0
0.001 0.1 0.151 15339 67 739.9 0 0 0 0 0 0
0.001 0.1 0.144 20315 84 1010.4 0 0 0 0 0 0
0.001 0.1 0.130 31319 116 1002.2 0 0 0 0 0 0
0.001 0.1 0.130 35848 148 1006.6 0 0 0 0 0 0
0.001 0.1 0.065 20 1 1.4 0 0 0 0 2 2
0.001 0.1 0.032 19 1 1.4 0 0 0 0 11 11
0.001 0.1 0.016 16 1 1.3 0 0 0 2 30 32
0.001 0.1 0.008 0 0 0.0 0 0 0 2 38 40
0.001 0.1 0.004 0 0 0.0 0 0 0 5 43 48
0.001 0.1 0.002 0 0 0.0 0 0 0 6 43 49
0.001 0.1 0.001 0 0 0.0 0 0 0 6 43 49
0.005 0.1 0.197 62 1 5.8 2 4 6 0 0 0
0.005 0.1 0.177 109 1 12.5 2 4 6 1 0 1
0.005 0.1 0.165 1247 3 55.3 1 0 1 1 0 1
0.005 0.1 0.161 1242 3 52.1 1 2 3 1 0 1
0.005 0.1 0.133 22274 96 1012.6 1 0 1 1 0 1
0.005 0.1 0.133 21755 90 1016.1 1 0 1 1 0 1
0.005 0.1 0.127 21611 91 1004.8 1 0 1 1 0 1
0.005 0.1 0.123 27788 113 1011.3 1 0 1 1 0 1
0.005 0.1 0.121 26611 118 1003.8 1 0 1 1 0 1
0.005 0.1 0.119 25608 115 1007.8 1 0 1 1 0 1
0.005 0.1 0.114 26412 114 1006.8 1 0 1 1 0 1
0.005 0.1 0.110 26147 116 1005.1 0 0 0 1 0 1
0.005 0.1 0.108 26475 119 1000.9 0 0 0 1 0 1
0.005 0.1 0.104 28041 129 1001.2 0 0 0 2 0 2
0.005 0.1 0.101 29832 121 1001.3 0 0 0 2 0 2
0.005 0.1 0.099 26039 115 1009.6 0 0 0 2 0 2
0.005 0.1 0.099 30749 131 1003.3 0 0 0 2 0 2
0.005 0.1 0.089 27986 131 1003.5 0 0 0 2 0 2
0.005 0.1 0.044 12 1 1.2 0 0 0 2 0 2
0.005 0.1 0.034 10 1 0.9 0 0 0 2 0 2
0.005 0.1 0.017 8 1 0.7 0 0 0 12 6 18
0.005 0.1 0.009 8 1 0.7 0 0 0 17 11 28
0.005 0.1 0.004 0 0 0.0 0 0 0 20 16 36
0.005 0.1 0.002 0 0 0.0 0 0 0 23 21 44
0.005 0.1 0.001 0 0 0.0 0 0 0 26 21 47
0.005 0.5 0.184 50 1 6.4 2 4 6 0 0 0
0.005 0.5 0.168 55 1 6.7 2 4 6 0 0 0
0.005 0.5 0.148 2953 11 136.5 1 0 1 1 0 1
0.005 0.5 0.129 21509 91 1005.1 1 1 2 1 0 1
0.005 0.5 0.119 7987 31 371.2 1 0 1 1 0 1
0.005 0.5 0.105 23368 107 1004.3 0 0 0 1 0 1
0.005 0.5 0.094 24624 109 1008.6 0 0 0 1 0 1
0.005 0.5 0.047 12 1 1.3 0 0 0 2 0 2
0.005 0.5 0.024 10 1 0.9 0 0 0 4 2 6
0.005 0.5 0.012 8 1 0.7 0 0 0 13 7 20
0.005 0.5 0.006 8 1 0.7 0 0 0 17 16 33
0.005 0.5 0.003 0 0 0.0 0 0 0 19 20 39
0.005 0.5 0.001 0 0 0.0 0 0 0 21 22 43
0.005 1 0.196 61 1 6.4 1 3 4 0 0 0
0.005 1 0.181 63 1 7.8 2 6 8 0 0 0
0.005 1 0.164 66 1 7.6 1 3 4 0 0 0
0.005 1 0.145 23254 103 1000.3 1 0 1 1 0 1
0.005 1 0.126 21920 96 1003.3 1 0 1 1 0 1
0.005 1 0.112 22830 101 1004.1 1 0 1 1 0 1

(continued on next page)



141

Table 4.7: p-SLMRP algorithm performance (cont’d).

CPU # Fixed # Fixed Total # # Fixed # Fixed Total #
# Lag # BB Time Open Closed Fixed Open Closed Fixed

β θ p Iter Nodes (sec) Root Root Root Preproc Preproc Preproc
0.005 1 0.095 26000 113 1000.0 0 0 0 1 0 1
0.005 1 0.084 27985 122 1007.8 0 0 0 2 0 2
0.005 1 0.042 11 1 0.9 0 0 0 2 0 2
0.005 1 0.021 9 1 0.8 0 0 0 4 5 9
0.005 1 0.010 8 1 0.8 0 0 0 12 6 18
0.005 1 0.005 8 1 0.7 0 0 0 19 12 31
0.005 1 0.003 8 1 0.7 0 0 0 22 17 39
0.005 1 0.001 8 1 0.7 0 0 0 24 19 43
0.005 20 0.095 1232 3 63.8 0 0 0 0 0 0
0.005 20 0.075 23280 99 1011.7 0 0 0 0 0 0
0.005 20 0.065 28638 127 1008.7 0 0 0 1 0 1
0.005 20 0.032 12 1 1.3 0 0 0 2 0 2
0.005 20 0.016 11 1 1.0 0 0 0 3 4 7
0.005 20 0.008 10 1 0.9 0 0 0 6 9 15
0.005 20 0.004 9 1 0.9 0 0 0 9 13 22
0.005 20 0.002 9 1 0.8 0 0 0 13 20 33
0.005 20 0.001 0 0 0.0 0 0 0 15 22 37

three points.) Values of p for which the algorithm found no feasible solution are omitted.

The x-axis represents the maximum regret for the solution. The y-axis represents the

p-SLMRP objective value. The right-most data point on each curve represents p = ∞,

i.e., the optimal SLMRP solution.

The figure indicates that in most cases, substantial reductions in maximum regret

are possible with small increases in expected cost. For instance, for β = 0.005, θ = 0.1,

the maximum regret can be reduced from 20% to 13% with an increase of only 1% in

expected cost; the regret can be further reduced to just under 10% with an increase in

cost of less than 4%. The left-most point on the tradeoff curve is not always preferable

to decision makers; for example, for β = 0.001, θ = 0.1 the left-most point represents

a decrease in maximum regret from 19% to 13% with an increase in expected cost of

4.3%, but for a slightly larger value of p, a maximum regret of 14% can be obtained with

almost no increase in expected cost.



142

Figure 4.3: Increase in expected cost versus maximum regret.

150

200

250

300

350

400

5% 7% 9% 11% 13% 15% 17% 19% 21% 23%

Maximum Regret (%)

E
xp

ec
te

d
 C

o
st

 (
x1

00
0)

.001,.1

.005,.1

.005,.5

.005,1

The data used to generate Figure 4.3 are listed in Table 4.8. The “Expected Cost”

column corresponds to the “Overall UB” column in Table 4.8; the remaining columns are

described in the explanation of Table 3.6. Rows have been omitted for problems for which

no feasible solution was found. Dominated solutions (those for which another solution

exists with smaller expected cost and smaller maximum regret) are indicated with an

asterisk (*). Had the optimal solution been found for each problem, there would be no

dominated solutions; however, since the algorithm used an optimality gap of 0.1% (and

did not find solutions within this gap in all cases), some dominated solutions are present.

This also means that the true optimal expected cost for some solutions is smaller than

that pictured.



143

Table 4.8: p-SLMRP: Scenario regret.

% Regret Expected
β θ p Avg Min Max Cost

0.001 0.1 ∞ 12.9% 2.3% 18.7% 169,315
0.001 0.1 0.187 12.1% 3.0% 15.3% 170,131*
0.001 0.1 0.153 11.2% 3.8% 15.3% 170,194*
0.001 0.1 0.153 11.5% 2.3% 15.1% 169,728
0.001 0.1 0.151 11.7% 3.4% 14.4% 170,506
0.001 0.1 0.144 10.9% 5.0% 13.0% 171,331
0.001 0.1 0.130 10.9% 6.2% 13.0% 176,627
0.005 0.1 ∞ 11.6% 0.4% 19.7% 329,042
0.005 0.1 0.197 11.3% 1.0% 17.7% 329,441
0.005 0.1 0.177 11.4% 1.7% 16.5% 330,887*
0.005 0.1 0.165 11.0% 1.9% 16.1% 330,022
0.005 0.1 0.161 9.7% 3.9% 13.3% 332,171
0.005 0.1 0.133 9.1% 4.6% 13.3% 333,083
0.005 0.1 0.133 9.3% 5.0% 12.7% 333,659
0.005 0.1 0.127 9.8% 5.7% 12.3% 334,158
0.005 0.1 0.123 9.2% 5.4% 12.1% 335,038
0.005 0.1 0.121 8.7% 5.7% 11.9% 335,538
0.005 0.1 0.119 9.1% 5.2% 11.4% 335,730
0.005 0.1 0.114 9.2% 6.8% 11.0% 335,955
0.005 0.1 0.110 8.4% 6.4% 10.8% 337,623*
0.005 0.1 0.108 8.5% 7.0% 10.4% 336,737
0.005 0.1 0.104 8.4% 6.3% 10.1% 337,169
0.005 0.1 0.101 8.6% 7.1% 9.9% 337,343
0.005 0.1 0.099 8.8% 6.4% 9.9% 340,769
0.005 0.5 ∞ 11.4% 0.6% 19.4% 339,959
0.005 0.5 0.184 10.7% 1.4% 17.8% 340,105
0.005 0.5 0.168 10.8% 2.0% 15.8% 340,573
0.005 0.5 0.148 9.4% 3.9% 13.9% 342,153
0.005 0.5 0.129 9.0% 3.7% 12.9% 343,469
0.005 0.5 0.119 8.6% 5.9% 11.5% 345,656
0.005 0.5 0.105 8.9% 6.1% 10.4% 350,391
0.005 1 ∞ 11.2% 1.0% 20.6% 350,000*
0.005 1 0.196 11.3% 0.3% 19.1% 349,833*
0.005 1 0.181 10.5% 0.9% 17.4% 349,777
0.005 1 0.164 10.6% 1.5% 15.5% 350,120
0.005 1 0.145 9.1% 3.3% 13.6% 351,374
0.005 1 0.126 8.3% 3.1% 12.2% 352,554
0.005 1 0.112 8.3% 5.4% 10.5% 354,420
0.005 1 0.095 8.1% 5.0% 9.4% 361,172
0.005 20 ∞ 6.6% 1.9% 8.9% 556,665
0.005 20 0.095 6.2% 2.1% 8.5% 556,799
0.005 20 0.075 5.5% 3.7% 7.5% 565,753



144

Table 4.9: p-SLMRP minimax regret heuristic.

β θ pL pU # Solved
0.001 0.1 7.0% 13.7% 9
0.005 0.1 7.4% 10.7% 9
0.005 0.5 7.3% 10.5% 9
0.005 1 7.0% 10.0% 9
0.005 20 4.9% 7.6% 8

4.5.2.1 Minimax Regret Heuristic

In this section we discuss our testing of the minimax regret heuristic described in Section

4.3. We tested this heuristic on the 49-node, 5-scenario problem, using the same five

values of β and θ. No branching was performed, and an iteration limit of 1200 was used

(this represents the stopping criteria in step 2 of the heuristic). The results are reported

in Table 4.9. The columns marked “pL” and “pU” indicate the lower and upper bounds

on the minimax regret value; the column marked “# Solved” indicates the total number

of problems that were solved during the execution of the algorithm.

4.5.3 p-SPMP and p-SUFLP

4.5.3.1 Algorithm Performance

We tested the variable-splitting algorithms for the p-SPMP and p-SUFLP described in

Section 4.4 on two data sets.2 The first is a 25-node, 5-scenario data set consisting of

random data. In scenario 1, demands are drawn uniformly from [0, 10000] and rounded
2Although the algorithms proposed in Section 4.4 use Lagrangian relaxation, we will refer to these as

the “variable-splitting” algorithms and the algorithm for the p-SLMRP described in Section 4.2 as the

“Lagrangian relaxation” algorithm to avoid confusion between the two.



145

to the nearest integer and latitudes and longitudes are drawn uniformly from [0,1]; in

scenarios 2–5, demands from scenario 1 are multiplied by a number drawn uniformly from

[0.5, 1.5] and latitudes and longitudes are multiplied by a number drawn uniformly from

[0.75, 1.25] (that is, scenario 1 demands are perturbed by up to 50% in either direction,

coordinates by up to 25%). Transportation costs are set equal to the Euclidean distances

between facilities and customers. Fixed costs for the p-SUFLP problems are drawn

uniformly from [4000, 8000] and rounded to the nearest integer. The second data set is

the 49-node, 9-scenario data set described in Section 4.5.1.1.

The performance measure of interest for these tests is the tightness of the bounds

produced at the root node; consequently, no branching was performed. The parameters

used for the variable-splitting algorithm are the same as those used in testing the p-

SLMRP algorithm (listed in Table 4.3), except that the minimum LB–UB gap was set to

0.1% and the initial value for all Lagrange multipliers is 0. The weighting coefficient γ

was set to 0.2. Values were chosen for the robustness coefficient p using a method similar

to that described in Section 4.5.1.1.

Tables 4.10 and 4.11 summarize the p-SPMP algorithm’s performance on the 25- and

49-node data sets, respectively. The column marked “P” gives the number of facilities to

be located while “p” gives the robustness coefficient. “LB,” “UB,” and “Gap” give the

lower bound, upper bound, and percentage gap after processing at the root node. “#

Lag Iter” gives the number of Lagrangian iterations performed, “CPU Time” gives the

time (in seconds) spent by the algorithm, and “MCKP Time” gives the time (in seconds)

spent solving multiple-choice knapsack problems. Tables 4.12 and 4.13 summarize the



146

p-SUFLP’s algorithm’s performance for the 25- and 49-node data sets. The columns are

the same as those for tables 4.10 and 4.11, except that the “P” column is not present. As

above, “INFEAS” in the UB column indicates that the problem was proved infeasible,

while ∞ indicates that the problem was not proved infeasible but no feasible solution was

found. Note that since the variable-splitting algorithm cannot be solved solely by the

calculation of facility “benefits,” variable-fixing cannot be performed, either during pre-

processing or after root-node processing. Therefore, no problems can be proved infeasible

during pre-processing as in the p-SLMRP algorithm. These tables are summarized in

Table 4.14 in a manner similar to Table 4.6.

In general, the bounds are slightly larger than expected. As in the p-SLMRP, some

problems could not be proven feasible or infeasible at the root node. Theorem 4.2 im-

plies that for these problems, either the LP relaxation is feasible or we are simply not

finding good multipliers. Further research is needed to establish which is the case. Com-

putation times are somewhat longer than for the Lagrangian relaxation algorithm for

the p-SLMRP since the subproblems are more difficult to solve; about two-thirds of the

total computation time is spent solving MCKPs. Nevertheless, these times are quite

reasonable for problems of their size. We discuss these issues further in the next section.

Since the p-SUFLP algorithm requires more variables to be split than the p-SPMP

algorithm (the location variables, not just the assignment variables) and requires an

additional index on the location variables, we expected this algorithm to produce no-

ticeably weaker bounds. Our results suggest that, to the contrary, the two algorithms

produce similarly tight bounds, though more testing would be required to establish this



147

Table 4.10: p-SPMP algorithm performance: 25-node, 5-scenario data set.

P p LB UB Gap # Lag Iter CPU Time MCKP Time
3 ∞ 24,366 24,555 0.8% 1200 20.6 11.4
3 0.156 24,383 24,691 1.3% 1200 22.6 13.4
3 0.072 24,406 ∞ — 1200 24.7 15.0
3 0.032 23,947 INFEAS — 353 7.6 4.7
3 0.012 23,483 INFEAS — 175 3.7 2.0
3 0.002 23,251 INFEAS — 137 2.9 1.5
6 ∞ 13,627 13,640 0.1% 661 11.3 5.7
6 0.201 13,640 13,793 1.1% 1200 42.9 33.1
6 0.177 13,646 14,003 2.6% 1200 22.5 13.1
6 0.169 13,645 13,974 2.4% 1200 22.5 12.6
6 0.151 13,661 ∞ — 1200 22.8 12.9
6 0.071 13,507 INFEAS — 1200 25.9 16.2
6 0.041 13,129 INFEAS — 127 2.8 1.9
6 0.021 12,876 INFEAS — 87 1.9 1.3
6 0.011 12,750 INFEAS — 70 1.5 1.2
6 0.001 12,624 INFEAS — 61 1.4 1.2
9 ∞ 8,013 8,036 0.3% 1200 20.7 10.9
9 0.331 8,036 8,460 5.3% 1200 22.8 14.0
9 0.305 8,036 ∞ — 1200 23.0 12.4
9 0.145 7,967 INFEAS — 460 11.7 7.9
9 0.075 7,479 INFEAS — 88 1.7 1.0
9 0.035 7,201 INFEAS — 41 0.8 0.6
9 0.015 7,062 INFEAS — 33 0.6 0.6
9 0.005 6,992 INFEAS — 31 0.6 0.2
12 ∞ 4,357 4,361 0.1% 66 1.2 0.7
12 0.403 4,402 4,443 0.9% 1200 29.1 18.9
12 0.309 4,442 4,528 1.9% 1200 32.6 25.6
12 0.232 4,502 ∞ — 1200 34.2 25.2
12 0.152 4,511 INFEAS — 856 31.0 23.6
12 0.072 4,198 INFEAS — 48 0.9 0.8
12 0.042 4,081 INFEAS — 34 0.7 0.3
12 0.022 4,002 INFEAS — 27 0.6 0.4
12 0.012 3,963 INFEAS — 23 0.5 0.2
12 0.002 3,924 INFEAS — 20 0.4 0.3
15 ∞ 2,289 2,291 0.1% 26 0.5 0.2
15 0.450 2,389 2,442 2.2% 1200 28.4 18.8
15 0.409 2,389 2,487 4.1% 1200 27.2 17.9
15 0.323 2,400 ∞ — 1200 26.0 16.0
15 0.163 2,423 INFEAS — 413 8.3 5.7
15 0.083 2,256 INFEAS — 82 1.5 0.7
15 0.043 2,173 INFEAS — 37 0.7 0.3
15 0.023 2,131 INFEAS — 24 0.4 0.2
15 0.013 2,111 INFEAS — 22 0.4 0.3
15 0.003 2,091 INFEAS — 20 0.4 0.4



148

Table 4.11: p-SPMP algorithm performance: 49-node, 9-scenario data set.

P p LB UB Gap # Lag Iter CPU Time MCKP Time
5 ∞ 1,376,698 1,408,517 2.3% 1200 93.6 55.3
5 0.212 1,372,735 1,425,534 3.8% 1200 110.3 72.9
5 0.193 1,387,897 ∞ — 1200 106.9 69.7
5 0.093 1,382,665 ∞ — 1200 140.0 101.0
5 0.043 1,354,732 INFEAS — 480 54.4 39.3
5 0.023 1,328,748 INFEAS — 221 26.5 19.9
5 0.013 1,315,756 INFEAS — 155 20.3 15.1
5 0.003 1,302,765 INFEAS — 116 15.2 11.7
10 ∞ 782,946 796,145 1.7% 1200 95.9 57.4
10 0.306 782,664 799,457 2.1% 1200 104.1 65.5
10 0.245 783,093 804,955 2.8% 1200 108.8 69.8
10 0.216 782,901 817,135 4.4% 1200 114.8 76.1
10 0.199 783,003 ∞ — 1200 124.6 85.4
10 0.099 783,633 ∞ — 1200 134.1 95.4
10 0.049 750,619 INFEAS — 159 25.2 20.4
10 0.019 729,155 INFEAS — 77 15.1 12.6
10 0.009 721,998 INFEAS — 62 12.1 10.6
15 ∞ 518,381 518,895 0.1% 1125 92.5 57.2
15 0.425 518,885 527,424 1.6% 1200 109.1 71.3
15 0.320 519,294 535,568 3.1% 1200 123.5 85.9
15 0.260 520,377 ∞ — 1200 121.5 82.7
15 0.120 518,019 INFEAS — 313 72.4 62.5
15 0.060 490,276 INFEAS — 54 27.4 25.5
15 0.030 476,401 INFEAS — 35 18.8 18.0
15 0.010 467,167 INFEAS — 28 20.4 19.7
15 0.000 462,593 INFEAS — 26 13.1 12.2
20 ∞ 367,573 368,625 0.3% 1200 93.4 56.1
20 0.395 367,973 373,510 1.5% 1200 105.8 68.5
20 0.394 367,915 369,861 0.5% 1200 103.2 65.9
20 0.392 368,005 373,759 1.6% 1200 103.9 66.8
20 0.342 368,157 374,835 1.8% 1200 112.3 73.7
20 0.317 368,650 376,567 2.1% 1200 110.1 72.5
20 0.298 369,153 ∞ — 1200 117.8 81.7
20 0.158 353,221 INFEAS — 103 57.6 54.4
20 0.078 328,816 INFEAS — 31 13.0 12.1
20 0.038 316,633 INFEAS — 23 19.9 19.5
20 0.018 310,558 INFEAS — 21 5.4 4.8
20 0.008 307,515 INFEAS — 20 7.4 6.7
25 ∞ 257,815 258,337 0.2% 1200 96.6 57.6
25 0.733 257,862 259,433 0.6% 1200 109.1 69.5
25 0.719 257,668 259,682 0.8% 1200 106.3 68.6
25 0.719 257,689 259,974 0.9% 1200 106.5 69.5
25 0.638 257,825 260,416 1.0% 1200 108.2 70.9
25 0.629 257,852 262,763 1.9% 1200 105.1 67.0
25 0.624 258,147 262,480 1.7% 1200 108.7 71.8
25 0.623 257,929 266,843 3.5% 1200 109.1 72.2
25 0.604 257,941 262,618 1.8% 1200 107.9 67.3
25 0.581 258,103 264,574 2.5% 1200 133.8 96.2
25 0.558 258,517 ∞ — 1200 111.8 73.7

(continued on next page)



149

Table 4.11: p-SPMP algorithm performance: 49-node, 9-scenario data set (cont’d).

P p LB UB Gap # Lag Iter CPU Time MCKP Time
25 0.538 258,669 264,964 2.4% 1200 110.4 73.2
25 0.518 258,896 261,601 1.0% 1200 114.3 75.3
25 0.490 259,357 277,026 6.8% 1200 133.3 96.1
25 0.452 260,200 ∞ — 1200 120.4 82.7
25 0.232 250,523 INFEAS — 100 18.4 15.3
25 0.152 234,265 INFEAS — 39 9.2 8.0
25 0.072 218,001 INFEAS — 22 6.8 6.2
25 0.032 209,871 INFEAS — 18 7.0 6.5
25 0.012 205,847 INFEAS — 17 6.4 5.7
25 0.002 203,835 INFEAS — 16 4.6 3.9

Table 4.12: p-SUFLP algorithm performance: 25-node, 5-scenario data set.

p LB UB Gap # Lag Iter CPU Time MCKP Time
∞ 40,162 40,184 0.1% 139 2.8 1.2

0.046 40,183 ∞ — 1200 26.4 16.3
0.026 40,189 ∞ — 1200 27.2 17.4
0.016 39,864 INFEAS — 136 3.0 2.0
0.006 39,472 INFEAS — 101 2.3 1.5

Table 4.13: p-SUFLP algorithm performance: 49-node, 9-scenario data set.

p LB UB Gap # Lag Iter CPU Time MCKP Time
∞ 1,487,812 1,494,658 0.5% 1200 105.2 63.8

0.115 1,485,672 ∞ — 1200 133.4 94.2
0.055 1,467,460 INFEAS — 206 26.4 20.3
0.025 1,425,721 INFEAS — 85 14.2 11.4
0.015 1,411,815 INFEAS — 70 11.9 9.7
0.005 1,397,908 INFEAS — 61 10.3 7.4

Table 4.14: p-SPMP and p-SUFLP: Performance summary.

n P pL p̄L p̄U pU

25 3 0.032 0.072 0.072 0.156
25 6 0.071 0.151 0.151 0.169
25 9 0.145 0.305 0.305 0.331
25 12 0.152 0.232 0.232 0.309
25 15 0.163 0.323 0.323 0.409
25 — 0.016 0.026 0.046 ∞
49 5 0.043 0.093 0.193 0.212
49 10 0.049 0.099 0.199 0.216
49 15 0.120 0.260 0.260 0.320
49 20 0.158 0.298 0.298 0.317
49 25 0.232 0.452 0.452 0.490
49 — 0.055 0.115 0.115 ∞



150

observation conclusively.

4.5.3.2 Comparison to p-SLMRP Algorithm

The Lagrangian relaxation algorithm from Section 4.2 can be used to solve both the

p-SPMP and the p-SUFLP. To solve the p-SUFLP, one simply sets all costs other than

the fixed costs fj and the transportation costs dijs to 0. To solve the p-SPMP, the fixed

costs are also set to 0, and the decision rule for opening facilities must be modified so

that the P facilities with minimum benefit Ṽj are opened, rather than any facility with

Ṽj + fj < 0. Table 4.15 compares the two algorithms’ performance on both the p-SPMP

and the p-SUFLP using the 49-node, 9-scenario data set. No branching was performed;

the table lists root-node statistics only. The column marked “P” contains the value of

P used for the p-SPMP, or “—” in the case of the p-SUFLP. The columns marked “LR

LB,” “LR UB,” “LR Gap,” and “LR Time” indicate the lower bound, upper bound,

percentage gap, and CPU time (in seconds) for the Lagrangian relaxation algorithm; the

remaining columns indicate the corresponding values for the variable-splitting algorithms.

The bounds are also pictured graphically in Figures 4.4–4.6.

Neither the Lagrangian relaxation algorithm nor the variable-splitting algorithms

consistently provide superior bounds. Given this, the Lagrangian relaxation algorithm

seems preferable since it is faster. However, the bounds provided by the variable-splitting

algorithms are theoretically greater than those provided by the Lagrangian algorithm.

The Lagrangian relaxation algorithm requires optimizing over |I||S| + |S| multipliers,

while the variable-splitting algorithm requires |I|2|S| multipliers for the p-SPMP and



151

Table 4.15: Variable-splitting vs. Lagrangian relaxation.

LR LR VS VS
P p LR LB LR UB Gap Time VS LB VS UB Gap Time
5 0.250 1,393,880 1,423,360 2.1% 80.9 1,376,698 1,408,517 2.3% 93.6
5 0.212 1,387,950 1,408,520 1.5% 83.4 1,372,735 1,425,534 3.8% 110.3
5 0.193 1,373,880 1,425,530 3.8% 86.6 1,387,897 ∞ — 106.9
5 0.153 1,389,430 ∞ — 88.6 1,384,491 ∞ — 125.0
5 0.113 1,386,250 ∞ — 88.2 1,383,140 ∞ — 143.3
5 0.083 1,394,560 ∞ — 88.4 1,379,001 ∞ — 137.7
5 0.063 1,380,880 INFEAS — 7.5 1,373,177 ∞ — 134.2
5 0.043 1,355,020 INFEAS — 5.4 1,354,732 INFEAS — 54.4
5 0.023 1,333,280 INFEAS — 5.4 1,328,748 INFEAS — 26.5
15 0.450 518,383 518,895 0.1% 15.7 518,381 518,895 0.1% 92.5
15 0.425 518,903 524,564 1.1% 103.2 518,885 527,424 1.6% 109.1
15 0.320 520,425 ∞ — 104.7 519,294 535,568 3.1% 123.5
15 0.260 521,029 543,389 4.3% 104.9 520,377 ∞ — 121.5
15 0.220 518,145 ∞ — 104.9 521,189 ∞ — 135.9
15 0.180 523,868 ∞ — 105.7 522,949 ∞ — 154.9
15 0.140 525,697 ∞ — 105.5 527,150 ∞ — 140.0
15 0.100 508,810 INFEAS — 4.5 508,771 INFEAS — 36.2
15 0.070 500,658 INFEAS — 5.1 494,898 INFEAS — 43.3
15 0.050 492,269 INFEAS — 4.3 485,653 INFEAS — 37.8
15 0.030 483,885 INFEAS — 3.0 476,401 INFEAS — 18.8
15 0.010 468,893 INFEAS — 2.6 467,167 INFEAS — 20.4
— 0.150 1,488,770 1,526,210 2.5% 97.2 1,487,812 1,494,658 0.5% 105.2
— 0.115 1,473,440 ∞ — 107.6 1,485,672 ∞ — 133.4
— 0.095 1,482,370 ∞ — 106.4 1,488,636 ∞ — 134.7
— 0.085 1,483,470 ∞ — 106.4 1,490,346 ∞ — 134.0
— 0.075 1,487,430 ∞ — 105.6 1,490,687 ∞ — 136.7
— 0.065 1,481,360 ∞ — 14.2 1,481,373 INFEAS — 49.4
— 0.055 1,467,590 INFEAS — 8.4 1,467,460 INFEAS — 26.4
— 0.045 1,453,840 INFEAS — 4.9 1,453,548 INFEAS — 16.6
— 0.035 1,439,790 INFEAS — 9.2 1,439,634 INFEAS — 14.7
— 0.025 1,429,840 INFEAS — 8.9 1,425,721 INFEAS — 14.2
— 0.015 1,425,980 INFEAS — 4.7 1,411,815 INFEAS — 11.9
— 0.005 1,409,380 INFEAS — 3.8 1,397,908 INFEAS — 10.3



152

|I|2|S| + |I||S| for the p-SUFLP. We believe the larger number of Lagrange multipliers

is the reason for the inferior bounds produced by the variable-splitting algorithms in

practice, and that these bounds can be tightened by improving the multiplier-updating

routine. Because the subproblems do not have the integrality property, the variable-

splitting algorithms have the potential to produce tighter bounds than the Lagrangian

relaxation algorithm. Even though we are not solving the MCKPs to integer optimality,

we should still observe bounds tighter than the LP bound since we solve the problems

to something greater than LP optimality. That is, we stop the MCKP algorithm with a

0.1%-optimal solution, which typically has a larger objective value than the LP relaxation

of the MCKP but smaller than the IP. One problem with our choice of MCKP algorithm

is that the data must be converted to non-negative data by adding a positive constant

to each objective function coefficient. A 0.1%-optimal solution found by the algorithm

may no longer be 0.1%-optimal after the data are converted back into their original form.

It may be possible to modify Armstrong et al.’s algorithm to avoid this transformation,

or another algorithm may be used that does not require non-negative data. Either way,

improving the algorithm to obtain better bounds in practice is a topic for future research.

4.5.3.3 Minimax Regret Heuristic

We solved the minimax regret p-SPMP and p-SUFLP using the minimax regret heuristic

discussed in Section 4.3, substituting the variable-splitting algorithm for the Lagrangian

relaxation algorithm in Step 2. We tested the heuristic on the 25-node and 49-node

data sets described above. The results are summarized in Table 4.16. The first three



153

Figure 4.4: Variable-splitting vs. Lagrangian relaxation: p-SPMP, P = 5.

1320

1340

1360

1380

1400

1420

1440

0 0.05 0.1 0.15 0.2 0.25 0.3

p

O
b

je
ct

iv
e 

V
al

u
e 

(x
10

00
)

LR LB LR UB VS LB VS UB

Figure 4.5: Variable-splitting vs. Lagrangian relaxation: p-SPMP, P = 15.

460

470

480

490

500

510

520

530

540

550

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

p

O
b

je
ct

iv
e 

V
al

u
e 

(x
10

00
)

LR LB LR UB VS LB VS UB



154

Figure 4.6: Variable-splitting vs. Lagrangian relaxation: p-SUFLP.

1380

1400

1420

1440

1460

1480

1500

1520

1540

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

p

O
b

je
ct

iv
e 

V
al

u
e 

(x
10

00
)

LR LB LR UB VS LB VS UB

Table 4.16: p-SPMP and p-SUFLP minimax regret heuristic.

# Ret # Scen P pL pU # Solved
25 5 5 0.040 0.092 8
25 5 10 0.168 0.336 11
25 5 UFLP 0.023 0.046 5
49 9 10 0.087 0.199 10
49 9 20 0.228 0.298 10
49 9 UFLP 0.072 0.115 7

columns indicate the number of retailers and scenarios, and the value of P (if applicable).

The remaining three columns are as described in Table 4.9. The ranges returned by the

heuristic are smaller for the p-SPMP and p-SUFLP in an absolute sense than those

displayed in Table 4.9 for the p-SLMRP (usually less than 1% for the p-SPMP and p-

SUFLP and 3%-6% for the p-SLMRP), but in a relative sense (i.e., taking (pU − pL)/pL

as opposed to pU − pL), they are comparable.



155

4.6 Chapter Summary

In this chapter, we presented the p-robust stochastic LMRP, which finds the minimum-

expected-cost p-robust solution to the stochastic LMRP. Our algorithm is similar to

the algorithm for the SLMRP but is complicated by the fact that identifying feasible

solutions is sometimes difficult, and moreover, it is not always easy to detect in advance

whether the problem will be feasible for a given value of p. We presented an upper bound

that is valid for any feasible problem; this upper bound can be used during the solution

process to detect whether the problem is infeasible. We also presented a heuristic for

solving the minimax-regret LMRP, or, as a special case, the minimax-regret UFLP.

The main disadvantage of our algorithm for the LMRP is that the Lagrangian sub-

problem has the integrality property, meaning that the resulting bound is no tighter

than the LP-relaxation bound, which may be quite loose. We show that the p-robust

stochastic P -median problem and the p-robust stochastic uncapacitated fixed-charge lo-

cation problem can be solved using variable-splitting algorithms whose subproblems do

not have the integrality property. The subproblems can be solved using algorithms for

the multiple-choice knapsack problem (MCKP); since lower bounds are required, we use

solutions to restricted LP relaxations of the MCKP, which may be fractional. Although

the variable-splitting subproblems are harder to solve than those for the Lagrangian relax-

ation algorithm, they yield tighter bounds in theory. Our computational results indicate

that the bounds produced in practice are not always tighter than those produced using

the Lagrangian relaxation method. Our multiplier updating method may be to blame,



156

and we suggest exploring alternate methods as a topic for future research.



Chapter 5

Reliability Models for Facility

Location: Maximum Failure Cost

5.1 Introduction

The P -median problem (PMP), uncapacitated fixed-charge location problem (UFLP),

and other classical facility location problems choose facility locations and customer as-

signments to minimize fixed and/or transportation costs. Once a set of facilities has been

constructed, however, one or more of them may from time to time become unavailable—

for example, due to inclement weather, labor actions, natural disasters, or changes in

ownership. These facility “failures” may result in excessive transportation costs as cus-

tomers previously served by these facilities must now be served by more distant ones.

The models presented in this chapter choose facility locations to minimize day-to-day

construction and transportation costs while also hedging against failures within the sys-

157



158

tem. We call the ability of a system to perform well even when parts of the system have

failed the “reliability” of the system. Our goal, then, is to choose facility locations that

are both inexpensive and reliable.

Consider the 49-node data set described in Daskin (1995) consisting of the capitals

of the continental United States plus Washington, DC. Demands are proportional to the

1990 state populations and fixed costs to median home values. The optimal UFLP solu-

tion for this problem is pictured in Figure 5.1; this solution entails a fixed cost of $348,000

and a transportation cost of $509,000. (Transportation costs are taken to be $0.00001

per mile per unit of demand.) However, if the facility in Sacramento, CA becomes un-

available, the west-coast customers must be served from facilities in Springfield, IL and

Austin, TX (Figure 5.2), resulting in a transportation cost of $1,081,000, an increase of

112%. The “failure costs” (the transportation cost when a site fails) of the five optimal

facilities, as well as their assigned demands, are listed in Table 5.1, as is the transporta-

tion cost when no facilities fail. Note that Sacramento serves a relatively small portion

of the demand; its large failure cost is due to its distance from good “backup” facilities.

In contrast, Harrisburg, PA is relatively close to two good backup facilities, but because

it serves one-third of the total demand, its failure, too, is very costly. Springfield, IL is

the second-largest facility in terms of demand served, but its failure cost is much smaller

because it is centrally located, close to good backup facilities. The reliability of a facility,

then, can depend either on the distance from other facilities (e.g., Sacramento, which is

small but distant) or on the demand served (Harrisburg, which is close but large), or on

both (Springfield, which is reliable because it is neither excessively large nor excessively



159

Table 5.1: Failure costs and assigned demands for UFLP solution.

Location % Demand Served Failure Cost % Increase
Sacramento, CA 19% 1,081,229 112%
Harrisburg, PA 33% 917,332 80%
Springfield, IL 22% 696,947 37%
Montgomery, AL 16% 639,631 26%
Austin, TX 10% 636,858 25%
Transportation cost w/no failures 508,858 0%

distant).

Figure 5.1: UFLP solution to 49-node data set.

A more reliable solution locates facilities in the capitals of CA, NY, TX, PA, OH, AL,

OR, and IA; in this solution, no facility has a failure cost of more than $640,000, rivaling

the smallest failure cost in Table 5.1. On the other hand, three additional facilities are

used in this solution, and these come at a cost. Few firms would be willing to choose

solutions with fixed and day-to-day transportation costs that are much greater than

optimal just to hedge against occasional and unpredictable disruptions in their supply

network. One of the goals of this chapter is to demonstrate that substantial improvements



160

Figure 5.2: UFLP solution to 49-node data set, after failure of facility in Sacramento.

in reliability can often be obtained without large increases in day-to-day operating cost—

that by taking reliability into account at design time, one can find a near-optimal UFLP

solution that has much better reliability. This is demonstrated by examining the tradeoff

between the operating cost and either the maximum or the expected failure cost of the

system.

We study reliability-based formulations of both the PMP and the UFLP. Our ultimate

goal is to extend the reliability concept explored in this chapter to the location model with

risk pooling (LMRP) discussed in previous chapters. However, the reliability location

models are difficult in their own right; we plan to extend them to more complex supply

chain models like the LMRP, as well as to other logistics problems, in future research.

In this chapter we discuss models that minimize operating cost (fixed location costs

and/or day-to-day transportation cost—the classical UFLP or PMP objectives) while



161

constraining the maximum failure cost (the transportation cost that results after a facility

has failed). We assume that at most one facility can fail at a time and bound the greatest

cost that can result from a failure. In the example given in the introduction, the maximum

failure cost is 1,081,229, occurring when the facility in Sacramento fails. Chapter 6 will be

concerned with the expected failure cost, assuming a given probability that each facility

fails.

For the sake of simplicity, we will discuss the reliability problems in detail in the

context of the PMP, then briefly discuss how the UFLP-based problems differ. We will

refer to the PMP-based version of the maximum failure cost problem as the RPMP-

MFC and to the UFLP-based version as the RFLP-MFC. We have developed several

formulations for these problems and have explored several approaches for solving them.

To date, none of the exact solution methods has been entirely satisfactory. Consequently,

we have also developed a tabu search heuristic that executes quickly and finds good

solutions in practice.

5.2 Formulations

5.2.1 Notation

Let I be the set of customers, indexed by i, and J be the set of potential facility locations,

indexed by j. (We do not assume I = J as we did in earlier chapters to maintain con-

sistency with most of the facility location literature; however, this assumption can easily

be made if desired.) The maximum failure cost reliability P -median problem (RPMP-



162

MFC) is the problem of choosing P facilities from J such that the total transportation

cost between customers and their assigned facilities is minimized, subject to a constraint

that if any facility fails, the resulting cost after customers are re-assigned is no more than

a pre-specified limit. Note that we assume that at most one facility fails at a time. We

do not consider either the probability or the duration of a failure; our goal is simply to

constrain the cost that results from a failure, regardless of how frequently this cost is

incurred.

We define the following notation:

Parameters

hi = demand per period for customer i ∈ I

dij = per-unit cost to ship from facility j ∈ J to customer i ∈ I

P = number of facilities to open, P ≥ 2

V ∗ = maximum allowable failure cost

The maximum allowable failure cost V ∗ may vary from facility to facility (V ∗
j ) if

desired, but we assume for simplicity that the same V ∗ applies to all facilities. Setting

V ∗ in practice may be a tricky issue, since firms may find it difficult to quantify the

maximum failure cost they could tolerate. However, the problem can be solved iteratively

with different values of V ∗ to obtain a tradeoff curve from which decision makers may

choose a solution based on their preference between operating cost and failure cost. The

method for generating this tradeoff curve is discussed in Section 5.6.



163

5.2.2 Weak Formulation

The most intuitive formulation for the RPMP-MFC also has the weakest LP relaxation.

We present this formulation first, then demonstrate why the LP bound is weak. The

weakness of the LP bound also makes Lagrangian relaxation an impractical approach for

this formulation.

The basic strategy behind all of the formulations given in this chapter is that each

customer is assigned to both a primary facility that will serve it under normal circum-

stances and a backup facility that will serve it if the primary facility has failed. (Note

that while we refer to a primary or backup “facility,” these terms really refer to the

assignment, not to the facility itself. A given facility may be a primary facility for one

customer and a backup facility for another.) The decision variables are

Xj =



















1, if facility j ∈ J is selected

0, otherwise

Yijk =







































1, if facility j ∈ J is customer i’s primary facility (i ∈ I) and facility k ∈ J is

customer i’s backup facility

0, otherwise

The weak integer programming formulation of the RPMP-MFC is



164

(RPMP-MFC1) minimize
∑

i∈I

∑

j∈J

∑

k∈J

hidijYijk

(5.1)

subject to
∑

j∈J

∑

k∈J

Yijk = 1 ∀i ∈ I (5.2)

Yijk ≤ Xj ∀i ∈ I, ∀j ∈ J,∀k ∈ J (5.3)

Yijk ≤ Xk ∀i ∈ I, ∀j ∈ J,∀k ∈ J (5.4)

∑

j∈J

Xj = P (5.5)

∑

i∈I

∑

k∈J
k 6=j

∑

l∈J

hidikYikl +
∑

i∈I

∑

k∈J

hidikYijk ≤ V ∗ ∀j ∈ J (5.6)

Yijj = 0 ∀i ∈ I, ∀j ∈ J (5.7)

Xj ∈ {0, 1} ∀j ∈ J (5.8)

Yijk ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,∀k ∈ J (5.9)

The objective function (5.1) computes the total demand-weighted distance between cus-

tomers and their primary facilities. (The summation over k is necessary to determine the

assignments, but the objective function does not depend on the backup assignments.)

Constraints (5.2) require each customer to be assigned to one primary and one backup

facility. Constraints (5.3) and (5.4) prevent a customer from being assigned to a primary

or a backup facility, respectively, that has not been opened. Constraint (5.5) requires P

facilities to be opened.

Constraints (5.6) are the reliability constraints and require the failure cost for facility j

to be no greater than V ∗. The first summation computes the cost of serving each customer



165

from its primary facility if its primary facility is not j, while the second summation

computes the cost of serving customers assigned to j as their primary facility from their

backup facilities. Note that this constraint applies to all j ∈ J , not just to those facilities

that have been opened. If Xj = 0, however, the left-hand side of the constraint reduces

to the objective function. Since failure costs are always greater than the P -median cost,

this constraint is non-binding if Xj = 0.

Constraints (5.7) require a customer’s primary facility to be different from its backup

facility. (These constraints could have been enforced simply by not defining assignment

variables for i, j, k if j = k, but we chose to implement them in this way to simplify

the variable indexing.) Finally, constraints (5.8) and (5.9) are standard integrality con-

straints.

If V ∗ is large, the reliability constraints are non-binding, and solving the RPMP-MFC

is equivalent to solving the PMP (the backup assignments are irrelevant in this case),

so the RPMP-MFC is NP-hard. This is true of all of the formulations presented in this

chapter, including those for the RFLP-MFC.

The following theorem prescribes the values of Y once the X variables are given; it

says that a customer will never be assigned to a given facility as a primary facility if a

closer facility is open.

Theorem 5.1 In every optimal solution (X∗, Y ∗) to (RPMP-MFC1), if dij > dik, then

Y ∗
ijk = 0.

Proof. Suppose (X∗, Y ∗) is an optimal solution to (RPMP-MFC1) in which Y ∗
ı̂̂k̂

= 1



166

where dı̂̂ > dı̂k̂. Define a new set of assignment variables by

Ŷijk =







































1, if i = ı̂, j = k̂, k = ̂

0, if i = ı̂, j = ̂, k = k̂

Y ∗
ijk, otherwise

In other words, Ŷ = Y ∗ except that ı̂’s primary and secondary facilities have been

swapped. We show that (X∗, Ŷ ) is a feasible solution to (RPMP-MFC1) with strictly

smaller cost.

Clearly
∑

i∈I

∑

j∈J

∑

k∈J

hidijŶijk <
∑

i∈I

∑

j∈J

∑

k∈J

hidijY ∗
ijk

since dı̂̂ > dı̂k̂, so the cost of the revised solution is smaller. For convenience, define

cj(Y ) =
∑

i∈I

∑

k∈J
k 6=j

∑

l∈J

hidikYikl +
∑

i∈I

∑

k∈J

hidikYijk,

i.e., cj(Y ) is the left-hand side of constraint (5.6) for facility j under a given set of

assignment variables Y .

First consider j ∈ J \ {̂, k̂}: cj(Ŷ ) = cj(Y ∗)− hı̂dı̂̂ + hı̂dı̂k̂. Since dı̂̂ > dı̂k̂, cj(Ŷ ) <

cj(Y ∗), and since (X∗, Y ∗) is feasible, cj(Y ∗) ≤ V ∗. Therefore cj(Ŷ ) < V ∗.

Now consider j = ̂: cj(Ŷ ) = cj(Y ∗)− hı̂dı̂k̂ + hı̂dı̂k̂ = cj(Y ∗) ≤ V ∗. Under Ŷ , k̂ is ı̂’s

primary facility instead of its backup, but either way ̂’s failure cost includes hı̂dı̂k̂ since

ı̂ will be assigned to k̂ if ̂ fails.

Finally, consider j = k̂: cj(Ŷ ) = cj(Y ∗) − hı̂dı̂̂ + hı̂dı̂̂ = cj(Y ∗) ≤ V ∗, by the same

reasoning as for j = ̂. Therefore, for all j, cj(Ŷ ) ≤ V ∗, as desired.



167

Theorem 5.1 implies that once the X variables are known, the Y variables can be

set by assigning each customer to its nearest open facility as its primary facility and

to its second-nearest open facility as its backup facility. (The optimality of assigning

each customer’s nearest open facility as its primary facility is evident since the backup

assignments do not appear in the objective function.) A similar result applies to all of

the formulations presented in this chapter.

5.2.2.1 LP Relaxation of Weak Formulation

The LP relaxation of (RPMP-MFC1), denoted (PMP-MFC1), provides a terrible bound

on the IP objective value. In fact, in the case in which I = J and the distance between

each customer and itself is 0 (a typical setup for location problems), for most values of

V ∗, the LP relaxation has an objective value of 0:

Theorem 5.2 Suppose that I = J , dii = 0 for all i ∈ I, and for all j ∈ J ,

1
N − 1

hj

∑

k∈J

djk < V ∗, (5.10)

where N = |J |. Then the optimal objective value of (PMP-MFC1) is 0.

Proof. Consider the following solution to (PMP-MFC1):

Xj =
P
N

for all j ∈ J

Yijk =



















1
N−1 , if i = j and j 6= k

0, otherwise



168

We first show that (X,Y ) is a feasible solution to (PMP-MFC1). Constraints (5.2) are

satisfied because for each i ∈ I,

∑

j∈J

∑

k∈J

Yijk =
∑

k∈J
k 6=i

Yiik = (N − 1)
1

N − 1
= 1.

Constraints (5.3) are satisfied because Yijk ≤ 1
N−1 < P

N = Xj. (The reader can easily

verify that 1
N−1 < P

N since 2 ≤ P ≤ N .) Constraints (5.4) are similar. Constraints (5.5)

and (5.7) are trivially satisfied, as are the linear relaxations of the integrality constraints

(5.8) and (5.9).

It remains to show that constraints (5.6) are satisfied. For each j,

∑

i∈I

∑

k∈J
k 6=j

∑

l∈J

hidikYikl +
∑

i∈I

∑

k∈J

hidikYijk =
∑

i∈I
i6=j

∑

l∈J

hidiiYiil +
∑

k∈J

hjdjkYjjk

=
1

N − 1
hj

∑

k∈J

djk

< V ∗

The first equality follows from the fact that every retailer’s primary facility is itself, while

the second follows from the fact that dii = 0 for all i and from the definition of Yijk. The

inequality follows from the theorem’s assumption. Therefore (X, Y ) is feasible. Since

Yijk > 0 only if i = j and dii = 0, the objective value of (X,Y ) is 0.

The left-hand side of (5.10) is customer j’s demand times the average distance from j

to the other customers. In general, this value will be quite small compared to the optimal

PMP cost since it is roughly equal to the transportation cost for only a single customer.

Since V ∗ is always greater than the optimal PMP cost, the theorem applies to nearly

every reasonable value of V ∗.



169

5.2.3 Strong Formulation

A stronger formulation of the RPMP-MFC can be obtained by replacing the linking

constraints (5.3) with the following set of constraints:

∑

k∈J

Yijk ≤ Xj ∀i ∈ I, ∀j ∈ J.

The LP solution given in the proof of Theorem 5.2 is not feasible for the strong formu-

lation, so constraints (5.13) act like a cut, tightening the formulation significantly. The

resulting formulation will be referred to as the “strong formulation”:

(RPMP-MFC2) minimize
∑

i∈I

∑

j∈J

∑

k∈J

hidijYijk

(5.11)

subject to
∑

j∈J

∑

k∈J

Yijk = 1 ∀i ∈ I (5.12)

∑

k∈J

Yijk ≤ Xj ∀i ∈ I, ∀j ∈ J (5.13)

Yijk ≤ Xk ∀i ∈ I, ∀j ∈ J,∀k ∈ J (5.14)

∑

j∈J

Xj = P (5.15)

∑

i∈I

∑

k∈J
k 6=j

∑

l∈J

hidikYikl +
∑

i∈I

∑

k∈J

hidikYijk ≤ V ∗ ∀j ∈ J (5.16)

Yijj = 0 ∀i ∈ J,∀j ∈ J (5.17)

Xj ∈ {0, 1} ∀j ∈ I (5.18)

Yijk ∈ {0, 1} ∀i ∈ I,∀j ∈ J,∀k ∈ J (5.19)

The strong formulation has a much tighter bound, as shown empirically in Section 5.10.1.



170

5.2.4 Separable Formulation

In this section we present another formulation of the RPMP-MFC whose main advan-

tage is that it lends itself to a Lagrangian relaxation that is separable by facility and

whose subproblem does not have the integrality property. In this formulation, called the

“separable formulation,” the location variables are as in earlier formulations (Xj = 1 if

facility j is open), but the assignment variables are different. In particular,

Y 0
ij =



















1, if facility j is customer i’s primary facility

0, otherwise

Y k
ij =



















1, if facility j serves customer i when facility k is non-operational

0, otherwise

for all i ∈ I, j, k ∈ J . In the definition of Y k
ij , “non-operational” means either that the

facility is open but fails or that the facility was not opened in the solution. This is a

different interpretation of the assignment variables than is used in previous formulations,

since for a given i, Y k
ij = 1 for |J | pairs (j, k), whereas in previous formulations, Yijk = 1

for only a single (j, k). The separable formulation is as follows:

(RPMP-MFC3) minimize
∑

i∈I

∑

j∈J

hidijY 0
ij (5.20)

subject to
∑

j∈J

Y 0
ij = 1 ∀i ∈ I (5.21)

∑

j∈J

Y k
ij = 1 ∀i ∈ I, ∀k ∈ J (5.22)



171

Y 0
ij ≤ Xj ∀i ∈ I, ∀j ∈ J (5.23)

Y k
ij ≤ Xj ∀i ∈ I, ∀j ∈ J,∀k ∈ J (5.24)

∑

j∈J

Xj = P (5.25)

Y j
ij = 0 ∀i ∈ I, ∀j ∈ J (5.26)

∑

i∈I

∑

j∈J

hidijY k
ij ≤ V ∗ ∀k ∈ J (5.27)

Xj ∈ {0, 1} ∀j ∈ J (5.28)

Y 0
ij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (5.29)

Y k
ij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,∀k ∈ J (5.30)

The objective function (5.20) sums the fixed costs and the transportation costs between

customers and their primary facilities. Constraints (5.21) require each customer to be

assigned to a primary facility. Constraints (5.22) require each customer to be assigned to

a facility when facility k is non-operational. If k is i’s primary facility, constraints (5.22)

require i to have a backup facility; otherwise, Y k
ij may be set to 1 for i’s primary facility j.

We could have formulated (5.22) as
∑

j∈J Y k
ij = Xk, requiring a backup facility only if k is

opened; we chose to formulate these constraints as above to separate X and Y as much as

possible, enabling the variable-splitting relaxation presented in Section 5.3.4. Constraints

(5.23) and (5.24) prohibit assignments to facilities that are not open. Constraint (5.25)

requires P facilities to be opened. Constraints (5.26) require a customer to be served by

a facility other than j when j is non-operational. Constraints (5.27) are the reliability

constraints, requiring the transportation cost when k is not operational to be less than



172

or equal to V ∗. Constraints (5.28)–(5.30) are standard integrality constraints.

The LP bounds from all three formulations (weak, strong, and separable) are com-

pared empirically in Section 5.10.1.

5.3 Relaxations

The RPMP-MFC does not lend itself to Lagrangian relaxation as easily as other location

models (and their variations) do. For example, in Chapter 4 we solved the p-SLMRP

by relaxing the assignment constraints and the p-robustness constraints, which tie the

scenarios together. The resulting subproblem decomposes by facility and can be solved

by computing the benefit of each. The corresponding relaxation for the RPMP-MFC

(using any formulation given above) entails relaxing the assignment constraints and the

reliability constraints, but the resulting subproblem is not separable by facility and cannot

easily be solved. However, other relaxations are possible. Some of these are discussed

next. Except where noted, in all of the relaxations below, upper bounds are obtained

by opening the facilities that are open in the solution to the Lagrangian subproblem

and assigning customers in order of distance, and multipliers are updated using standard

subgradient optimization (or a variation of it similar to that described in Section 4.2.1.2).

The four relaxations discussed below (the LLR relaxation, the ALR relaxation, the

hybrid relaxation, and the variable-splitting relaxation) are compared empirically in Sec-

tion 5.10.2.



173

5.3.1 LLR Relaxation

Suppose constraints (5.3), (5.4), and (5.6) are relaxed in (RPMP-MFC1). We will refer

to this relaxation as the “LLR relaxation” since we are relaxing two sets of Linking

constraints and the Reliability constraints. The resulting subproblem (for given Lagrange

multipliers λ, µ, π) is

(LLR) minimize
∑

i∈I

∑

j∈J

∑

k∈J

hidijYijk +
∑

i∈I

∑

j∈J

∑

k∈J

λijk(Yijk −Xj)

+
∑

i∈I

∑

j∈J

∑

k∈J

µijk(Yijk −Xk)

+
∑

j∈J

πj







∑

i∈I

∑

k∈J
k 6=j

∑

l∈J

hidikYikl +
∑

i∈I

∑

k∈J

hidikYijk − V ∗







=
∑

j∈J

f̃jXj +
∑

i∈I

∑

j∈J

∑

k∈J

d̃ijkYijk + C (5.31)

subject to
∑

j∈J

∑

k∈J

Yijk = 1 ∀i ∈ I (5.32)

∑

j∈J

Xj = P (5.33)

Yijk = 0 ∀i ∈ I, ∀j ∈ J,∀k ∈ J s.t. dij > dik (5.34)

Yijj = 0 ∀i ∈ I, ∀j ∈ J (5.35)

Xj ∈ {0, 1} ∀j ∈ J (5.36)

Yijk ∈ {0, 1} ∀i ∈ I,∀j ∈ J,∀k ∈ J (5.37)

In the objective function,



174

f̃j =
∑

i∈I

∑

k∈J

−(λijk + µikj)

d̃ijk = hidij





1 +
∑

l∈J
l6=j

πl





 + λijk + µijk + πjhidik

C = −V ∗
∑

j∈J

πj

Constraints (5.34) are not needed in (RPMP-MFC1) by Theorem 5.1. However, solutions

to (LLR) may not automatically satisfy (5.34) since the objective function is no longer

based solely on distance; thus, adding the constraints tightens the formulation.

This problem decomposes into separate problems for X and Y . To solve the X

problem, we set Xj = 1 for the P facilities with the smallest value of f̃j. To solve the

Y problem, we set Yijk = 1 for the j, k with the smallest value of d̃ijk, provided that

dij ≤ dik and j 6= k.

This relaxation generally yields lower bounds of 0, which should not be surprising

since it is based on the weak relaxation, whose LP relaxation generally has bounds of

0, and since the Lagrangian subproblem has the integrality property. The strengthening

constraints (5.13) cannot be used in the LLR relaxation since its solution depends on the

separability of X and Y .

5.3.2 ALR Relaxation

Now suppose we relax the Assignment constraints (5.12), the second set of Linking con-

straints (5.14), and the Reliability constraints (5.16) in (RPMP-MFC2). The resulting



175

subproblem (for given λ, µ, π) is

(ALR) minimize
∑

i∈I

∑

j∈J

∑

k∈J

hidijYijk +
∑

i∈I

λi



1−
∑

j∈J

∑

k∈J

Yijk





+
∑

i∈I

∑

j∈J

∑

k∈J

µijk(Yijk −Xk)

+
∑

j∈J

πj







∑

i∈I

∑

k∈J
k 6=j

∑

l∈J

hidikYikl +
∑

i∈I

∑

k∈J

hidikYijk − V ∗







=
∑

j∈J

f̃jXj +
∑

i∈I

∑

j∈J

∑

k∈J

d̃ijkYijk + C (5.38)

subject to
∑

k∈J

Yijk ≤ Xj ∀i ∈ I, ∀j ∈ J (5.39)

∑

j∈J

Xj = P (5.40)

Yijk = 0 ∀i ∈ I, ∀j ∈ J,∀k ∈ J s.t. dij > dik (5.41)

Yijj = 0 ∀i ∈ I, ∀j ∈ J (5.42)

Xj ∈ {0, 1} ∀j ∈ J (5.43)

Yijk ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,∀k ∈ J (5.44)

In the objective function,

f̃j =
∑

i∈I

∑

k∈J

−µikj

d̃ijk = hidij





1 +
∑

l∈J
l6=j

πl





− λi + µijk + πjhidik

C =
∑

i∈I

λi − V ∗
∑

j∈J

πj



176

This subproblem allows a customer to be assigned to a secondary facility that is not open,

but not to a primary facility that is not open. Constraints (5.39) dictate that a customer

assigned to j as a primary facility may be assigned to at most one backup facility; this

will be the backup facility k that minimizes d̃ijk, provided k 6= j and dij ≤ dik. Therefore,

the benefit of each facility j is:

γj = f̃j +
∑

i∈I

min











0, min
k∈J
k 6=j

dij≤dik

{d̃ijk}











. (5.45)

To solve (ALR), we set Xj = 1 for the P facilities with the smallest γj and set Yijk = 1

if Xj = 1 and k attains the inner minimization in (5.45).

5.3.3 Hybrid Relaxation

In this section we discuss a “hybrid” relaxation in which some constraints are relaxed

using Lagrangian relaxation and others are relaxed using what we will call “bootstrap”

relaxation. The advantage of this relaxation is that the subproblem does not have the

integrality property, so it provides a tighter theoretical bound than (ALR).

First, consider the reliability constraints (5.16) in (RPMP-MFC2). We can write the

left-hand side

∑

i∈I

∑

k∈J
k 6=j

∑

l∈J

hidikYikl +
∑

i∈I

∑

k∈J

hidikYijk

=
∑

i∈I

∑

k∈J

∑

l∈J

hidikYikl −
∑

i∈I

∑

l∈J

hidijYijl +
∑

i∈I

∑

k∈J

hidikYijk



177

=
∑

i∈I

∑

k∈J

∑

l∈J

hidikYikl −
∑

i∈I

∑

k∈J

hidijYijk +
∑

i∈I

∑

k∈J

hidikYijk

=
∑

i∈I

∑

k∈J

∑

l∈J

hidikYikl

︸ ︷︷ ︸

=objective function

+
∑

i∈I

∑

k∈J

hi(dik − dij)Yijk (5.46)

In other words, the failure cost for facility j is equal to the day-to-day transportation

cost (the objective function) plus the difference in cost due to serving customers whose

primary facility is j. Now, suppose that L is a lower bound on the objective function

(5.1).

Theorem 5.3

L+
∑

i∈I

∑

k∈J

hi(dik − dij)Yijk ≤ V ∗ (5.47)

is a relaxation of (5.6).

Proof. It suffices to show that any solution that satisfies (5.2)–(5.9) also satisfies (5.47).

Suppose (X, Y ) satisfies (5.2)–(5.9). Then

L+
∑

i∈I

∑

k∈J

hi(dik − dij)Yijk ≤
∑

i∈I

∑

k∈J

∑

l∈J

hidikYikl +
∑

i∈I

∑

k∈J

hi(dik − dij)Yijk

because L is a lower bound on the objective function, and

∑

i∈I

∑

k∈J

∑

l∈J

hidikYikl +
∑

i∈I

∑

k∈J

hi(dik − dij)Yijk ≤ V ∗

since (X, Y ) satisfies (5.6). Therefore (X, Y ) satisfies (5.47).

Our strategy involves replacing (5.6) with (5.47), using the best known lower bound

at the current iteration as L, and relaxing the assignment constraints (5.2) and the



178

backup linking constraints (5.4) via Lagrangian relaxation. The reliability constraints

(5.6) overlap in the sense that each variable appears in multiple constraints, whereas

constraints (5.47) do not overlap; this introduces separability into the problem and allows

us to solve it without having to relax (5.6) using Lagrangian relaxation. Each time a new

best lower bound is found, L is updated. The idea is that as L increases, solutions that

were feasible for (5.47) become infeasible, thus increasing the lower bound even further

(hence the name “bootstrap” relaxation).

The hybrid relaxation subproblem (for given λ, µ) is as follows:

(HR) minimize
∑

i∈I

∑

j∈J

∑

k∈J

hidijYijk +
∑

i∈I

λi(1−
∑

j∈J

∑

k∈J

Yijk) +
∑

i∈I

∑

j∈J

∑

k∈J

µijk(Yijk −Xk)

=
∑

j∈J

f̃jXj +
∑

i∈I

∑

j∈J

∑

k∈J

d̃ijkYijk + C (5.48)

subject to
∑

k∈J

Yijk ≤ Xj ∀i ∈ I, ∀j ∈ J (5.49)

∑

j∈J

Xj = P (5.50)

∑

i∈I

∑

k∈J

hidikYijk ≤ V ∗ − L ∀j ∈ J (5.51)

Yijk = 0 ∀i ∈ I,∀j ∈ J,∀k ∈ J s.t. dij > dik (5.52)

Yijj = 0 ∀i ∈ I,∀j ∈ J (5.53)

Xj ∈ {0, 1} ∀j ∈ J (5.54)

Yijk ∈ {0, 1} ∀i ∈ I,∀j ∈ J,∀k ∈ J (5.55)

In the objective function,



179

f̃j =
∑

i∈I

∑

k∈J

−µikj

d̃ijk = hidij − λi + µijk

C =
∑

i∈I

λi

Note that we have included constraints (5.52) to tighten the formulation, as described

above.

(HR) decomposes by j. For each j, we compute the benefit of opening j by solving

(BENj) γj = minimize f̃j +
∑

i∈I

∑

k∈J

d̃ijkYijk

(5.56)

subject to
∑

k∈J

Yijk ≤ 1 ∀i ∈ I, ∀j ∈ J (5.57)

∑

i∈I

∑

k∈J

hidikYijk ≤ V ∗ − L ∀j ∈ J (5.58)

Yijk = 0 ∀i ∈ I, ∀j ∈ J,∀k ∈ J

s.t. dij > dik (5.59)

Yijj = 0 ∀i ∈ I,∀j ∈ J (5.60)

Xj ∈ {0, 1} ∀j ∈ J (5.61)

Yijk ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,∀k ∈ J (5.62)

The strong linking constraints (5.13) have been written with a right-hand side of 1 in

(5.57) since (BENj) assumes that Xj = 1. For each i, we must decide whether to assign i

to j as a primary facility and, if so, which facility k to assign as a backup facility. (Note

that k need not be open.) This problem reduces to a multiple-choice knapsack problem



180

(MCKP; see Appendix B), as follows. There is a class for each i. Each class contains

|J | + 1 items, one for each k ∈ J and a dummy item that represents not assigning i

to j. The item representing k ∈ J has objective function coefficient d̃ijk and constraint

coefficient hi(dik−dij). The dummy item has objective function coefficient and constraint

coefficient equal to 0. The knapsack size is V ∗ − L. If k = j or dij > dik, we force the

variable to 0 in the MCKP (by setting its objective function coefficient to ∞). To solve

(HR), we compute γj for each j and open the P facilities with the smallest γj.

As in the variable-splitting algorithms for the p-SPMP and p-SUFLP (see Section

4.4.1), we solve the MCKPs to 0.1%-optimality and use the (possibly fractional) lower-

bound solution to set the values of Yijk. The lower-bound solution is the solution to a

constrained linear program (since it is typically found deeper in the branch-and-bound

tree than the root node, when some variables are forced to 0), so it provides a tighter

lower bound than the LP relaxation of (BENj) would.

5.3.4 Variable-Splitting Relaxation

In the separable formulation (RPMP-MFC3), no variable appears in more than one

reliability constraint (5.27). We propose a variable-splitting approach to solving this

problem (see Sections 2.4.3 and 4.4); the Lagrangian relaxation of the variable-splitting

formulation separates by facility since the reliability constraints do not overlap. Moreover,

the subproblem does not have the integrality property. The variable-splitting formulation

is as follows:



181

(RPMP-VS) minimize β
∑

i∈I

∑

j∈J

hidijY 0
ij + (1− β)

∑

i∈I

∑

j∈J

hidijW 0
ij (5.63)

subject to
∑

j∈J

Y 0
ij = 1 ∀i ∈ I (5.64)

∑

j∈J

Y k
ij = 1 ∀i ∈ I, ∀k ∈ J (5.65)

W 0
ij ≤ Xj ∀i ∈ I, ∀j ∈ J (5.66)

W k
ij ≤ Xj ∀i ∈ I, ∀j ∈ J,∀k ∈ J (5.67)

∑

j∈J

Xj = P (5.68)

Y j
ij = 0 ∀i ∈ I, ∀j ∈ J (5.69)

W j
ij = 0 ∀i ∈ I, ∀j ∈ J (5.70)

∑

i∈I

∑

j∈J

hidijY k
ij ≤ V ∗ ∀k ∈ J (5.71)

W 0
ij = Y 0

ij ∀i ∈ I,∀j ∈ J (5.72)

W k
ij = Y k

ij ∀i ∈ I, ∀j ∈ J,∀k ∈ J (5.73)

Xj ∈ {0, 1} ∀j ∈ J (5.74)

Y 0
ij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (5.75)

Y k
ij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,∀k ∈ J (5.76)

W 0
ij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (5.77)

W k
ij ∈ {0, 1} ∀i ∈ I,∀j ∈ J,∀k ∈ J (5.78)

Note that constraints (5.26) are included in (RPMP-VS) in both their Y form (5.69)

and in their W form (5.70). This is not strictly necessary, but it is easy to include them



182

in both subproblems and doing so tightens the formulation. To solve (RPMP-VS), we

relax constraints (5.72) and (5.73); the resulting subproblem (for given λ) decomposes

into separate problems, one for X and W and one for Y .

XW -Problem:

minimize (1− β)
∑

i∈I

∑

j∈J

hidijW 0
ij +

∑

i∈I

∑

j∈J

λ0
ijW

0
ij +

∑

i∈I

∑

j∈J

∑

k∈J

λk
ijW

k
ij (5.79)

subject to W 0
ij ≤ Xj ∀i ∈ I,∀j ∈ J (5.80)

W k
ij ≤ Xj ∀i ∈ I,∀j ∈ J,∀k ∈ J (5.81)

∑

j∈J

Xj = P (5.82)

W j
ij = 0 ∀i ∈ I,∀j ∈ J (5.83)

Xj ∈ {0, 1} ∀j ∈ J (5.84)

W 0
ij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (5.85)

W k
ij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,∀k ∈ J (5.86)

Y -Problem:

minimize β
∑

i∈I

∑

j∈J

hidijY 0
ij +

∑

i∈I

∑

j∈J

−λ0
ijY

0
ij +

∑

i∈I

∑

j∈J

∑

k∈J

−λk
ijY

k
ij (5.87)

subject to
∑

j∈J

Y 0
ij = 1 ∀i ∈ I (5.88)

∑

j∈J

Y k
ij = 1 ∀i ∈ I, ∀k ∈ J (5.89)

Y j
ij = 0 ∀i ∈ I, ∀j ∈ J (5.90)

∑

i∈I

∑

j∈J

hidijY k
ij ≤ V ∗ ∀k ∈ J (5.91)



183

Y 0
ij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (5.92)

Y k
ij ∈ {0, 1} ∀i ∈ I,∀j ∈ J,∀k ∈ J (5.93)

To solve the XW -problem, we compute the benefit of each facility. If Xj were set to

1, then we would set W 0
ij = 1 if (1− β)hidij + λ0

ij < 0 and, for k ∈ J , W k
ij = 1 if λk

ij < 0.

Therefore, the benefit of opening facility j is

γj =
∑

i∈I

(

min{0, (1− β)hidij + λ0
ij}+

∑

k∈J

min{0, λk
ij}

)

.

We set Xj = 1 for the P facilities with minimum γj, set W 0
ij = 1 if Xj = 1 and

(1− β)hidij + λ0
ij < 0, and set W k

ij = 1 if λk
ij < 0.

To solve the Y -problem, first note that the Y 0
ij variables can be set optimally for each

i simply by setting Y 0
ij = 1 for the j that minimizes βhidij−λ0

ij, since Y 0
ij does not appear

in constraints (5.91). The remaining problem decomposes by k. For each k ∈ J , we solve

a MCKP (see Appendix B) defined as follows:

• There is a class for each i ∈ I

• The items in each class correspond to facilities j ∈ J

• The objective function coefficient of item j in class i is λk
ij

• The constraint coefficient of item j in class i is hidij

• The knapsack size is V ∗

As in the hybrid relaxation, we use the lower-bound solution returned by the MCKP

algorithm to set the Y variables.



184

5.4 Infeasibility Issues

As with the p-SLMRP, it is not always easy to find a feasible solution to the RPMP-MFC

if one exists, nor is it easy to determine a priori whether a given instance of the problem

is feasible. Like the p-SLMRP, however, we can identify an upper bound on the objective

value of any feasible solution to the problem. In particular, it is clear from (5.46) that V ∗

is itself an upper bound on the objective value since the failure cost is always greater than

or equal to the operating cost. Therefore, if the lower bound from any of the relaxations

discussed in this chapter ever exceeds V ∗, the problem is infeasible; also, V ∗ can be used

as the upper bound in the step-size calculation of the subgradient optimization procedure

if no feasible solution has been found.

5.5 Tabu Search Heuristic

The relaxations discussed in the preceding sections offer a promising start for finding

good optimization-based methods for solving the RPMP-MFC. However, the bounds

produced in practice by these relaxations are not sufficiently tight to make them useful

for finding optimal solutions. In addition, the relaxations whose solutions involve the

MCKP may not be practical for larger problems since the MCKP is itself NP-hard.

For these reasons, we have developed a tabu search heuristic that obtains good-quality

solutions with reasonable CPU times, though without any guarantee of optimality.

Tabu search (Glover 1986) is a meta-heuristic that can be applied to any combinatorial

optimization problem. The heuristic is based on the idea of a “move,” a small, local



185

change to the solution. A move is applied at each iteration and may either improve or

degrade the solution; the resulting solution may be infeasible. Once a move is made,

it becomes “tabu,” or prohibited, for a certain number of iterations. These rules are

designed to avoid local optima and to give the algorithm a chance to explore a large

portion of the solution space.

The structure of our tabu search algorithm is based on that of Rolland, Schilling, and

Current (1996) for the P -median problem. Our handling of infeasibilities is modeled on

the tabu search algorithm of Gendreau, Laporte, and Seguin (1996) for the stochastic

vehicle routing problem.

5.5.1 Moves and Tabu Lists

We define two types of moves for our algorithm, adds, which entail opening a facility

not currently in the solution, and drops, which entail closing a facility currently in the

solution. Since the number of facilities in any optimal solution is fixed at P , performing

any move to a feasible solution necessarily makes it infeasible. However, infeasibilities

are allowed in tabu search and are in fact beneficial as they help diversify the search. As

the algorithm progresses, the allowable difference between P and the actual number of

facilities varies to encourage or discourage such diversification. Another common move

is the swap move, which maintains the number of facilities by simultaneously closing one

and opening another. Like Rolland, Schilling, and Current, we have opted not to use the

swap move as it requires evaluating O(|J |2) possible moves at each iteration rather than

O(|J |).



186

When a facility is added, it is inserted into the add-tabu list; it may not be reinserted

until a given number of iterations, called the tabu tenure, have elapsed. Similarly, when a

facility is dropped, it is inserted into the drop-tabu list until the tabu tenure has elapsed.

There is one exception to the tabu rule: if performing a tabu move would produce

a feasible solution with objective value less than the current best feasible solution, the

move is performed even though it is tabu. This is the aspiration criterion used commonly

in tabu search algorithms. We use a constant tabu tenure of 6 iterations. There are other

ways to set the tabu tenure; for example, Rolland, Schilling, and Current set the tenure

randomly. We use the constant-tenure method for simplicity of exposition and because

it performs well.

Let N be the number of facilities currently open. The algorithm decides whether to

perform an add or a drop at each iteration as follows.

• If N = 2, add

• Else if N = |J |, drop

• Else if N < P − s, add

• Else if N > P + s, drop

• Else add with probability 0.5 and drop with probability 0.5

The parameter s is a slack parameter that allows the number of open facilities to deviate

from P . Initially, s is set to 0; it is increased by 1 whenever the algorithm fails to

make improvement in a given number of iterations and is reset to 0 whenever a new best

solution is found.



187

5.5.2 Evaluation of Solutions

To evaluate a given add move, each customer is re-assigned to the new facility if it is closer

than its current primary facility; if it is farther than its primary facility but closer than

its secondary facility, it is assigned to the new facility as a secondary facility. Similarly,

for a drop move, all customers assigned to the dropped facility (as either a primary or

secondary facility) must be re-assigned to the remaining facilities. In either case, the

resulting solution is evaluated by computing the resulting objective value, then adding

an infeasibility penalty given by

ρ
∑

j∈J

max











0,
∑

i∈I

∑

k∈J
k 6=j

∑

l∈J

hidikYikl +
∑

i∈I

∑

k∈J

hidikYijk − V ∗











,

i.e., a constant times the sum of the infeasibilities with respect to the reliability con-

straints. The constant ρ is a self-adjusting penalty coefficient that is initially set to 2.

Every 10 iterations, ρ is multiplied by 2t/5−1, where t is the number of infeasible solutions

among the last 10 solutions found. If all of them were feasible, ρ is divided by 2 (thus

encouraging more infeasibilities), and if all of them were infeasible, ρ is multiplied by 2

(discouraging infeasibilities).

5.5.3 Initialization and Termination

An initial solution is obtained by greedily adding facilities until P facilities are open, at

each step adding the facility that improves the objective value by the greatest amount.

Failure costs are not considered during this process, so the resulting solution may not be

feasible.



188

Table 5.2: Parameters for tabu search algorithm for RPMP-MFC.

Parameter Value
Maximum # of iterations (maxiter) max{100, 2|J |}
# of consecutive non-improving iterations after which algorithm terminates maxiter/2
Tabu tenure 6
Initial value of s 0
# of consecutive non-improving iterations after which s is increased by 1 25
Initial infeasibility penalty coefficient ρ 2
Frequency of updating ρ every 10 iterations

The algorithm terminates when maxiter iterations have elapsed, where maxiter =

max{100, 2|J |}, or if a feasible solution has been found but maxiter/2 consecutive iter-

ations have failed to improve the solution.

5.5.4 Outline of Tabu Search Heuristic

The relevant parameters for the tabu search heuristic are listed in Table 5.2. Most of

them are described above. One of the drawbacks of many tabu search heuristics is the

excessive number of parameters. We have tried to keep the number of parameters to

a minimum to simplify the exposition of the algorithm. Undoubtedly, our algorithm

could be improved by increasing the number of levers that can be adjusted. This would

significantly complicate the process of fine-tuning the algorithm, though; moreover, our

intent is to demonstrate that tabu search can be used effectively to solve the RPMP-MFC,

not to present the best possible tabu search algorithm for it.

We now outline the algorithm itself.

Algorithm 5.1 (TABU-RPMPMFC)

0. Initialize: iter← 1, bestcost←∞, s ← 0, additerj ← −∞∀j ∈ J , dropiterj ←



189

−∞ ∀j ∈ J . Generate a starting solution greedily.

1. Choose whether to add or drop (see Section 5.5.1).

1a. If add, select the best facility j to add as described in Section 5.5.2. If

additerj + tabutenure ≥ iter, the facility is tabu and can only be added if

the resulting solution has cost less than bestcost.

1b. If drop, select the best facility j to drop as described in Section 5.5.2. If

dropiterj +tabutenure ≥ iter, the facility is tabu and can only be dropped

if the resulting solution has cost less than bestcost.

2. Set iter← iter+1. If the solution found in step 1 is feasible (with respect to the

number of facilities and the reliability constraints) and has cost less than bestcost,

then

2a. Set bestcost ← the new solution cost, and store the solution, and

2b. Set s ← 0.

3. If 10 iterations have passed since the last time ρ was updated, set ρ ← ρ · 2t/5−1,

where t is the number of infeasible solutions among the last 10 solutions found.

4. If no improvement has been made in the last 25 iterations, set s ← s + 1.

5. If iter = maxiter or a feasible solution has been found but no improvement has

been made in the last maxiter/2 iterations, STOP. Else, go to step 1.

Computational results for the tabu search heuristic are presented in Section 5.10.3.



190

5.6 Tradeoff Curves

Regardless of how the RPMP-MFC is solved, it can be used to generate a tradeoff curve

between the operating cost and the maximum failure cost. The tradeoff curve represents

a set of non-dominated or Pareto optimal solutions: given a solution on the tradeoff

curve and another solution, the solution on the curve is better than the other solution in

at least one of the two objectives. Decision makers choose a solution from the tradeoff

curve based on their level of preference between the objectives.

We use the constraint method of multi-objective programming (Cohon 1978) to gen-

erate the tradeoff curve. The constraint method involves first solving the unconstrained

problem (V ∗ = ∞), then setting V ∗ equal to the maximum failure cost from the so-

lution found minus a small amount and re-solving. The process continues until V ∗ is

small enough that the problem is infeasible. Sample tradeoff curves are shown in Section

5.10.4.

5.7 UFLP-Based Problems

Nearly all of the formulations, relaxations, and algorithms for the RPMP-MFC discussed

in the preceding sections can be modified easily to formulate the RFLP-MFC. In general,

one simply needs to drop the constraints requiring
∑

j∈J Xj = P and add
∑

j∈J fjXj

to the objective function, where fj is the fixed cost to build facility j, amortized to the

time units used to express demands. Most of the results discussed above also apply to

the UFLP-based problems. For example, the LP relaxation of the weak formulation is



191

still very weak, and Theorem 5.1 still applies. The X-problem from the LLR relaxation

for the RFLP-MFC is solved by opening any facility with f̃j < 0 (rather than for the

P facilities with minimum f̃j); similarly, the ALR and variable-splitting relaxations are

solved by opening facility j if γj + fj < 0. In both cases, at least two facilities must be

opened, even if fewer than two facilities have γj +fj < 0, since at least two facilities must

be open in any feasible solution to the RFLP-MFC.

The hybrid relaxation is not immediately applicable to the RFLP-MFC since it re-

quires the left-hand side of the reliability constraints to be written as the objective

function plus a term that includes different variables in each constraint. Since the RFLP-

MFC objective function includes
∑

j∈J fjXj but the reliability constraints do not, the

constraints cannot be written in the required form. On the other hand, if the fixed

costs are included in the failure cost (a possible variation; see Section 5.8 below), the

constraints can be written in the required form and the hybrid relaxation can be applied.

The tabu search heuristic is also applicable to the RFLP-MFC, except that the slack

parameter s is irrelevant since there is no limit on the number of facilities; also, the

fixed costs must be accounted for when computing the change in cost when a facility

is added or dropped. In addition, in the procedure for finding an initial solution we

continue opening facilities greedily if the current solution is infeasible, even if doing so

increases the cost. This guarantees that a feasible solution will be found if one exists. If

the solution with all facilities open is infeasible, the problem itself is infeasible and the

algorithm does not proceed.

The RFLP-MFC does not present the feasibility issues that the RPMP-MFC does:



192

the feasibility of the problem can be determined by opening all of the facilities and

checking whether the resulting solution is feasible. This solution can be used as a starting

feasible solution for the tabu search heuristic, or as the upper bound in the subgradient

optimization step-size calculation. This is a major advantage of the RFLP-MFC over the

RPMP-MFC. Another advantage is that allowing the number of facilities to vary adds an

extra degree of freedom to improve the reliability of a solution: open more facilities. This

results in more interesting tradeoff curves, since solutions with very different reliability

(and cost) can be obtained by varying V ∗. (In our experience, the RPMP-MFC is often

feasible only for a limited range of V ∗, in which only a few solutions are produced.)

5.8 Definitions of Failure Cost

Throughout this chapter, we used the definition of failure cost used in the introduction:

the total system-wide transportation cost after a facility fails. However, there are several

other ways to model failure costs. For example, failure costs might be defined as the

increase in cost when a facility fails; the reliability constraints would be formulated as

∑

i∈I

∑

k∈J

hi(dik − dij)Yijk ≤ V ∗ ∀j ∈ J. (5.94)

This definition leads to the following problem. Suppose there are three open facilities;

a customer is 1 mile away from facility 1, 100 miles away from facility 2, and 101 miles

from facility 3. If constraints (5.94) are used, it may be necessary to assign the customer

to facility 2 as a primary facility and facility 3 as a secondary facility so that the increase

in cost is small. No firm would assign customers in this way; to prohibit such solutions,



193

a new set of constraints would be required that significantly complicate the formulation

and make the relaxations discussed above more difficult to solve.

One could also define failure cost as the percentage increase in cost after a facility

fails:

∑

i∈I

∑

k∈J
k 6=j

∑

l∈J

hidikYikl +
∑

i∈I

∑

k∈J

hi(dik − dij)Yijk ≤ V ∗

(

∑

i∈I

∑

k∈J

∑

l∈J

hidikYikl

)

∀j ∈ J.

(5.95)

This definition is appealing because it allows larger (dollar) increases for higher-volume

facilities, but it leads to even greater complications than the previous definition since the

right-hand side includes variables, not just a constant.

In the RFLP-MFC, our definition of failure cost includes transportation cost only.

One might include fixed costs, as well, to account for the mortgage or lease payments

that are still due even while the facility is non-operational:

∑

j∈J

fjXj +
∑

i∈I

∑

k∈J
k 6=j

∑

l∈J

hidikYikl +
∑

i∈I

∑

k∈J

hidikYijk ≤ V ∗ ∀j ∈ J. (5.96)

This modification can be incorporated into the LLR and ALR relaxations, but not into the

variable-splitting relaxation of the separable formulation, since the reliability constraints

are no longer separable once the Xj are added. On the other hand, adding the fixed costs

makes the hybrid relaxation applicable to the RFLP-MFC because the left-hand side of

the reliability constraints can once again be re-written as the objective function plus a

separable term.

In some cases, the transportation cost after a failure may be different from the trans-

portation cost under normal circumstances, for example, because shipments must be



194

arranged with freight companies on an emergency basis. If this is the case, the cost

coefficients in the reliability constraints can easily be modified to reflect the alternate

cost structure. No change is required in any of the solution methods.

All of these are legitimate definitions of failure cost. The choice of a failure cost

definition is a modeling question that must be decided based on the situation at hand.

5.9 Hedge Set Formulation

Suppose that instead of hedging against the failure of individual facilities, we want to

hedge against certain sets of facilities failing. For example, maybe the firm is concerned

about strikes in Detroit and Dallas, or maybe weather in Anchorage, Fargo, and Bangor

often force DC closures and the firm is concerned about the possibility of all three failing

at once. Let S be a collection of subsets of J ; we want to hedge against the failure of the

sets S ∈ S. We call the elements S of S “hedge sets.” The facilities in a given hedge set

may be ones that are likely to fail simultaneously (e.g., because they are served by the

same labor union), or simply ones whose simultaneous failure, while unlikely, would be

catastrophic (e.g., because they are all major hubs).

For each S ∈ S, we need to specify a backup site in case customer i’s primary facility

is in S and all facilities in S become unavailable. Define the following:

Xj =



















1, if we locate a facility at candidate site j

0, otherwise



195

Yij =



















1, if facility j is selected to be customer i’s primary facility

0, otherwise

ZiSj =







































1, if customer i’s primary facility is in S and facility j is selected to be customer

i’s backup facility if all facilities in S fail,

0, otherwise

ZiSj is defined for all i ∈ I, S ∈ S, j 6∈ S. Suppose customer i is assigned to primary

facility j, and that S = {j, k, l} is a hedge set. Customer i does not need a backup if j

fails, only if j, k, and l fail. The assumption is that any customer served by j can still be

adequately served when j fails, provided that k or l is still operational. The hedge-set

formulation is as follows:

(HEDGE) minimize
∑

i∈I

∑

j∈J

hidijYij (5.97)

subject to
∑

j∈J

Yij = 1 ∀i ∈ I (5.98)

∑

j∈J\S

Yij +
∑

j∈J\S

ZiSj = 1 ∀i ∈ I, ∀S ∈ S (5.99)

Yij ≤ Xj ∀i ∈ I, ∀j ∈ J (5.100)

ZiSj ≤ Xj ∀i ∈ I, ∀S ∈ S,∀j ∈ J \ S (5.101)

∑

j∈J

Xj = P (5.102)

∑

i∈I

∑

j∈J\S

hidij(Yij + ZiSj) ≤ V ∗ ∀S ∈ S (5.103)



196

Xj ∈ {0, 1} ∀j ∈ J (5.104)

Yij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (5.105)

ZiSj ∈ {0, 1} ∀i ∈ I, ∀S ∈ S, ∀j ∈ J \ S (5.106)

The objective function (5.97) sums the demand-weighted distance between each cus-

tomer and its primary facility. Constraints (5.98) require each customer to be assigned

to some primary facility. Constraints (5.99) say that for each customer i and each hedge

set S, either i’s primary facility is not in S or we must choose some backup facility j not

in S to serve i in case all the facilities in S fail. Constraints (5.100) and (5.101) say that

a customer cannot be assigned to a facility (primary or backup, respectively) that has

not been opened. Constraint (5.102) requires P facilities to be opened. The reliability

constraints (5.103) say that if all facilities in a hedge set S fail, the total transportation

cost after customers assigned to facilities in S are reassigned must be no greater than

V ∗. For each hedge set S, the summation on the left-hand side of these constraints sums

the cost of serving customers from their primary facilities (if their primary facilities are

not in S) or their backup facilities (otherwise). Constraints (5.104)–(5.106) are standard

integrality constraints.

If S = {{j}|j ∈ J}, this formulation is functionally equivalent to the RPMP-MFC;

that is, the two formulations will have the same optimal objective values, and their

solutions will be in 1–1 correspondence, but their structures will be different. We have

not yet developed solution methods for the hedge set formulation. Solving this model



197

will be a subject for future research.

5.10 Computational Results

5.10.1 Comparison of LP Bounds

We compared the LP relaxations of the three formulations for the RPMP-MFC for 10

randomly generated test problems with 20 nodes and P = 5. We also compared the LP

relaxations for the RFLP-MFC for 10 randomly generated problems with 20 nodes. We

chose to use 20-node problems so that optimal IP solutions could be found using CPLEX

in a reasonable amount of time for the sake of comparison. The test problems were

generated by drawing integer demands from U [0, 1000], latitudes and longitudes from

U [0, 1], and integer fixed costs (for the RFLP-MFC) from U [300, 1000]. Transportation

costs are set equal to the Euclidean distance between facilities and customers. All nodes

serve as both customers and potential facility locations. For each problem, we tested

several values of V ∗.

The results are reported in Table 5.3. Each row represents the average from the 10

random problems, and each group of rows (separated by lines) uses the same data, but

with different values of V ∗. The first two columns indicate the problem (RPMP-MFC

or RFLP-MFC) and the value of V ∗. The column marked “IP Value” lists the average

optimal IP objective value among the problems that were feasible; the column marked

“IP # Inf” lists the number of problems (out of 10) that were feasible. The remaining

sets of columns list, for each of the three formulations (weak, strong, and separable), the



198

Table 5.3: MFC Models: Comparison of LP bounds.

IP Weak Strong Separable
Problem V ∗ Value # Inf Value % Gap # Inf Value % Gap # Inf Value % Gap # Inf
RPMP 3000 985.6 0 0.0 100.0% 0 984.4 0.1% 0 984.4 0.1% 0
RPMP 2000 960.8 3 0.0 100.0% 0 987.7 4.5% 0 989.5 4.5% 0
RPMP 1600 829.8 5 0.0 100.0% 0 1002.3 2.0% 0 972.4 1.9% 1
RPMP 1200 759.3 8 0.0 100.0% 0 765.5 7.3% 6 781.4 7.0% 6
RPMP 800 — 10 0.0 — 0 676.8 — 9 — — 10
RFLP 20000 3176.2 0 675.3 78.6% 0 3176.2 0.0% 0 3176.2 0.0% 0
RFLP 10000 3176.2 0 675.3 78.6% 0 3176.2 0.0% 0 3176.2 0.0% 0
RFLP 4000 3180.7 0 675.3 78.6% 0 3176.6 0.1% 0 3176.7 0.1% 0
RFLP 2400 3334.6 0 675.3 79.6% 0 3225.0 3.2% 0 3235.7 2.9% 0
RFLP 2000 3598.0 0 675.3 81.1% 0 3319.8 7.5% 0 3351.7 6.7% 0
RFLP 1600 3910.6 0 675.3 82.5% 0 3552.8 9.0% 0 3610.4 7.5% 0
RFLP 1200 4571.2 0 675.3 85.1% 0 4053.6 11.2% 0 4134.9 9.5% 0
RFLP 800 5756.5 0 675.3 88.2% 0 5145.5 10.6% 0 5232.0 9.1% 0
RFLP 400 8254.9 0 900.4 89.1% 0 7740.5 6.2% 0 7796.5 5.5% 0

average LP relaxation bound, the average percent deviation from the IP value, and the

number of problems (out of 10) whose LP relaxation is infeasible. Note that the “Value”

and “% Gap” columns are averaged over those problems whose LP relaxation is feasible.

It is a desired property of an LP relaxation that it is itself infeasible when the IP is

infeasible; this is the motivation for providing the “# Inf” columns. Since the average

bounds listed in the “Value” columns include problems whose IP is feasible but whose

LP is infeasible, these columns may contain average LP bounds that are greater than the

average IP bounds. The “% Gap” columns, on the other hand, do not include infeasible

IPs with feasible LPs. All problems (IP and LP) were solved using AMPL/CPLEX 5.0.

The weak formulation is indeed extremely weak, producing bounds of 0 for the RPMP-

MFC and gaps of 80%–90% for the RFLP-MFC. The separable formulation generally

dominates the strong formulation (both in tightness of the bounds an in ability to detect

infeasibility). Both of these formulations, however, provide bounds that are still too

weak to make straightforward branch-and-bound a practical approach. It is also worth

pointing out that the separable formulation took considerably longer to solve than did



199

the strong formulation; for example, the RPMP-MFC problems took several minutes

each on a Sun workstation for the separable formulation and roughly half a minute each

for the strong formulation.

5.10.2 Comparison of Relaxation Bounds

We tested the ALR, hybrid, and variable-splitting relaxations on the 20-node data sets

described in Section 5.10.1. Our interest was in the tightness of the bounds provided

by the relaxations, not in the entire branch-and-bound algorithm, so no branching was

performed. In each case, the Lagrangian process terminated when the optimality gap

was less than 0.1%, when 1200 iterations had elapsed, or when α < 10−8 (see Table 3.1).

The results are summarized in Table 5.4. The first two columns indicate the problem

(RPMP-MFC or RFLP-MFC) and the value of V ∗. The third column lists the average

optimal IP value for those problems (among the 10 test problems per row) that are

feasible. The remaining columns list, for each relaxation, the average lower bound found

(in the “LB” column), the average percentage gap between the lower and upper bounds

for those problems for which a feasible solution was found (“Gap”), and the average

percentage gap between the lower bound and the optimal IP value for feasible problems

(“IP Gap”). (The hybrid relaxation section is empty for the RFLP-MFC since it is not

applicable to that problem.)

The hybrid relaxation consistently outperforms the ALR relaxation for the RPMP-

MFC, yielding tighter bounds overall. Still, the bounds are not sufficiently tight to make

this a practical method for solving problems to optimality. The average IP gap of 2284%



200

Table 5.4: MFC Models: Comparison of relaxation bounds.

ALR Relaxation Hybrid Relaxation Variable-Splitting
Problem V ∗ IP LB Gap IP Gap LB Gap IP Gap LB Gap IP Gap
RPMP 3000 985.6 962.3 4.8% 2.7% 983.9 0.2% 0.2% 473.6 7.8% 6.5%
RPMP 2000 960.8 853.9 4.1% 8.9% 977.2 0.3% 5.7% 525.5 10.7% 12.1%
RPMP 1600 829.8 -497.4 7.3% 2284.0% 961.7 5.6% 3.1% -139.7 20.2% 19.8%
RPMP 1200 759.3 682.6 16.7% 68.3% 1109.0 4.9% 11.6% 98.3 22.1% 26.9%
RPMP 800 — 1963.5 — — 912.8 — — 803.9 — —
RFLP 20000 3176.2 3173.4 0.1% 0.1% 2709.5 21.7% 17.2%
RFLP 10000 3176.2 3173.4 0.1% 0.1% 2698.2 22.0% 17.9%
RFLP 4000 3180.7 3170.3 0.6% 0.3% 1350.0 24.4% 18.6%
RFLP 2400 3334.6 3203.8 7.7% 4.1% 1903.1 139.3% 104.0%
RFLP 2000 3598.0 3285.1 14.5% 9.5% 2309.6 87.4% 70.7%
RFLP 1600 3910.6 3484.6 22.5% 12.1% 2810.0 133.5% 101.3%
RFLP 1200 4571.2 3964.4 21.0% 15.3% 3618.4 93.6% 79.8%
RFLP 800 5756.5 5040.7 20.0% 14.5% 5095.5 15.3% 13.5%
RFLP 400 8254.9 7558.5 10.6% 9.3% 7842.2 5.9% 5.7%

for the ALR relaxation for the RPMP-MFC with V ∗ = 1600 is primarily due to one

feasible problem for which no feasible solution was found (so it was not included in the

“Gap” column) and for which only a very weak lower bound was found.

The variable-splitting relaxation did not perform well in our computational tests,

producing bounds significantly lower than the LP relaxation of the separable formula-

tion, when in theory the Lagrangian relaxation should outperform the LP relaxation.

We can identify two possible reasons for the poor performance of this relaxation and

the somewhat disappointing performance of the hybrid relaxation. The first is that, as

we discussed in Section 4.5.3.2, the objective function coefficients of the MCKPs must

be modified to make them non-negative; problems solved to 0.1%-optimality may have

significantly larger gaps after the data are converted back into their original form. The

second problem may lie in the multiplier-updating routine. Future research will be re-

quired to pinpoint the source of the error. In general, Lagrangian relaxation methods

depend heavily on good initial multipliers and good multiplier-updating procedures; our

relative inexperience with hybrid relaxation and variable-splitting (as opposed to more



201

Table 5.5: MFC Models: Comparison of relaxation times.

ALR Relaxation Hybrid Relaxation Variable-Splitting
Problem V ∗ # Iter Time Time/Iter # Iter Time Time/Iter # Iter Time Time/Iter
RPMP 3000 1081.0 33.1 0.031 173.5 8.1 0.051 1136.8 173.5 0.149
RPMP 2000 1080.9 31.9 0.030 443.5 20.1 0.044 1079.1 149.3 0.136
RPMP 1600 1058.1 32.6 0.032 592.1 26.9 0.072 955.4 133.2 0.139
RPMP 1200 1008.9 32.7 0.033 485.6 21.6 0.066 643.9 109.0 0.219
RPMP 800 483.7 15.6 0.038 79.4 3.2 0.084 142.5 24.6 0.230
RFLP 20000 51.4 1.1 0.020 841.2 43.0 0.050
RFLP 10000 51.4 1.2 0.024 833.8 41.8 0.050
RFLP 4000 897.1 21.0 0.022 1009.8 174.4 0.154
RFLP 2400 1121.2 18.8 0.017 942.0 226.5 0.203
RFLP 2000 1200.0 20.8 0.017 986.8 231.2 0.207
RFLP 1600 1200.0 22.9 0.019 939.8 235.9 0.221
RFLP 1200 1200.0 27.9 0.023 863.0 207.7 0.233
RFLP 800 1200.0 25.4 0.021 770.3 170.2 0.230
RFLP 400 1200.0 27.0 0.023 729.0 232.8 0.314

straightforward Lagrangian relaxation) may be contributing to our failure to attain good

bounds from these methods.

The hybrid relaxation provides tighter bounds than the ALR relaxation, but this

increase in accuracy comes with an increase in computation time since this relaxation

involves solving MCKPs. Table 5.5 lists the average number of iterations spent solving

the problems, the average CPU time (in seconds, on a Dell Inspiron 7500 notebook

computer with a 500 MHz Pentium III processor and 128 MB memory), and the average

time per iteration. Although the hybrid relaxation requires more time per iteration, it

ultimately requires less time than the ALR relaxation since it reaches optimality (or

proves infeasibility) in fewer iterations.

5.10.3 Tabu Search Heuristic Performance

We tested the tabu search heuristic on the same data sets described in Section 5.10.1 (10

for the RPMP-MFC, 10 for the RFLP-MFC). The tabu search heuristic was run once for

each instance. Table 5.6 summarizes the performance of the heuristic and compares it



202

Table 5.6: Tabu search heuristic performance.

Tabu Search CPLEX
Problem V ∗ Value Avg % Gap SD % Gap # Inf Time # Iter Value # Inf Time
RPMP 3000 997.1 1.0% 1.5% 0 0.05 73.3 985.6 0 16.4
RPMP 2000 814.0 0.1% 0.2% 5 0.05 88.8 960.8 3 105.0
RPMP 1600 838.5 1.1% 1.9% 5 0.04 92.9 829.8 5 43.4
RPMP 1200 759.3 0.0% 0.0% 8 0.05 96.2 759.3 8 39.6
RPMP 800 — — — 10 0.05 100.0 — 10 40.3
RFLP 20000 3181.9 0.2% 0.4% 0 0.03 55.0 3176.2 0 11.7
RFLP 10000 3181.4 0.2% 0.4% 0 0.03 55.6 3176.2 0 11.8
RFLP 4000 3204.5 0.7% 1.7% 0 0.03 59.1 3180.7 0 12.9
RFLP 2400 3474.1 4.0% 5.6% 0 0.02 53.3 3334.6 0 23.7
RFLP 2000 3680.7 2.3% 3.8% 0 0.05 64.6 3598.0 0 39.2
RFLP 1600 4106.1 4.9% 4.4% 0 0.04 62.0 3910.6 0 40.2
RFLP 1200 4958.2 8.3% 6.6% 0 0.03 74.1 4571.2 0 43.1
RFLP 800 6357.0 9.9% 9.5% 0 0.03 63.9 5756.5 0 35.3
RFLP 400 9082.3 9.9% 9.1% 0 0.03 62.0 8254.9 0 13.9

to using CPLEX to solve the strong formulation. The first two columns are as in Table

5.3. The next set of columns describe the performance of the tabu search heuristic:

“Value” indicates the average objective value of the feasible solutions found; “Avg %

Gap” and “SD % Gap” give the mean and standard deviation of the percentage gap

from the optimal solution found using CPLEX, among the problems for which feasible

solutions were found by the heuristic; “# Inf” indicates the number of problems (out of

10) for which no feasible solution was found by the heuristic; “Time” gives the average

CPU time (in seconds) spent on each problem; and “# Iter” lists the average number of

tabu search iterations executed before the heuristic terminated. The final three columns

list the average optimal IP objective value (among the feasible problems), the number

of problems (out of 10) that are infeasible, and the average time required by CPLEX

to solve each problem (excluding I/O time). Note that the tabu search algorithm was

executed on a notebook computer, while CPLEX was run on a Sun workstation.

The tabu search heuristic generally finds solutions within a few percent of optimal.

It also executes very quickly, requiring well under 0.1 seconds per problem. Allowing the



203

Table 5.7: Tabu search heuristic performance: 100-node RFLP-MFC problem.

V ∗ Value Time # Iter
100000 9306.5 5.0 111.7
50000 9298.2 5.9 132.3
20000 9247.6 5.4 120.4
12000 9254.5 5.3 120.6
10000 9290.2 6.4 143.6
8000 9753.2 5.8 127.8
6000 9693.3 6.4 139.9
4000 12105.7 6.0 131.4
2000 22824.9 6.1 136.7

heuristic to run for more iterations may produce lower-cost solutions while still main-

taining a reasonably tradeoff between CPU time and solution quality; however, since the

heuristic generally terminated before the maximum of 100 iterations was reached, more

emphasis should be placed on diversification if such a strategy is attempted.

We also tested the tabu search heuristic on 10 problems of 100 nodes each, generated

randomly as described in Section 5.10.1. Only the RFLP-MFC was solved. The purpose

of these tests is to demonstrate the execution time of the heuristic on larger problems;

since these problems are far too large to solve optimally using CPLEX, we cannot compute

the quality of the solutions found. The results of these tests are given in Table 5.7. Note

that even for these larger problems, the heuristic executes in under 10 seconds.

5.10.4 Tradeoff Curves

We generated a tradeoff curve for the RFLP-MFC using a randomly generated, 100-

node problem, following the method described in Section 5.6. The problems were solved

using the tabu search heuristic. The curve is pictured in Figure 5.3. The optimal UFLP

solution (V ∗ = ∞) is the left-most point on the curve. The left portion of the tradeoff



204

curve is steep, indicating that large improvements in reliability may be attained with

small increases in UFLP cost. The flat right-most portion is of less interest, since it

contains very expensive (though very reliable) solutions. We find this shape to be typical

of the tradeoff curves produced by the RFLP-MFC. The RPMP-MFC produces much less

interesting tradeoff curves since the fixed number of facilities offers much less flexibility

to improve reliability.

The 10 least expensive solutions are listed in Table 5.8, along with the number of

facilities open in each and the solutions’ relationships to the optimal UFLP solution. The

table indicates that, for example, a 15% reduction in maximum failure cost is possible

with only a 3% increase in UFLP cost. This solution requires one additional facility,

but this comes at minimal extra cost. Neither of the two facilities open in solution 1 is

open in solution 2. The increases in failure cost between solutions 6 and 7 and between

solutions 8 and 9 are simply due to the fact that the problems were solved heuristically,

rather than exactly; this also explains the kinkiness of the tradeoff curve itself. If the

problems had been solved optimally, the curve would be even steeper at the left and

flatter at the right. The tradeoff curve took 996 seconds to generate in its entirety on a

notebook computer.

5.11 Chapter Summary

In this chapter we presented two new models that incorporate reliability into classical

facility location problems. These models arose from a realization that supply chains are



205

Figure 5.3: RFLP-MFC tradeoff curve for 100-node data set.

0

5

10

15

20

25

0 100 200 300 400 500 600 700

UFLP Cost (x1000)

M
ax

im
u

m
 F

ai
lu

re
 C

o
st

  (
x1

00
0)

Table 5.8: First 10 solutions in curve: RFLP-MFC.

Soln # Obj 1 Obj 2 % Increase Obj 1 % Decrease Obj 2 # Locations
1 21181 22420 0.0% 0.0% 2
2 21738 19141 2.6% 14.6% 3
3 21879 18374 3.3% 18.0% 3
4 23124 14539 9.2% 35.2% 4
5 23229 14376 9.7% 35.9% 4
6 23343 14122 10.2% 37.0% 4
7 23489 14351 10.9% 36.0% 4
8 24991 10711 18.0% 52.2% 4
9 25095 13974 18.5% 37.7% 5
10 25763 10395 21.6% 53.6% 5

vulnerable to disruptions of all sorts, and that facility location decisions can be critical in

reducing the impact of these disruptions. The models both consider the maximum failure

cost given a single facility failure. We formulated models based on the P -median problem

and the uncapacitated fixed-charge location problem, called the RPMP-MFC and RFLP-

MFC, respectively. Key to our formulations is the concept of “backup” assignments,

which represent the facilities to which customers are assigned when their primary facilities

have failed. In both models, a set of constraints restricts the transportation cost after



206

a failure to be less than a given upper limit. The tradeoff of interest is between the

operating cost (the traditional PMP or UFLP objective function) and the maximum

failure cost. A tradeoff curve between these two objectives can be constructed using the

constraint method of multi-objective programming.

The addition of the reliability constraints to classical facility location models com-

plicates those problems significantly. We proposed several formulations and relaxations

of the MFC models, but none has consistently provided tight enough bounds to enable

its use in an exact algorithm. As a result, we also proposed a tabu search heuristic that

provides good solutions quickly, though with no guarantee of optimality. Clearly, finding

an exact algorithm to solve these problems is of great importance and will be the subject

of future research.

The main disadvantage of the MFC models (other than the computational aspects)

is that they assume that only a single facility can fail at a time. This may be reasonable

for certain applications—for example, if failures are extremely unlikely or can be quickly

recovered from—but not for others. One way around this problem is to hedge against

failures not of individual facilities but of all facilities in some pre-specified sets. This

is the basis for the “hedge set” formulation discussed in Section 5.9. This formulation,

however, requires the hedge sets of interest to be identified exogenously. Moreover, neither

the individual-failure and the hedge set models take into account the probability or the

duration of failures. The expected failure cost models discussed in the next chapter

address these issues in that they allow the simultaneous failures of multiple facilities,

based on probabilistic information.



Chapter 6

Reliability Models for Facility

Location: Expected Failure Cost

6.1 Introduction

In Chapter 5, we introduced reliability models that hedge against the worst-case failure

among a set of facilities. In this chapter we consider the expected failure cost, given

a certain probability that each facility fails. Unlike the maximum failure cost case, in

this chapter we assume that multiple failures may occur simultaneously. The goal is to

choose facility locations so that the system is inexpensive to construct and operate day-

to-day, but also so that the long-run expected cost due to failures is minimized. Certain

facilities may be designated as “non-failable.” In our work with a major manufacturer

of durable goods, the facilities that may fail represent warehouses owned by independent

distributors who occasionally “defect” from the company or go out of business. The

207



208

non-failable warehouses are those owned by the company; these are assumed to remain

loyal to the firm and will not fail. In other applications, the non-failable facilities may

represent those located in favorable weather areas, those served by unions with which the

firm has a particularly strong relationship, or other facilities deemed to have a negligible

probability of failure.

Whether to use the maximum failure cost (MFC) or expected failure cost (EFC)

models in a given situation is a question that must be answered by the modeler. Since

the MFC models hedge against the worst case, they may be appealing to decision makers

who are evaluated based on the system’s performance in a short time period. On the other

hand, the MFC models ignore the likelihood or duration of a failure at a given facility,

leading to solutions that plan against an extreme and possibly unlikely event. The EFC

models are more realistic in the sense that they incorporate probabilistic information into

the objective function, optimizing based on the modeler’s preference between planning

against the day-to-day and planning against failures. In addition, we have developed

exact solution methods for the EFC problems that perform much better than those for

the MFC, so the EFC may be a more practical modeling choice for performance reasons.

The MFC problems are multi-objective models: one objective (operating cost) is

explicitly optimized in the objective function while the other (failure cost) is implicitly

optimized via a constraint. Tradeoff curves are generated using the constraint method by

systematically tightening the failure cost constraint. The EFC problems are also multi-

objective models, but in this case both objectives are explicitly optimized in the objective

function, weighted by coefficients that the modeler can set to express her preference



209

between the two objectives. Tradeoff curves for the EFC problems are generated using

the weighting method, systematically varying the weighting coefficient.

As in Chapter 5, we will first discuss the expected failure cost version of the reliability

P -median problem (the RPMP-EFC), then indicate how similar ideas can be applied to

formulate and solve the expected failure cost version of the reliability fixed-charge location

problem (the RFLP-EFC).

6.2 Formulation

6.2.1 Notation

As in the RPMP-MFC, we let I represent the set of customers and J the set of potential

facility sites. Let NF be the set of facilities that may not fail (we refer to these as “non-

failable” facilities) and let F be the set of facilities that may fail (“failable” facilities).

Note that NF ∪ F = J and NF ∩ F = ∅.

The notation for the RPMP-EFC is as follows:

Parameters

hi = demand per period for customer i ∈ I

dij = per-unit cost to ship from facility j ∈ J to customer i ∈ I

P = number of facilities to open (P ≥ 2)

α = weight on objective 1 (0 ≤ α ≤ 1)

q = probability that a failable facility will fail (0 ≤ q ≤ 1)

θi = cost of not serving customer i ∈ I, per unit of demand



210

The parameter V ∗ used in the MFC problems is not needed since the failure costs are

no longer constrained; in its place is an objective function parameter α (0 ≤ α ≤ 1) that

can be varied to generate a tradeoff curve; see Section 6.4.

Each facility in F has the same probability q of failing, which is interpreted as the

long-run fraction of time the facility is non-operational. In some cases, q may be estimated

based on historical data (e.g., for weather-induced failures), while in others q must be

estimated subjectively (e.g., for failures due to the defection of third-party distributors).

Our model is most easily interpreted as an infinite-horizon model in which q represents

the fraction of time that a facility has failed. However, if the modeler has in mind

a particular time horizon T , then q may be used to capture probabilistic information

about the timing of the failures. For example, suppose each facility has a 0.1 probability

of failing, and if it fails, it will fail in period 1 with probability 0.3 and in period 2 with

probability 0.7. Then the expected fraction of time the facility will be non-operational

is given by (0.1× 0.3× T + 0.1× 0.7× (T − 1))/T .

Associated with each customer i is a cost θi that represents the cost of not serving

the customer, per unit of demand. θi may be a lost-sales cost, or the cost of serving i

by purchasing product from a competitor on an emergency basis. This cost is incurred

if all open facilities have failed (and thus no facilities are available to serve customer i),

or if θi is less than the cost of assigning i to any of the existing facilities. To model this,

we add an “emergency” facility u that is non-failable (u ∈ NF ) and has transportation

cost diu = θi to customer i ∈ I. We force Xu = 1 and replace P with P + 1. From

this point forward, we assume that the emergency facility has been handled in this way,



211

though for simplicity we continue to formulate the problem as a P -median, rather than

as a (P + 1)-median, problem.

The strategy behind the formulation of the RPMP-EFC is to assign each customer

to a primary facility that will serve it under normal circumstances, as well as to a set of

backup facilities that serve it when the primary facility has failed. Since multiple failures

may occur simultaneously, each customer needs a first backup facility in case its primary

facility fails, a second backup in case its first backup fails, and so on. (This is in contrast

to the RPMP-MFC, in which only a single backup is needed since only one facility may

fail at a time.) However, if a customer is assigned to a non-failable facility as its nth

backup, it does not need any further backups.

There are two sets of decision variables in the model, location variables (X) and

assignment variables (Y ):

Xj =



















1, if a facility is opened at location j

0, otherwise

Yijr =



















1, if demand node i is assigned to facility j as a level-r assignment

0, otherwise

A “level-r” assignment is one for which there are r closer failable facilities that are open.

If r = 0, this is a primary assignment; otherwise, it is a backup assignment. Each

customer i has a level-r assignment for each r = 0, . . . , P − 1, unless i is assigned to a

level-s facility that is non-failable, where s < r. In other words, customer i is assigned to

one facility at level 0, another facility at level 1, and so on until i has been assigned to a



212

non-failable facility at some level (there must be such a facility since u ∈ NF is always

open).

6.2.2 Objectives

We formulate this problem as a multi-objective problem. The objectives are as follows:

w1 =
∑

i∈I

∑

j∈J

hidijYij0

w2 =
∑

i∈I

hi

[

∑

j∈NF

P−1
∑

r=0

dijqrYijr +
∑

j∈F

P−1
∑

r=0

dijqr(1− q)Yijr

]

.

Objective w1 computes the operating cost—the P -median cost of serving customers from

their primary facilities. Objective w2 computes the expected failure cost: each customer

i is served by its level-r facility (call it j) if the r closer facilities have failed (this occurs

with probability qr) and if j itself has not failed (this occurs with probability 1 − q if

j ∈ F and with probability 1 if j ∈ NF ). Note that by the definition of level-r, all r

closer facilities are failable.

Although we refer to w2 as the “expected failure cost,” we are careful to point out

that w2 also includes the transportation cost when no facilities have failed (i.e., the level-0

assignments). Certainly, there are ways to define reliability other than that given in w2.

For example, if the desired tradeoff is between PMP cost and expected transportation

cost only after a failure, then the “primary” transportation cost can be omitted from

w2 by starting the summation indices at r = 1 rather than r = 0. It is also possible

that the transportation costs for backup assignments are different from those for primary

assignments as suggested in Section 5.8; in this case, the coefficients for Yijr would be



213

changed from dij to some other cost for r > 0. Either of these modifications can be

handled easily using the solution method described below.

Our model minimizes a weighted sum αw1+(1−α)w2 of the two objectives, where 0 ≤

α ≤ 1. By solving the problem for various values of α, one can generate a tradeoff curve

between the operating cost and the expected failure cost using the weighting method of

multi-objective programming (see Section 6.4).

6.2.3 Integer Programming Formulation

The reliability P -median problem is formulated as follows:

(RPMP-EFC) minimize αw1 + (1− α)w2 (6.1)

subject to
∑

j∈J

Yijr +
∑

j∈NF

r−1
∑

s=0

Yijs = 1 ∀i ∈ I, r = 0, . . . , P − 1 (6.2)

Yijr ≤ Xj ∀i ∈ I, j ∈ J, r = 0, . . . , P − 1

(6.3)

∑

j∈J

Xj = P (6.4)

P−1
∑

r=0

Yijr ≤ 1 ∀i ∈ I, j ∈ J (6.5)

Xu = 1 (6.6)

Xj ∈ {0, 1} ∀j ∈ J (6.7)

Yijr ∈ {0, 1} ∀i ∈ I, j ∈ J, r = 0, . . . , P − 1

(6.8)

The objective function (6.1) is straightforward. Constraints (6.2) require that for each

customer i and each level r, either i is assigned to a level-r facility or it is assigned to



214

a level-s facility (s < r) that is non-failable. (By convention we take
∑r−1

s=0 Yijs = 0 if

r = 0.) Constraints (6.3) prohibit an assignment to a facility that has not been opened.

Constraint (6.4) requires P facilities to be opened. Constraints (6.5) prohibit a customer

from being assigned to a given facility at more than one level. Constraint (6.6) requires

the emergency facility u to be opened. Constraints (6.7) and (6.8) are standard integrality

constraints.

If α = 1, solving (RPMP-EFC) is equivalent to solving the PMP (the backup assign-

ments are irrelevant), so the RPMP-EFC is NP-hard (as is the RFLP-EFC, discussed

later).

For notational convenience, we can write the objective function as

∑

i∈I

∑

j∈J

P−1
∑

r=0

ψijrYijr, (6.9)

where

ψijr =



























































αhidij + (1− α)hidij = hidij, if r = 0 and j ∈ NF

αhidij + (1− α)hidij(1− q), if r = 0 and j ∈ F

(1− α)hidijqr, if r > 0 and j ∈ NF

(1− α)hidijqr(1− q), if r > 0 and j ∈ F

One might suspect that for large α, the weight on the backup assignments may be

larger than that on the primary assignments, in which case it may be optimal to assign

customers to primary facilities that are farther than their backup facilities, a situation we

would want to prohibit. The next theorem, however, demonstrates that such a situation

cannot occur.



215

Theorem 6.1 In any optimal solution to (RPMP-EFC), if Yijr = Yi,k,r+1 = 1 for i ∈ I,

j, k ∈ J , 0 ≤ r < P − 1, then dij ≤ dik.

Proof. Suppose, for a contradiction, that (X, Y ) is an optimal solution to (RPMP-EFC)

in which Yijr = Yi,k,r+1 = 1 but dij > dik. We will show that by “swapping” j and k, the

objective function will decrease. Since i has a level-(r + 1) facility (k), its level-r facility

(j) must be failable.

Suppose first that k ∈ F . These two assignments contribute ψijr + ψi,k,r+1 to the

objective function. If we assigned i to j at level r + 1 and to k at level r, the objective

function would change by (ψikr + ψi,j,r+1)− (ψijr + ψi,k,r+1). If r = 0, then

(ψikr + ψi,j,r+1)− (ψijr + ψi,k,r+1) =αhidik + (1− α)hidik(1− q) + (1− α)hidijq(1− q)

− αhidij − (1− α)hidij(1− q)− (1− α)hidikq(1− q)

=αhi(dik − dij) + (1− α)hi(dik − dij)(1− q)2

<0

since dij > dik and 0 ≤ α ≤ 1. On the other hand, if r > 0, then

(ψikr + ψi,j,r+1)− (ψijr + ψi,k,r+1) =(1− α)hidikqr(1− q) + (1− α)hidijqr+1(1− q)

− (1− α)hidijqr(1− q)− (1− α)hidikqr+1(1− q)

=(1− α)hi(dik − dij)qr(1− q)2

<0.

Either way, the objective function is smaller for the revised solution. The case in which



216

k ∈ NF is similar, except that in this case, Yi,j,r+1 = 0 since i’s level-r facility is non-

failable, resulting in an even larger decrease in cost. This contradicts the assumption

that (X,Y ) is optimal.

We note briefly that if the level-0 assignments are excluded from w2 as discussed on

page 212, then Theorem 6.1 only holds when α ≥ 1
2 , which is generally the range of

interest to decision makers. In this case, the algorithm given below may still be valid

for particular instances, even if α < 1
2 . If the algorithm returns a solution for which the

distance ordering is obeyed, it is optimal; but the algorithm cannot enforce the distance

ordering if it is not naturally optimal to do so.

6.3 Lagrangian Relaxation

6.3.1 Lower Bound

We solve (RPMP-EFC) by relaxing constraints (6.2) using Lagrangian relaxation. For

given Lagrange multipliers λ, the subproblem is as follows:

(RPMP-EFC-LRλ)

minimize z(λ) =
∑

i∈I

∑

j∈J

P−1
∑

r=0

ψijrYijr +
∑

i∈I

P−1
∑

r=0

λir



1−
∑

j∈J

Yijr −
∑

j∈NF

r−1
∑

s=0

Yijs



 (6.10)

subject to Yijr ≤ Xj ∀i ∈ I, j ∈ J, r = 0, . . . , P − 1 (6.11)

∑

j∈J

Xj = P (6.12)

P−1
∑

r=0

Yijr ≤ 1 ∀i ∈ I, j ∈ J (6.13)



217

Xu = 1 (6.14)

Xj ∈ {0, 1} ∀j ∈ J (6.15)

Yijr ∈ {0, 1} ∀i ∈ I, j ∈ J, r = 0, . . . , P − 1 (6.16)

The objective function (6.10) can be re-written as follows:

∑

i∈I

∑

j∈J

P−1
∑

r=0

ψijrYijr +
∑

i∈I

P−1
∑

r=0

λir −
∑

i∈I

∑

j∈J

P−1
∑

r=0

λirYijr −
∑

i∈I

P−1
∑

r=0

∑

j∈NF

r−1
∑

s=0

λirYijs

=
∑

i∈I

∑

j∈J

P−1
∑

r=0

ψijrYijr +
∑

i∈I

P−1
∑

r=0

λir −
∑

i∈I

∑

j∈J

P−1
∑

r=0

λirYijr −
∑

i∈I

∑

j∈NF

P−1
∑

s=0

s−1
∑

r=0

λisYijr

(by swapping the indices r and s in the last term)

=
∑

i∈I

∑

j∈J

P−1
∑

r=0

ψijrYijr +
∑

i∈I

P−1
∑

r=0

λir −
∑

i∈I

∑

j∈J

P−1
∑

r=0

λirYijr −
∑

i∈I

∑

j∈NF

∑

r=0,...,P−1
s=0,...,P−1

r<s

λisYijr

=
∑

i∈I

∑

j∈J

P−1
∑

r=0

ψijrYijr +
∑

i∈I

P−1
∑

r=0

λir −
∑

i∈I

∑

j∈J

P−1
∑

r=0

λirYijr −
∑

i∈I

∑

j∈NF

P−1
∑

r=0

(

P−1
∑

s=r+1

λis

)

Yijr

Therefore, the objective function can be written as

∑

i∈I

∑

j∈J

P−1
∑

r=0

ψ̃ijrYijr +
∑

i∈I

P−1
∑

r=0

λir, (6.17)

where

ψ̃ijr =



















ψijr − λir, if j ∈ F

ψijr − λir −
(

∑P−1
s=r+1 λis

)

= ψijr −
∑P−1

s=r λis, if j ∈ NF

(6.18)

For given λ, problem (RPMP-EFC-LRλ) can be solved easily. Since the assignment

constraints (6.2) have been relaxed, customer i may be assigned to zero, one, or more



218

than one open facility at each level, but it may be assigned to a given facility at at most

one level r. Suppose that facility j is opened. Customer i will be assigned to facility j

at level r if ψ̃ijr < 0 and ψ̃ijr ≤ ψ̃ijs for all s = 0, . . . , P − 1. Therefore, the benefit of

opening facility j is given by

γj =
∑

i∈I

min
{

0, min
r=0,...,P−1

{ψ̃ijr}
}

. (6.19)

Once the benefits γj have been computed for all j, we set Xj = 1 for the emergency

facility u and for the P − 1 remaining facilities with the smallest γj; we set Yijr = 1 if

(1) facility j is open, (2) ψ̃ijr < 0, and (3) r minimizes ψ̃ijs for s = 0, . . . , P − 1. The

optimal objective value for (RPMP-EFC-LRλ) is z(λ) =
∑

j∈J γjXj, and this provides a

lower bound on the optimal objective value of (RPMP-EFC).

The benefit γj can be computed for a single j in O(nP ) time, where n = |I|, so all of

the benefits can be computed in O(mnP ) time, where m = |J |. Determining Xj requires

sorting the facilities, which takes O(m log m) time, and determining Yijr requires O(nP )

time, assuming that assignments are stored as a single index j for each i, r rather than

as a list of m 0/1 variables. Therefore, the Lagrangian subproblem can be solved for a

given λ in O(mnP + m log m + nP ) = O(mnP ) time.

6.3.2 Upper Bound

If the solution to (RPMP-EFC-LRλ) is feasible for (RPMP-EFC), then it provides both a

lower bound and an upper bound, and is in fact optimal for (RPMP-EFC). Otherwise, we

construct a feasible solution as follows. First, we open the facilities that are open in the



219

solution to (RPMP-EFC-LRλ). Next, we assign customers to the open facilities level by

level in increasing order of distance, until a non-failable facility is assigned. (By Theorem

6.1, this is an optimal strategy for assigning customers to a given set of facilities, though

the facilities themselves may not be optimal.) If the resulting solution has objective value

1.2UB or less, where UB is the objective value of the best known solution, it becomes

a candidate for improvement. One out of every five candidate solutions are passed to a

DC exchange heuristic that attempts to improve the solution by opening a facility that is

currently closed and closing one that is currently open, similar to the vertex substitution

heuristic of Teitz and Bart (1968). The parameters 1.2 and 5 given in the preceding

sentences may easily be changed. By increasing the threshold value and/or the frequency

with which the DC exchange heuristic executes, one obtains higher-quality solutions but

longer run times. Anecdotally, we can report that the heuristic as described here has

performed well in our computational tests, finding the optimal solution very quickly

(generally within the first 100 Lagrangian iterations), though we have not explicitly

recorded the iteration at which the optimal solution is found.

6.3.3 Multiplier Updating

Each value of λ provides a lower bound z(λ) on the optimal objective value of (RPMP-

EFC). To find the best possible lower bound, we use subgradient optimization, applied

in a straightforward manner as described by Fisher (1981, 1985) and Daskin (1995). In



220

particular, at each iteration n we compute a step-size tn as

tn =
βn(UB− Ln)

∑

i∈I

P−1
∑

r=0

(

1−
∑

j∈J
Yijr +

∑

j∈NF

r−1
∑

s=0
Yijs

)2 , (6.20)

where βn is a constant initialized to 2 and halved when 30 consecutive iterations fail to

improve the lower bound, Ln is the value of z(λ) found at iteration n, and UB is the best

known upper bound. The multipliers are updated by setting

λn+1
ir ← λn

ir + tn
(

1−
∑

j∈J

Yijr +
∑

j∈NF

r−1
∑

s=0

Yijs

)

. (6.21)

The Lagrangian process terminates when any of the following criteria is met:

• (UB− Ln)/Ln < ε, for some optimality tolerance ε specified by the user

• n > nmax, for some iteration limit nmax

• βn < βmin, for some β limit βmin

6.3.4 Branch and Bound

If the Lagrangian process terminates with the lower and upper bounds equal (to within

ε), an ε-optimal solution has been found and the algorithm terminates. Otherwise, we

use branch-and-bound to close the optimality gap. We branch on the Xj (location)

variables. At each branch-and-bound node, the facility selected for branching is the

unfixed open facility with the greatest assigned demand. Xj is first forced to 0 and then

to 1. Branching is done in a depth-first manner. The tree is fathomed at a given node

if the lower bound at that node is within ε of the objective function value of the best



221

feasible solution found anywhere in the tree, if P facilities have been forced open, or if

|J | −P facilities have been forced closed. The final Lagrange multipliers at a given node

are passed to its child nodes and are used as initial multipliers at those nodes.

6.3.5 Variable Fixing

If the Lagrangian procedure terminates at the root node without a proof of optimality,

a variable-fixing method similar to that for the SLMRP (see Section 3.2.4) can be used

for the RPMP-EFC. Assume for notational convenience that the facilities in J \ {u} are

sorted in increasing order of benefit so that γj ≤ γj+1, under a particular set of Lagrange

multipliers λ. Let LB be the lower bound (the objective value of (RPMP-EFC-LRλ))

under the same λ, and let UB be the best upper bound found. Suppose further that

Xj = 0 in the solution to (RPMP-EFC-LRλ). If

LB + γj − γP−1 > UB (6.22)

then candidate site j cannot be part of the optimal solution, so we can fix Xj = 0. This

is true because if j were forced into the solution, another facility would be forced out;

this facility would be the open facility (other than u) with the largest benefit, i.e., facility

P − 1. Clearly LB + γj − γP−1 is a valid lower bound for the “Xj = 1” node (it would be

the first lower bound found if we use λ as the initial multipliers at the new child node),

so we would fathom the tree at this new node and never again consider setting Xj = 1.

Similarly, suppose Xj = 1 in the solution to (RPMP-EFC-LRλ). If

LB− γj + γP > UB (6.23)



222

then candidate site j must be part of the optimal solution since swapping j out and

the best closed facility in will result in a solution whose lower bound exceeds the upper

bound; therefore, we can fix Xj = 1.

We perform these variable-fixing checks twice after processing has terminated at the

root node, once using the optimal multipliers λ and once using the most recent multipliers.

This procedure is quite effective in forcing variables open or closed because the Lagrangian

procedure tends to produce tight lower bounds, making (6.22) or (6.23) hold for many

facilities j. The time required to perform these checks is negligible.

6.4 Tradeoff Curves

By systematically varying the objective function weight α and re-solving (RPMP-EFC)

for each value, one can generate a tradeoff curve between the two objectives using the

weighting method of multi-objective programming (Cohon 1978). The method is as

follows:

0. Solve (RPMP-EFC) for α = 1 (the pure PMP problem) and for α = 0. Add both

points to the tradeoff curve.

1. Identify an adjacent pair of solutions on the tradeoff curve that has not yet been

considered. Let the objective values of these two solutions be (w1
1, w

1
2) and (w2

1, w
2
2).

Set α ← −(w1
2 − w2

2)/(w
1
1 − w2

1 − w1
2 + w2

2).

2. Solve (RPMP-EFC) for the current value of α. If the resulting solution is not

already on the tradeoff curve, add it.



223

3. If all adjacent pairs of solutions on the tradeoff curve have been explored, stop.

Else, go to 1.

Sample tradeoff curves are shown in Section 5.10.4.

6.5 UFLP-Based Problems

The RPMP-EFC can improve reliability only by choosing a different set of P facilities,

not by opening additional ones. In this section, we formulate the expected failure cost

version of the Reliability Fixed-Charge Location Problem (RFLP-EFC), which is based

on the UFLP. Since the UFLP does not contain a limit on the number of facilities that

can be built, the RFLP-EFC adds a degree of freedom for improving reliability, namely,

constructing additional facilities.

6.5.1 Formulation

The RFLP-EFC is formulated in a manner similar to the RPMP-EFC. We need one

additional parameter: fj is the fixed cost to construct a facility at location j ∈ J ,

amortized to the time units used to express demands. Since the number of facilities is

not known a priori as it is in the RPMP-EFC, we must create assignment variables for

levels r = 0, ...,m− 1, where m = |J |. The objectives are given by

w1 =
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

hidijYij0

w2 =
∑

i∈I

hi

[

∑

j∈NF

m−1
∑

r=0

dijqrYijr +
∑

j∈F

m−1
∑

r=0

dijqr(1− q)Yijr

]



224

The emergency facility u is handled as in the RPMP-EFC, described in Section 6.2.1; it

has no fixed cost (fu = 0).

The RFLP-EFC is formulated as follows:

(RFLP-EFC)

minimize αw1 + (1− α)w2 (6.24)

subject to
∑

j∈J

Yijr +
∑

j∈NF

r−1
∑

s=0

Yijs = 1 ∀i ∈ I, r = 0, . . . ,m− 1 (6.25)

Yijr ≤ Xj ∀i ∈ I, j ∈ J, r = 0, . . . ,m− 1 (6.26)

P−1
∑

r=0

Yijr ≤ 1 ∀i ∈ I, j ∈ J (6.27)

Xu = 1 (6.28)

Xj ∈ {0, 1} ∀j ∈ J (6.29)

Yijr ∈ {0, 1} ∀i ∈ I, j ∈ J, r = 0, . . . ,m− 1 (6.30)

The formulation is identical to that of RPMP-EFC except:

• Fixed costs are included in objective w1

• Constraint (6.4) is omitted

• The “level” index r is extended to m − 1 instead of P − 1 in summations and

constraint indices

Constraint (6.28) is not strictly necessary since facility u has 0 fixed cost, but including

the constraint in the formulation tightens the Lagrangian relaxation. Note that Theorem

6.1 applies to the RFLP-EFC as well.



225

6.5.2 Solution Method

To solve (RFLP-EFC), we relax constraints (6.25) to obtain the following Lagrangian

subproblem:

(RFLP-EFC-LRλ)

minimize z(λ) =
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

m−1
∑

r=0

ψ̃ijr +
∑

i∈I

m−1
∑

r=0

λir (6.31)

subject to Yijr ≤ Xj ∀i ∈ I, j ∈ J, r = 0, . . . , m− 1 (6.32)

m−1
∑

r=0

Yijr ≤ 1 ∀i ∈ I, j ∈ J (6.33)

Xu = 1 (6.34)

Xj ∈ {0, 1} ∀j ∈ J (6.35)

Yijr ∈ {0, 1} ∀i ∈ I, j ∈ J, r = 0, . . . , m− 1 (6.36)

In the objective function (6.31),

ψ̃ijr =



















ψijr − λir, if j ∈ F

ψijr − λir −
(∑m−1

s=r+1 λis
)

= ψijr −
∑m−1

s=r λis, if j ∈ NF

(6.37)

The benefit γj of opening facility j is computed as

γj = αfj +
∑

i∈I

min
{

0, min
r=0,...,m−1

{ψ̃ijr}
}

. (6.38)

Xu is set to 1, and for j 6= u, Xj is set to 1 if γj < 0 (or if γk ≥ 0 for all k ∈ J but is

smallest for j, since at least one facility in addition to u must be open in any feasible

solution to (RFLP-EFC)); Yijr is set following the criteria described in Section 6.3.1.



226

At each Lagrangian iteration, we find an upper bound by opening the facilities that are

open in the solution to (RFLP-EFC-LRλ) and greedily assigning customers to them. In

addition, we perform an “add” and a “drop” heuristic on each solution whose objective

value is less than 1.2UB, where UB is the best known upper bound. The add (drop)

heuristic considers opening (closing) facilities if doing so decreases the objective value.

Each heuristic is performed until no further adds or drops will improve the solution.

Then, for every fifth solution, the DC exchange heuristic is performed, as described in

Section 6.3.2.

The subgradient optimization and branch-and-bound procedures are exactly as de-

scribed for the RPMP-EFC, except that branch-and-bound nodes are fathomed if the

lower bound at that node is within ε of the best known upper bound, if |J | (rather than

P ) facilities have been forced open, or if |J |− 1 (rather than |J |−P ) facilities have been

forced closed.

6.6 A Modification

In our preliminary computational testing, we found that the subgradient optimization

procedure had difficultly converging to a tight lower bound for the RFLP-EFC. We

believe the problem to lie in the large number of multipliers that must be updated (nm

of them, as opposed to nP in the RPMP-EFC). To counteract this effect, we propose

the following modification of our model and algorithm. Since the probability of many

facilities failing simultaneously is small, ignoring the simultaneous failure of more than,



227

say, 5 facilities may result in a very small loss of accuracy. At the same time, the reduction

in the number of multipliers may result in a very large improvement in computational

performance. Customers would only be assigned to facilities at levels 0 through 4, and

higher-level assignments would not be included either in the objective function or in the

constraints. In fact, if we interpret m as the number of levels to be assigned, rather than

as the cardinality of J , then the objectives w1 and w2 and the formulation of (RFLP-

EFC) remain intact under this new modeling scheme, as does the Lagrangian relaxation

(RFLP-EFC-LRλ) and the algorithm for solving it. The emergency facility may become

irrelevant in this case, since it is generally used only when all open facilities have failed,

but it may still play a role in the solution if the emergency cost is smaller than the cost

of serving a given customer from, say, its fourth nearest facility when the first three have

failed.

We observed similar convergence problems in the RPMP-EFC when P was large.

The same modification may be made to (RPMP-EFC) by replacing P with m (except in

constraint (6.4)). We have found this modification to be very effective for both problems;

our computational experience with this modification is presented in Section 6.7.4.

6.7 Computational Results

6.7.1 Experimental Design

We tested our algorithms on a 25-node data set consisting of random data and the

49-node data set described by Daskin (1995). All nodes serve as both customers and



228

potential facility locations. In the 25-node data set, demands are drawn from U [0, 105]

and rounded to the nearest integer; fixed costs (for the RFLP-EFC) are drawn from

U [4000, 8000] and rounded to the nearest integer. Latitudes and longitudes are drawn

from U [0, 1] and transportation costs are set equal to the Euclidean distance, per unit

demand. Emergency costs θi are set to 10 for each customer, q = 0.05, and all facilities

are failable. The 49-node data set represents the state capitals of the continental United

States plus Washington, DC. Demands are equal to the state population and fixed costs

are equal to the median home value, both from the 1990 census. Transportation costs

are set equal to the great-circle distance times 10−5, per unit demand. Emergency costs

θi are set equal to 105, q = 0.05, and all facilities are failable. The emergency costs for

both data sets are meant to model situations in which losing a customer is extremely

costly.

We tested the RPMP-EFC algorithm on both data sets for several values of P , as

well as the RFLP-EFC algorithm, using six different values of α. We executed the

Lagrangian relaxation/branch-and-bound process to an optimality tolerance of 0.1%, or

until 300 seconds (5 minutes) of CPU time had elapsed. The algorithm was tested on

a Dell Inspiron 7500 notebook computer with a 500 MHz Pentium III processor and

128 MB memory. Parameter values for the Lagrangian relaxation algorithm are given in

Table 6.1. The number of levels included in the objective function and constraints (m;

see Section 6.6) was set to 5 except when P < 5, in which case m was set equal to P .



229

Table 6.1: Parameters for Lagrangian relaxation procedure.

Parameter Value
Optimality tolerance (ε) 0.001
Maximum number of iterations (nmax) at root node 1200
Maximum number of iterations (nmax) at child nodes 600
Initial value of β 2
Number of non-improving iterations before halving β 30
Minimum value of β (βmin) 10−8

Initial value for λis 0

6.7.2 Algorithm Performance

Table 6.2 summarizes the results for the RPMP-EFC, Table 6.3 for the RFLP-EFC. The

Overall LB, UB, and Gap columns give the lower and upper bounds and the percentage

gap, while the columns marked Root LB, UB, and Gap give the lower and upper bounds

and the gap at the root node. The column marked # Lag Iter gives the total number of

Lagrangian iterations, # BB Nodes gives the total number of branch-and-bound nodes,

and CPU Time gives the total number of CPU seconds required.

The algorithm produces tight bounds for the RPMP-EFC when P is small, and for

the RFLP-EFC, usually finding the optimal solution without any branching. For larger

values of P , the performance deteriorates somewhat, producing large root-node gaps in

some cases. However, the lower bounds quickly increased at a relatively shallow depth in

the branch-and-bound tree, suggesting that our initial multipliers may be poor for these

problems but that good bounds can be obtained at child nodes once the multipliers have

been improved. (It is generally desirable to set initial multipliers to something other than

0 in a Lagrangian relaxation algorithm, but we were unable to find a non-zero value that

performed well for multiple instances of the data.) Even for the problems with the largest



230

Table 6.2: Algorithm results: RPMP-EFC.

# Overall Overall Overall Root Root Root # Lag # BB CPU
Nodes P α LB UB Gap LB UB Gap Iter Nodes Time

25 4 1.0 18689.1 18707.7 0.10% 18689.1 18707.7 0.10% 561 1 4.0
25 4 0.8 19019.4 19036.5 0.09% 19019.4 19036.5 0.09% 176 1 1.3
25 4 0.6 19346.2 19365.3 0.10% 19346.2 19365.3 0.10% 225 1 1.6
25 4 0.4 19675.4 19694.0 0.09% 19675.4 19694.0 0.09% 226 1 1.7
25 4 0.2 20003.4 20022.8 0.10% 20003.4 20022.8 0.10% 91 1 0.7
25 4 0.0 20338.9 20351.6 0.06% 20338.9 20351.6 0.06% 91 1 0.7
25 8 1.0 8846.3 8854.4 0.09% 8802.0 8854.4 0.60% 1929 5 13.7
25 8 0.8 9116.6 9125.4 0.10% 9116.6 9125.4 0.10% 868 1 6.2
25 8 0.6 9387.3 9396.4 0.10% 9387.3 9396.4 0.10% 588 1 4.3
25 8 0.4 9652.5 9662.1 0.10% 9652.5 9662.1 0.10% 584 1 4.2
25 8 0.2 9881.1 9889.9 0.09% 9881.1 9889.9 0.09% 462 1 3.4
25 8 0.0 10108.5 10117.7 0.09% 10108.5 10117.7 0.09% 281 1 2.1
25 12 1.0 4539.1 4543.3 0.09% 4398.6 4543.3 3.29% 3768 11 26.4
25 12 0.8 4737.9 4742.6 0.10% 4681.6 4742.6 1.30% 1941 5 13.7
25 12 0.6 4936.9 4941.8 0.10% 4570.2 4941.8 8.13% 2915 7 20.6
25 12 0.4 5136.2 5141.1 0.10% 5118.8 5141.1 0.44% 1378 3 9.8
25 12 0.2 5335.5 5340.4 0.09% 5330.3 5340.4 0.19% 1265 3 8.7
25 12 0.0 5534.2 5539.7 0.10% 5534.2 5539.7 0.10% 1034 1 7.3
49 5 1.0 502246.0 502732.0 0.10% 502246.0 502732.0 0.10% 643 1 10.3
49 5 0.8 517695.0 518210.0 0.10% 517695.0 518210.0 0.10% 338 1 5.8
49 5 0.6 533173.0 533687.0 0.10% 533173.0 533687.0 0.10% 352 1 6.1
49 5 0.4 547771.0 548279.0 0.09% 547771.0 548279.0 0.09% 426 1 7.3
49 5 0.2 561886.0 562437.0 0.10% 561886.0 562437.0 0.10% 340 1 5.8
49 5 0.0 575593.0 576153.0 0.10% 575593.0 576153.0 0.10% 319 1 5.3
49 10 1.0 275428.0 275701.0 0.10% 260337.0 275701.0 5.90% 3034 7 50.9
49 10 0.8 283343.0 283601.0 0.09% 283343.0 283601.0 0.09% 713 1 12.2
49 10 0.6 291212.0 291501.0 0.10% 291212.0 291501.0 0.10% 828 1 14.4
49 10 0.4 299110.0 299402.0 0.10% 299110.0 299402.0 0.10% 1061 1 18.1
49 10 0.2 307008.0 307302.0 0.10% 306659.0 307302.0 0.21% 1262 3 21.8
49 10 0.0 314904.0 315202.0 0.09% 314904.0 315202.0 0.09% 703 1 12.5
49 20 1.0 111580.0 113330.0 1.57% 67665.3 113330.0 67.49% 15872 42 309.8
49 20 0.8 119544.0 119663.0 0.10% 107651.0 119663.0 11.16% 14797 37 278.0
49 20 0.6 125719.0 125995.0 0.22% 105994.0 125995.0 18.87% 14373 31 300.4
49 20 0.4 132196.0 132328.0 0.10% 125972.0 132328.0 5.05% 9005 23 178.6
49 20 0.2 138522.0 138661.0 0.10% 134446.0 138661.0 3.14% 3075 7 72.2
49 20 0.0 144783.0 144926.0 0.10% 89001.2 144926.0 62.84% 11320 29 230.0

Table 6.3: Algorithm results: RFLP-EFC.

# Overall Overall Overall Root Root Root # Lag # BB CPU
Nodes α LB UB Gap LB UB Gap Iter Nodes Time

25 1.0 39650.9 39684.10 0.08% 39650.9 39684.10 0.08% 231 1 1.8
25 0.8 36070.8 36106.20 0.10% 36070.8 36106.20 0.10% 203 1 1.6
25 0.6 32361.3 32392.00 0.09% 32361.3 32392.00 0.09% 142 1 1.2
25 0.4 27051.7 27076.30 0.09% 27051.7 27076.30 0.09% 194 1 1.7
25 0.2 18599.0 18617.40 0.10% 18599.0 18617.40 0.10% 402 1 3.4
25 0.0 903.2 904.04 0.09% 903.2 904.04 0.09% 776 1 5.3
49 1.0 855960.0 856810.00 0.10% 855786.0 856810.00 0.12% 1312 3 22.5
49 0.8 790227.0 791014.00 0.10% 790227.0 791014.00 0.10% 181 1 4.5
49 0.6 707278.0 707982.00 0.10% 707278.0 707982.00 0.10% 382 1 8.5
49 0.4 589108.0 589677.00 0.10% 589108.0 589677.00 0.10% 544 1 13.3
49 0.2 404501.0 404903.00 0.10% 404016.0 404903.00 0.22% 1416 3 25.2
49 0.0 19285.9 19302.80 0.09% 17635.5 19302.80 9.45% 2609 7 41.4



231

gaps, the branch-and-bound algorithm was very successful, solving the problem to 0.1%

optimality within 5 minutes for all but two problems, and yielding gaps less than 2% for

those problems. One surprising aspect of the results is that the algorithm often performs

worse for α = 1 than for smaller α. We believe this is because α = 1 represents a pure

P -median problem with many extraneous variables and constraints; the extra variables

have no bearing on the objective function, leading to a large number of optimal solutions

that are difficult to prove optimal. Location problems with highly regular cost structures

(e.g., many customers are equidistant from many facilities) are well known to be difficult

to solve.

6.7.3 Tradeoff Curves

We constructed the tradeoff curve for the RFLP-EFC using the 49-node data set as

described in Section 6.4; the results are pictured in Figure 6.1. The horizontal axis

plots the UFLP cost (objective 1) while the vertical axis plots the expected failure cost

(objective 2). Each point on the curve represents a different solution; the optimal UFLP

solution (found by solving (RFLP-EFC) with α = 1) is the left-most point on the curve.

The steepness of the left part of the curve indicates that large improvements in reliability

can be attained without large increases in UFLP cost. The 10 left-most solutions on the

curve are listed in Table 6.4, along with their relationship to the UFLP solution and the

number of facilities open in the solution. Decision makers may be reluctant to undertake

large increases in UFLP cost, but they may be willing, for example, to expend 7% more

to reduce expected failure cost by 27%, as in solution 4. The points at the right of the



232

Table 6.4: First 10 solutions in curve: RFLP-EFC.

Soln # Obj 1 Obj 2 % Increase Obj 1 % Decrease Obj 2 # Locations
1 856810 532199 0.0% 0.0% 6
2 860078 514758 0.4% 3.3% 6
3 883656 460699 3.1% 13.4% 7
4 919203 391149 7.3% 26.5% 8
5 946914 356139 10.5% 33.1% 9
6 984969 326149 15.0% 38.7% 10
7 1014350 306754 18.4% 42.4% 11
8 1062410 275649 24.0% 48.2% 12
9 1104380 250493 28.9% 52.9% 13
10 1151970 226437 34.4% 57.5% 14

tradeoff curve are unlikely to be of much interest, as they represent solutions in which

nearly all of the facilities are open; they have extremely low failure costs but are very

expensive to implement. In general, we find that the left portion of the tradeoff curve is

quite steep.

Figure 6.1: RFLP-EFC tradeoff curve for 49-node data set.

0

100

200

300

400

500

600

500 1000 1500 2000 2500 3000 3500 4000

UFLP Cost (x1000)

E
xp

ec
te

d
 F

ai
lu

re
 C

o
st

 (
x1

00
0)

The tradeoff curve in Figure 6.1 was constructed assuming all facilities are failable.

Firms may be interested in knowing how the tradeoff curve changes if some of the facilities

in J are non-failable. This may help firms make decisions about which contracts should be



233

shored up or which DCs should be owned in-house, for example. Figure 6.2 contains two

tradeoff curves, the one in which all facilities are failable (discussed earlier) and another

in which 25 of the 49 facilities, chosen randomly, are designated as non-failable. The

inclusion of non-failable facilities has the effect of shifting the tradeoff curve favorably

toward the origin. (In addition, problems with more non-failable facilities generally

produce tighter bounds and require less computation time.)

Figure 6.2: Shifting tradeoff curve.

0

100

200

300

400

500

600

500 1000 1500 2000 2500 3000 3500 4000

UFLP Cost (x1000)

E
xp

ec
te

d
 F

ai
lu

re
 C

o
st

 (
x1

00
0)

All Failable 50% Non-Failable

A natural question to ask is, how many non-failable facilities need to be included

in the set of potential facility sites to achieve a satisfactory level of reliability? Figure

6.3 addresses this question by plotting the decrease in objective function value as the

number of non-failable facilities increases, using the RFLP-EFC and the 49-node data

set with α = 0.8 and q = 0.25. In the lower curve (marked “Last Solution”), the non-

failable facilities were selected from the previous solution. This curve represents how the

objective function might change if the firm could make any facilities that it likes non-



234

failable. In the upper curve (marked “Random”), the non-failable facilities are chosen

randomly. This represents the case in which the firm has no control over which facilities

are non-failable. Note that in both cases, the horizontal axis plots the number of non-

failable facilities that are in J ; not all of these will necessarily be chosen in the solutions.

From the chart it is apparent that only a few non-failable DCs are necessary to make

the solution as a whole substantially more reliable. For our client, the durable goods

manufacturer, this means that the company needs to own only a few DCs in-house to

make the system perform well when third-party distributors fail. It also allows the firm

to threaten to cancel contracts with badly performing distributors, since the firm can

credibly claim to be able to operate without the distributor, at least in the short term,

while they establish a contract with a new distributor. This is an important issue in

contract negotiation and enforcement.

6.7.4 Number of Levels

In this section we briefly explore the impact of changing the number of levels, m, as

discussed in Section 6.6. We solved the RPMP-EFC with P = 10 and the RFLP-

EFC using the 49-node data set, α = 0.8, and q = 0.05, testing various values of m.

The results are presented in Table 6.5. (Note that the last entry for each problem

corresponds to the case in which we do not use the modification suggested in Section 6.6.

m = 50 for the RFLP-EFC and m = 11 for the RPMP-EFC since |J | and P increased

by 1 when the emergency facility was added.) The column marked Time/Iter gives the

average number of CPU seconds spent on each Lagrangian iteration. From the table it



235

Figure 6.3: Changing the number of non-failing facilities.

400

450

500

550

600

650

700

0 2 4 6 8

# of Non-Failable Facilities

E
xp

ec
te

d
 F

ai
lu

re
 C

o
st

 (
x1

00
0)

Last Solution Random

is apparent that using larger values of m generally results in larger root-node optimality

gaps, more Lagrangian iterations, more branch-and-bound nodes, and more time spent

on each iteration (due to loops of the form “for r = 0, . . . ,m− 1”). It is worth pointing

out that in all cases, regardless of the value of m, the algorithm returned the same set

of locations, indicating that the computational improvement came at no loss of solution

accuracy, though of course we cannot prove that this will hold in general.

6.8 Chapter Summary

In this chapter we presented expected failure cost (EFC) reliability models. Unlike the

maximum failure cost (MFC) models, the EFC models assume that multiple facilities

can fail simultaneously. We formulated models based on the P -median problem and the



236

Table 6.5: Sensitivity to m.

Problem m Root Gap # Lag Iter # BB Nodes CPU Time Time/Iter
RPMP-EFC 3 0.10% 285 1 4.0 0.01
RPMP-EFC 5 0.09% 713 1 12.2 0.02
RPMP-EFC 7 0.29% 1294 3 28.1 0.02
RPMP-EFC 9 0.13% 1253 3 32.9 0.03
RPMP-EFC 11 0.30% 1868 5 56.7 0.03
RFLP-EFC 3 0.08% 114 1 2.3 0.02
RFLP-EFC 5 0.10% 181 1 4.3 0.02
RFLP-EFC 8 0.75% 3845 11 157.4 0.04
RFLP-EFC 12 0.94% 3927 11 197.0 0.05
RFLP-EFC 20 0.73% 1637 3 87.4 0.05
RFLP-EFC 50 0.96% 2430 4 333.7 0.14

uncapacitated fixed-charge location problem, called the RPMP-EFC and RFLP-EFC,

respectively. Like the MFC models, the EFC models make use of “backup” assignments,

but in this case multiple levels of backups are required. In both models, the expected

transportation cost, taking into account the costs that result from facility failures, is

included in the objective function. The tradeoff of interest is between the operating cost

(the traditional PMP or UFLP objective function) and the expected failure cost. Trade-

off curves can be generated using the weighting method of multi-objective programming.

Both models are solved using Lagrangian relaxation, with promising results. We demon-

strated empirically that the interesting portion of the tradeoff curve is steep, indicating

that reliability can be drastically improved without large increases in operating costs.

This is a critical issue for decision-makers who may be reluctant to expend greater sums

for sure in order to hedge against possible failures in the future.

For large values of P in the RPMP-EFC, and for the RFLP-EFC, straightforward

application of our algorithm yielded large bounds at the root node. We proposed a

modification that entails assigning facilities only to a pre-specified level m (we used



237

m = 5). This modification tightens these bounds considerably with little or no loss of

accuracy. In our computational tests, we found that the choice of m has a large impact

on computational performance but no impact on the solution found. For different values

of m, the objective function for the solutions differed slightly since higher-level terms

are excluded for smaller values of m. However, we found this difference to be less than

0.02% in all cases, and less than 0.0005% when m ≥ 5. This addresses an important

question about the bounds produced by our algorithm. In particular, when a Lagrangian

relaxation algorithm produces lower bounds that are loose, one always wants to know

whether this is the theoretical lower bound or simply a practical lower bound that might

be improved by a different multiplier updating method or different choices of algorithm

parameters. Consider the last entry in Table 6.5. When we began testing, we assumed

that the theoretical bound for this problem was 0.96% away from the optimal solution,

or close to it. When m = 3, however, we get a lower bound that is only 0.08% from

the upper bound, and since this upper bound is very close (within 0.02%, as discussed

above) of the upper bound when all assignment levels are included in the objective

function, we can be confident that the theoretical lower bound is no more than 0.1%

from the optimal solution. This suggests that the size of the practical bounds is to some

extent determined by our implementation of the multiplier updating routine, and not by

the theoretical bound, and that we might tighten this bound even further by improving

this routine. (This is especially important for the larger problems tested, which resulted

in bounds significantly larger than 0.1% at the root node.)

We also note that our upper-bound heuristic and improvement routines are highly



238

effective, yielding the optimal solution at the root node in all cases tested, generally

finding it within the first 100 iterations or so. This suggests that very good solutions can

be found very quickly, if a theoretical guarantee of optimality is not required.

Clearly, the main drawback of our models is the assumption that failable facilities

all have the same probability q of failing. This assumption is necessary to allow us to

compute the probability that a customer is served by its level-r facility without explicitly

knowing its lower-level assignments, only that there are r of them and that they are

failable. Increasing the number of probabilities results in an exponential increase in the

number of terms in the objective function, since one term is required for each possible

combination of the failure probabilities of the r lower-level assignments. We intend to

study this issue in future research to find an objective function that can accommodate

multiple failure probabilities. Another simplifying assumption we made is that failures are

statistically independent of one another. This assumption may be inaccurate—weather-

and labor-related failures may be dependent on those of nearby facilities—but is necessary

for tractability. Again, future research may identify ways to incorporate dependence into

the EFC models.

Finally, we note that if decision makers are interested only in total expected cost, not

in the tradeoff between the PMP or UFLP objective and the expected failure cost, the

two objectives can easily be replaced with a single objective representing the expected

cost. For the RPMP-EFC, this simply means setting α = 0. For the RFLP-EFC, one

would add the fixed cost term to w2 and then set α = 0. In either case, the solution

method remains the same. Some decision makers may prefer these formulations as they



239

address the common objective of minimizing long-run cost. We have chosen to formulate

the problems as we did because the multi-objective framework provides greater flexibility;

more importantly, it allows us to demonstrate, via tradeoff curves, the large improvements

in reliability that are possible with only small increases in the objectives under which

firms have historically evaluated facility location decisions.



Chapter 7

Conclusions and Future Research

In this dissertation, we presented models for robust and reliable supply chain design.

Robustness refers to the ability of a solution to perform well under various realizations

of the random parameters, while reliability refers to the ability of a solution to perform

well even when parts of the system fail. Robustness is a measure that has been studied

widely in the operations research literature. Various measures of robustness have been

considered; in this dissertation, we consider minimizing the expected cost, and in some

cases adding a bound on the regret in any scenario. Our robustness models are based on

the location model with risk pooling (LMRP). Reliability, on the other hand, has received

relatively little attention, except in limited contexts. We propose models for reliable

facility location, based on the classical P -median problem (PMP) and uncapacitated

fixed-charge location problem (UFLP). These models attempt to find solutions that are

both inexpensive and reliable, and we have shown empirically that large improvements

in reliability are often possible with little additional cost.

240



241

Our solution methods for both the stochastic LMRP studied in Chapter 3 and the

expected failure cost reliability models studied in Chapter 6 performed well, producing

consistently tight bounds and short computation times. We were less successful in solving

the p-robust optimization models presented in Chapter 4 and the maximum failure cost

reliability models presented in Chapter 5. These models have similar structures, in that

they all have the PMP or UFLP as an underlying model, plus a set of constraints for each

scenario or facility that requires some cost, related to but not equal to the objective value,

to be less than a given constant. The objective values of the continuous relaxations of all

of these models seem to increase very slowly as the right-hand side of the p-robustness

or reliability constraints is decreased. This makes solving these problems by Lagrangian

relaxation very difficult, since the IP objective values increase much more sharply as the

constraints are tightened. We intend to study the continuous relaxations of these models

further to explain why this curious behavior occurs and to develop alternative models

or solution methods that circumvent the problem. The p-SLMRP seems to be a good

candidate for Lagrangian methods, assuming that the bounds can be tightened. However,

Lagrangian relaxation seems less effective, or at least less consistent, for the maximum

failure cost reliability models, suggesting that other IP methods may be needed. (Benders

decomposition seems a promising avenue to explore.)

Another important open issue stemming from this research is Conjecture 4.1, which

addresses the relationship between the infeasibility of the continuous relaxation of the

p-robust problems and the unboundedness of their Lagrangian relaxations. We can prove

this conjecture for the special case of the p-robust UFLP, but we hope to prove it for the



242

more general case, as well.

All of our models are extensions of NP-hard problems. It may be instructive to study

similar robust and reliable extensions of polynomially solvable problems (for example,

median problems on specially structured networks). One of the drawbacks of the popular

minimax regret robustness measure is that some easy problems (like the shortest path

problem) have robust versions that are NP-hard. We would like to study whether our

measures preserve the “easiness” of these problems.

The reliability models in Chapters 5 and 6 represent a new direction in supply chain

design under uncertainty. We would like to use the ideas studied in these chapters to

formulate and solve reliability models based on more sophisticated supply chain design

models like the LMRP, rather than facility location problems like the PMP and UFLP.

Reliability formulations of the LMRP would be much more difficult to solve, both be-

cause of the non-linearities and because the square-root function ties together terms that

are separable in linear formulations. Nevertheless, such models would be an important

contribution to the literature on reliable supply chain design. We would also like to

study formulations of the expected failure cost models that allow failable facilities to

have different failure probabilities, possibly allowing dependence among them. Finally,

we intend to explore other supply chain and logistics problems to which the reliability

concept can be applied, for example scheduling, inventory policies, and transportation.



Appendix A

Counterexample to p-Robust ISP

Algorithm

Gutiérrez and Kouvelis’s (1995) paper on the international sourcing problem (ISP) es-

sentially provides an algorithm for solving a p-robust version of the UFLP, since the ISP

can be reduced to the UFLP. The algorithm takes p and N (an integer) as inputs and

returns the N “most robust” solutions, or all p-robust solutions if there are fewer than

N of them. “Most robust” means having minimum max regret across all scenarios. The

authors claim that “...when the algorithm finishes executing, for a given pre-specified

robustness parameter p, it will either have identified the best N robust solutions, or if it

identifies only n < N , possibly n = 0 robust solutions, then we can guarantee that these

are the only robust solutions for the given p.” (p. 184) We dispute this claim.

The algorithm maintains a separate branch-and-bound tree for each scenario, and

all trees are branched and fathomed simultaneously so they all have the same structure

243



244

at the same time. Lower bounds are obtained at each node by summing the linking

constraints across the customers1 and relaxing the integrality constraints. The solution

to the resulting “weak relaxation” provides a lower bound, and if it happens to be integer,

it provides an upper bound as well. Nodes are fathomed for three reasons:

1. When the weak relaxation is infeasible. This happens when all facilities eligible to

serve a given customer are fixed closed.

2. When the lower bound for a single-scenario problem is greater than (1 + p) times

the optimal objective value for that scenario (in which case searching that portion

of the branch-and-bound tree cannot produce a p-robust solution).

3. When p is reduced because N p-robust solutions have been found. In this case,

nodes corresponding to the “extra” solutions are fathomed. (See the last few lines

of the algorithm, on p. 184.)

The problem is with reason #3 above. The authors implicitly assume that a solution

found at the child of a branch-and-bound node cannot have a smaller maximum regret

than the solution found at the node itself, but this is not true. The child node will

certainly have worse regret for the scenario in question but may reduce the regret for

the other scenarios, thereby reducing the maximum regret. Furthermore, when a node is

fathomed from one scenario-tree, the corresponding nodes are fathomed from all scenario-

trees. This means that if two scenarios generate feasible solutions at a given node and
1In the ISP, “customers” and “facilities” are replaced by “factories” and “suppliers,” respectively.

We will continue to use the UFLP terminology.



245

Figure A.1: ISP example.

3 4 521

ba

50, 50 55, 45 50, 125

125, 55

75, 75

one is good but the other is bad, we throw away the good with the bad by fathoming.

Consider the following example. There are 5 facility locations, 2 customers, and 2 sce-

narios. Not all facilities are eligible to serve all customers. Figure A.1 shows the facilities,

customers, and the associated data. The numbers next to the links give scenario-specific

transportation costs (scenario 1, then scenario 2). All facilities have fixed costs of 50, and

both customers have demand of 1. There are no minimum procurement requirements (of

the type described in Section 3.1 of Gutiérrez and Kouvelis’s paper).

Let p = 1 and N = 1 (that is, find the single solution with minimum max regret, and

start with p = 1). By inspection one can confirm that the optimal scenario solutions are

Y ∗
1 = (1, 0, 1, 0, 0) for scenario 1 with objective value Z1(Y ∗

1 ) = 200 and Y ∗
2 = (0, 1, 0, 1, 0)

with Z2(Y ∗
2 ) = 200 for scenario 2.2 The minimax regret solution is Y = (1, 0, 0, 0, 1) with

regrets R1 = R2 = 0.125 (where Ri is the percent regret if scenario i occurs). Since

each facility is eligible to serve only a single customer, the weak relaxation solved at

each node of the branch-and-bound trees is equivalent to the LP relaxation of the UFLP.
2Here we use the notation from Gutiérrez and Kouvelis’s paper. Y represents a location vector and

Z represents a cost.



246

Furthermore, these LP relaxations happen to have integer solutions, so one can confirm

the optimal solutions and objective values given below by inspection.

The branch-and-bound trees are shown in Figure A.2, with (single-scenario) objective

value, solution vector, and regret displayed next to the nodes. We now walk through the

algorithm step by step.

Step 0: Solve the root nodes (with no variables fixed). The optimal solution for scenario 1

is to locate at 1 and 3, with cost 200 and regret R1 = 0 if scenario 1 occurs and

R2 = 0.375 since the cost of this solution if scenario 2 occurs is 275. Similarly, the

optimal solution for scenario 2 is to locate at 2 and 4. This solution has cost 200

and regret R1 = 0.4 (since the solution costs 280 if scenario 1 occurs) and R2 = 0.

Step 1: Choose a scenario, node, and variable to branch on. We’ll choose scenario 1, node

1, and the variable y1. (Note that these choices are consistent with the branching

rules described on p. 182 of Gutiérrez and Kouvelis’s paper.) We remove node

k = 1 from both trees (i.e., we no longer consider these nodes for branching) and

create nodes 1[0]
s and 1[1]

s with y1 fixed to 0 and 1, respectively. Since both problems

are feasible, at the end of this step LNew = {1[0]
1 , 1[1]

1 , 1[0]
2 , 1[1]

2 } and we go to step 2.

(LNew is the list of new nodes whose weak relaxations are feasible. The notation

1[0]
2 means child node [0] of node 1, scenario 2.)

Step 2: The optimal solution at node 1[0]
1 (child 0 for scenario 1) is y = (0, 1, 1, 0, 0) with

objective value z = 205 and regret R1 = 0.025, R2 = 0.35. For scenario 2, the

optimal solution at the root node already had y1 = 0, so this solution remains



247

optimal for the child node. Both solutions pass the lower-bound robustness test

since the lower bounds are within p of the optimal solution for the scenario.

Step 3: The optimal solution for scenario 1 is the same as at the root node since this

solution already has y1 = 1. For scenario 2, the optimal solution is y = (1, 0, 0, 1, 0)

with z = 205 and regret R1 = 0.375, R2 = 0.025. Both solutions pass the lower-

bound robustness test. All nodes are added to their respective trees, and since all

solutions are integral, LInt = LNew. (LInt is the list of integer solutions found at

the current iteration.)

Step 4: The maximum regret for all solutions across all scenarios is less than p, so we don’t

remove any nodes from LInt and we go to step 5.

Step 5: The maximum regret is less than p (=1) for all solutions, so LR = LInt. (LR is the

list of p-robust solutions for the current value of p.) Since |LR| = 4 and N = 1,

we need to drop 3 solutions from the list. The best solution is at node 1[0]
1 with

maximum regret 0.35, so we drop nodes 1[1]
1 , 1[0]

2 , and 1[1]
2 .

At this point, the algorithm terminates because all nodes have been fathomed. This

causes two problems. First, when we drop nodes 1[1]
1 and 1[1]

2 , we fathom the section of the

tree that contains the optimal (minimax regret) solution. Second, when we fathom 1[0]
2 ,

we must also fathom 1[0]
1 since we fathom nodes from all scenario-trees simultaneously.

But this means fathoming at our current best solution, even though its child nodes may

have better solutions.



248

Figure A.2: Branch-and-bound trees for ISP algorithm.

1

32

z = 200
y = (1,0,1,0,0)
R1 = 0
R2 = 0.375

z = 200
y = (1,0,1,0,0)
R1 = 0
R2 = 0.375

z = 205
y = (0,1,1,0,0)
R1 = 0.025
R2 = 0.35

1

32

z = 200
y = (0,1,0,1,0)
R1 = 0.4
R2 = 0

z = 205
y = (1,0,0,1,0)
R1 = 0.375
R2 = 0.025

z = 200
y = (0,1,0,1,0)
R1 = 0.4
R2 = 0

Scenario 1 Scenario 2

y1 = 0 y1 = 1 y1 = 0 y1 = 1

minimax regret
solution is this way

minimax regret
solution is this way

This example shows that the fathoming rules are incorrect; by fathoming, the algo-

rithm often cuts off improving branches in the search tree. If the algorithm were modified

so that nodes are not fathomed in step 5, it would probably require much more branching

and much larger computation times than those reported by Gutiérrez and Kouvelis.



Appendix B

The Multiple-Choice Knapsack

Problem (MCKP)

The multiple-choice knapsack problem (MCKP), introduced by Nauss (1978a) and Sinha

and Zoltners (1979), is a variation of the classical knapsack problem (KP) in which the

items are partitioned into classes, and exactly one item must be chosen from each class to

minimize the objective function while obeying a single knapsack constraint. The problem

can be formulated as follows:

(MCKP) minimize
m

∑

k=1

∑

j∈Nk

ckjxkj (B.1)

subject to
∑

j∈Nk

xkj = 1 ∀k = 1, . . . ,m (B.2)

m
∑

k=1

∑

j∈Nk

akjxkj ≤ b (B.3)

xkj ∈ {0, 1} ∀j ∈ Nk, k = 1, . . . , m (B.4)

249



250

The classes Nk, k = 1, . . . , m, are mutually exclusive. The KP is often described in

terms of packing a knapsack, say for a camping trip. One wants to maximize the value

(according to some scale) of the items chosen while making sure the items can fit into

the knapsack. The MCKP, then, is the problem of choosing one each from a number of

item types: one flashlight, one map, one bag of trail mix, and so on. The name of the

problem refers to the fact that within each class, we must choose a single option from

among a set of items, like a multiple-choice exam.

The KP can be reduced to the MCKP by placing each item in a class with a copy

of itself. The item has objective function and constraint coefficients equal to those from

the KP; the copy has objective function and constraint coefficients equal to 0. The 0–1

decision for each item in the KP translates to a multiple-choice decision for each class in

the MCKP. Since the KP is NP-hard, so is the MCKP. Like the KP, good algorithms

have been published for the MCKP.

Most papers about the MCKP assume that ckj ≥ 0, akj ≥ 0 for all j ∈ Nk, k =

1, . . . ,m. However, any problem instance can be transformed into one with non-negative

coefficients as follows. Let

c− =
∣

∣

∣

∣

min
{

0, min
j∈Nk,k=1,...,m

{ckj}
}∣

∣

∣

∣

a− =
∣

∣

∣

∣

min
{

0, min
j∈Nk,k=1,...,m

{akj}
}∣

∣

∣

∣

Transform the coefficients by adding c− to each ckj and a− to each akj; also add ma− to

b. Once the problem has been solved, subtract mc− from the objective function.

In addition, some papers formulate constraint (B.3) as a ≥ constraint instead of as



251

a ≤ constraint. Once again, any instance that uses a ≤ constraint as in (B.3) can be

converted into an equivalent instance that uses a ≥ constraint so it can be solved by an

algorithm requiring that form. This is done by replacing akj with a+ − akj and b with

ma+ − b, where

a+ = max
{

b
m

, max
j∈Nk,k=1,...,m

{akj}
}

.

Since the subproblems discussed in this dissertation use ≤ constraints and may contain

negative coefficients, both of these transformations may be necessary, depending on the

algorithm chosen.

Sinha and Zoltners (1979) present an algorithm for solving the LP relaxation of

(MCKP) and a branch-and-bound algorithm in which the LP relaxation can be effi-

ciently re-optimized at child nodes. (Sinha and Zoltners use the ≥ form of constraint

(B.3), and their results are stated here assuming that form.) They prove that if ckr < cks

and akr > aks for r, s ∈ Nk, then xks = 0 in every optimal solution to (MCKP), since

item s is both cheaper and larger than item r; item r is said to be “integer dominated”

by item s and may be omitted from the problem at the outset. (Sinha and Zoltners

assert that for randomly generated problems with 50 or more variables per class, the ex-

pected number of integer-dominated variables is more than 90%; we have found similar

results empirically in our computational tests.) If ckr < cks < ckt, akr < aks < akt, and

(cks− ckr)/(aks− akr) > (ckt− cks)/(akt− aks) for r, s, t ∈ Nk, then xks = 0 in every opti-

mal solution to the LP relaxation of (MCKP); such variables are called “LP-dominated.”

At the outset of Sinha and Zoltners’s algorithm, the variables in each class are sorted

in increasing order of objective coefficients and integer- and LP-dominated variables are



252

omitted. Note that while integer-dominated variables may be omitted permanently, vari-

ables that are LP-dominated at the root node of the branch-and-bound tree may not be

dominated at child nodes, and vice-versa. The key result underlying Sinha and Zoltners’s

algorithm is as follows: the optimal solution to the LP relaxation of (MCKP) either is all

integer or has exactly two fractional variables, in which case the fractional variables are

adjacent variables (after sorting) in the same class. Their algorithm begins by setting

xkj = 1 for the item with the smallest objective coefficient in each class. If this solution

is feasible, it is optimal. If not, the algorithm identifies the class whose currently chosen

variable can be swapped for the next (sorted) variable in its class with a minimum ratio

of objective function coefficient to constraint coefficient; the algorithm proceeds in this

manner until the knapsack constraint is satisfied. The last swap made is typically a

“fractional” one.

Armstrong et al. (1983) introduce an algorithm that is the inverse of Sinha and

Zoltners’s algorithm in that it initially chooses the most expensive item in each class

and progressively swaps items for cheaper ones until making any swap would violate the

knapsack constraint. Sinha and Zoltners’s algorithm is an “optimistic” one that maintains

optimality while working toward feasibility; Armstrong’s algorithm is a “pessimistic” one

that maintains feasibility while working toward optimality. Armstrong et al. show that

both algorithms are special cases of the dual simplex method; their advantage lies in the

fact that only one non-basic variable from each class must be evaluated when choosing

an entering variable. They embed both algorithms into a branch-and-bound method that

efficiently re-optimizes the LP relaxation at the child nodes, choosing the optimistic or



253

pessimistic algorithm based on which variables are forced to 0 at each branch.

At least two other variations of Sinha and Zoltners’s algorithm have been published.

Pisinger (1995) identifies a “core” set of classes that receive more algorithmic attention

than the others. He proves certain minimality properties about his algorithm with respect

to the size of the core and the amount of sorting required. His algorithm is faster than

Sinha and Zoltners’s algorithm but it is also significantly more complicated to implement,

and moreover, it only applies to problems with integer coefficients and is therefore of less

interest for our problem. Nakagawa et al. (2001) make a variable substitution that con-

verts the LP relaxation of the MCKP into that of the KP, which is easier to solve. They

prove theoretically that their bound is tighter than the bound from the LP relaxation of

(MCKP), but their computational results show an improvement on the order of 0.0001%,

making it not worth the extra coding.

Aggarwal, Deo, and Sarkar (1992) describe a Lagrangian relaxation-based algorithm

for the MCKP. They relax the single knapsack constraint (B.3) to obtain a simple

“multiple-choice problem,” which can be solved efficiently for a given Lagrange multi-

plier λ. They present a polynomial-time algorithm for finding an optimal multiplier λ∗,

then close any resulting optimality gap using branch-and-bound. The key feature of their

algorithm is that λ∗ is used throughout the branch-and-bound tree; the Lagrangian prob-

lem does not need to be re-solved at each child node. A large number (tens of thousands)

of branch-and-bound nodes may be required, but each one can be processed extremely

quickly.

Of the algorithms discussed here, the most promising two are the LP algorithm of



254

Armstrong et al. and the Lagrangian algorithm of Aggarwal, Deo, and Sarkar, as these are

both simple to implement and perform well. After implementing and experimenting with

both, we found that while the Lagrangian algorithm may outperform the LP algorithm

for some problems, the variability in run times for this algorithm was very large, making

it unappealing as an algorithm to solve Lagrangian subproblems. Moreover, while the

Lagrangian algorithm produces both lower and upper bounds, a solution attaining the

resulting lower bound cannot readily be obtained. As discussed in Section 4.4.1, such

a solution is desirable unless the problem is solved to optimality, an impractical option

since the run times are so variable. For both of these reasons, we have elected to use the

LP algorithm in our computational testing. To obtain a lower-bound solution from this

algorithm, one simply keeps track of both the best lower bound and the solution that

produced it. This is the solution to a “restricted” LP relaxation of the MCKP in which

some variables have been forced to 0.

We make one other change to Armstrong’s algorithm. If the LP relaxation at a

given node results in a fractional solution, then exactly two variables are fractional, and

they are in the same class. Call the variables xkj and xk,j+1; they must be adjacent

with respect to the sort order, and since Armstrong et al. use ≥ knapsack constraints,

ckj ≤ ck,j+1 and akj ≤ ak,j+1. An “easy” feasible solution can be obtained by setting

xkj = 0 and xk,j+1 = 1. Armstrong, et al. point out that there may be LP-dominated

variables between the two fractional variables (with respect to the sort order), and that

if one of these has a large enough constraint coefficient, setting it to 1 will produce a

better feasible solution. In fact, though, any of the classes may contain a (possibly LP-



255

dominated) variable such that if that variable is set to 1, the current variable in that

class is set to 0, xkj is set to 1, and xk,j+1 is set to 0, the resulting solution is feasible

and is cheaper than the “easy” solution. The search for such variables can be performed

efficiently since one only needs to examine the variables between the current variable

and the first variable whose constraint coefficient is large enough to satisfy the knapsack

constraint. We have found this modification to yield better solutions than Armstrong’s

method in up to 70% of the branch-and-bound nodes, with an average improvement of

up to 2.8% in the upper bound at a given node.



Bibliography

[1] Aggarwal, Vijay, Narsingh Deo, and Dilip Sarkar. 1992. The knapsack problem with
disjoint multiple-choice constraints. Naval Research Logistics 39, no. 2: 213-227.

[2] Akinc, Umit and Basheer M. Khumawala. 1977. An efficient branch and bound
algorithm for the capacitated warehouse location problem. Management Science 23,
no. 6: 585-594.

[3] Armstrong, R. D., D. S. Kung, P. Sinha, and A. A. Zoltners. 1983. A computational
study of a multiple-choice knapsack algorithm. ACM Transactions on Mathematical
Software 9, no. 2: 184-198.

[4] Averbakh, Igor and Oded Berman. 1997. Minimax regret p-center location on a
network with demand uncertainty. Location Science 5, no. 4: 247-254.

[5] Averbakh, Igor and Oded Berman. 2000. Minmax regret median location on a net-
work under uncertainty. INFORMS Journal on Computing 12, no. 2: 104-110.

[6] Balinski, M. L. 1965. Integer programming: Methods, uses, computation. Manage-
ment Science 12, no. 3: 253-313.

[7] Ball, Michael O. 1979. Computing network reliability. Operations Research 27, no.
4: 823-838.

[8] Ball, Michael O. and Feng L. Lin. 1993. A reliability model applied to emergency
service vehicle location. Operations Research 41, no. 1: 18-36.

[9] Barahona, Francisco and David Jensen. 1998. Plant location with minimum inven-
tory. Mathematical Programming 83: 101-111.

[10] Barahona, Francisco and Fabian Chudak. 1999a. Near-optimal solutions to large
scale facility location problems. Yorktown Heights, NY: IBM Research Division, T.J.
Watson Research Center. IBM Research Report.

[11] Barahona, Francisco and Fabian Chudak. 1999b. Solving large scale uncapacitated
location problems. Yorktown Heights, NY: IBM Research Division, T.J. Watson Re-
search Center. IBM Research Report.

256



257

[12] Barahona, Francisco and Ranga Anbil. 2000. The volume algorithm: Producing
primal solutions with a subgradient method. Mathematical Programming Series A
87: 385-399.

[13] Barcelo, Jaime, Elena Fernandez, and Kurt O. Jörnsten. 1991. Computational re-
sults from a new Lagrangean relaxation algorithm for the capacitated plant location
problem. European Journal of Operational Research 53, no. 1: 38-45.

[14] Bean, James C., Julia L. Higle, and Robert L. Smith. 1992. Capacity expansion
under uncertain demands. Operations Research 40, no. 2 supp.: S210-S216.

[15] Beasley, J. E. 1993. Lagrangean heuristics for location problems. European Journal
of Operational Research 65, no. 3: 383-399.

[16] Berman, O. and B. LeBlanc. 1984. Location-relocation of mobile facilities on a
stochastic network. Transportation Science 18, no. 4: 315-330.

[17] Berman, Oded, Richard C. Larson, and Samuel S. Chiu. 1985. Optimal server lo-
cation on a network operating as an M/G/1 queue. Operations Research 33, no. 4:
746-771.

[18] Berman, Oded and Dimitri Krass. 2001. Facility location problems with stochas-
tic demands and congestion. In Facility location: Applications and theory, ed. Zvi
Drezner and H. W. Hamacher, 331-373. New York: Springer-Verlag.

[19] Bertsimas, Dimitris J., Patrick Jaillet, and Amedeo R. Odoni. 1990. A priori opti-
mization. Operations Research 38, no. 6: 1019-1033.

[20] Bienstock, D., E. F. Brickell, and C. L. Monma. 1990. On the structure of minimum-
weight k-connected spanning networks. SIAM Journal on Discrete Mathematics 3,
no. 3: 320-329.

[21] Birge, John R. and François Louveaux. 1997. Introduction to stochastic programming.
New York: Springer.

[22] Blanchini, Franco, Franca Rinaldi, and Walter Ukovich. 1997. A network design
problem for a distribution system with uncertain demands. SIAM Journal on Opti-
mization 7, no. 2: 560-578.

[23] Bramel, Julien and David Simchi-Levi. 1997. The logic of logistics: Theory, al-
gorithms, and applications for logistics management. Springer series in operations
research. New York: Springer.

[24] Burkard, Rainer E. and Helidon Dollani. 2001. Robust location problems with
pos/neg weights on a tree. Networks 38, no. 2: 102-113.

[25] Carbone, Robert. 1974. Public facilities location under stochastic demand. INFOR
12, no. 3: 261-270.



258

[26] Carson, Yolanda M. and Rajan Batta. 1990. Locating an ambulance on the Amherst
campus of the State University of New York at Buffalo. Interfaces 20, no. 5: 43-49.

[27] Chen, Bintong and Chin-Shien Lin. 1998. Minmax-regret robust 1-median location
on a tree. Networks 31, no. 2: 93-103.

[28] Cheung, Raymond K.-M. and Warren B. Powell. 1996. Models and algorithms for
distribution problems with uncertain demands. Transportation Science 30, no. 1:
43-59.

[29] Chopra, Sunil and Peter Meindl. 2001. Supply chain management: Strategy, plan-
ning, and operation. Upper Saddle River, NJ: Prentice Hall.

[30] Christofides, N. and J. E. Beasley. 1982. A tree-search algorithm for the p-median
problem. European Journal of Operational Research 10, no. 2: 196-204.

[31] Christofides, N. and J. E. Beasley. 1983. Extensions to a Lagrangean relaxation
approach for the capacitated warehouse location problem. European Journal of Op-
erational Research 12, no. 1: 19-28.

[32] Church, Richard and Charles ReVelle. 1974. The maximal covering location problem.
Papers of the Regional Science Association 32: 101-118.

[33] Cohon, Jared L. 1978. Multiobjective programming and planning. New York: Aca-
demic Press.

[34] Colbourn, C. J. 1987. The combinatorics of network reliability. The international
series of monographs on computer science. New York: Oxford University Press.

[35] Cornuejols, Gerard, Marshall L. Fisher, and George L. Nemhauser. 1977. Location
of bank accounts to optimize float: An analytic study of exact and approximate
algorithms. Management Science 23, no. 8: 789-810.

[36] Cornuejols, G., R. Sridharan, and J.M. Thizy. 1991. A comparison of heuristics
and relaxations for the capacitated plant location problem. European Journal of
Operational Research 50: 280-297.

[37] Current, John, Samuel Ratick, and Charles ReVelle. 1997. Dynamic facility loca-
tion when the total number of facilities is uncertain: A decision analysis approach.
European Journal of Operational Research 110, no. 3: 597-609.

[38] Current, J., M. S. Daskin, and D. Schilling. 2001. Discrete network location models.
In Facility location: Applications and theory, ed. Zvi Drezner and H. W. Hamacher,
83-120. New York: Springer-Verlag.

[39] Daniels, Richard L. and Panagiotis Kouvelis. 1995. Robust scheduling to hedge
against processing time uncertainty in single-stage production. Management Science
41, no. 2: 363-376.



259

[40] Darby-Dowman, Kenneth and Holly S. Lewis. 1988. Lagrangian relaxation and the
single-source capacitated facility-location problem. Journal of the Operational Re-
search Society 39, no. 11: 1035-1040.

[41] Darlington, J., C.C. Pantelides, B. Rustem, and B.A. Tanyi. 2000. Decreasing the
sensitivity of open-loop optimal solutions in decision making under uncertainty. Eu-
ropean Journal of Operational Research 121: 343-362.

[42] Daskin, Mark S. 1982. Application of an expected covering model to emergency
medical service system design. Decision Sciences 13: 416-439.

[43] Daskin, Mark S. 1983. A maximum expected covering location model: Formulation,
properties and heuristic solution. Transportation Science 17, no. 1: 48-70.

[44] Daskin, M. S., K. Hogan, and C. ReVelle. 1988. Integration of multiple, excess,
backup, and expected covering models. Environment and Planning B 15, no. 1: 15-
35.

[45] Daskin, Mark S., Wallace J. Hopp, and Benjamin Medina. 1992. Forecast horizons
and dynamic facility location planning. Annals of Operations Research 40: 125-151.

[46] Daskin, Mark S. 1995. Network and discrete location: Models, algorithms, and ap-
plications. New York: Wiley.

[47] Daskin, Mark S., Susan M. Hesse, and Charles S. ReVelle. 1997. α-reliable P -
minimax regret: A new model for strategic facility location modeling. Location
Science 5, no. 4: 227-246.

[48] Daskin, Mark S. and Susan H. Owen. 1999. Location models in transportation. In
Handbook of transportation science, ed. Randolph W. Hall, 311-360. Boston: Kluwer
Academic.

[49] Daskin, Mark S., Collette R. Coullard, and Zuo-Jun Max Shen. 2002. An inventory-
location model: Formulation, solution algorithm and computational results. Annals
of Operations Research 110: 83-106.

[50] Davis, P.S. and T.L. Ray. 1969. A branch-bound algorithm for the capacitated fa-
cilities location problem. Naval Research Logistics Quarterly 16: 331-344.

[51] Drezner, Zvi. 1995. Facility location: A survey of applications and methods. Springer
series in operations research. New York: Springer.

[52] Eiselt, H. A., M. Gendreau, and G. Laporte. 1996. Optimal location of facilities on
a network with an unreliable node or link. Information Processing Letters 58, no. 2:
71-74.

[53] Eppen, Gary D. 1979. Effects of centralization on expected costs in a multi-location
newsboy problem. Management Science 25, no. 5: 498-501.



260

[54] Eppen, Gary D., R. Kipp Martin, and Linus Schrage. 1989. A scenario approach to
capacity planning. Operations Research 37, no. 4: 517-527.

[55] Erlebacher, Steven J. and Russell D. Meller. 2000. The interaction of location and
inventory in designing distribution systems. IIE Transactions 32: 155-166.

[56] Erlenkotter, Donald. 1978. A dual-based procedure for uncapacitated facility loca-
tion. Operations Research 26, no. 6: 992-1009.

[57] Fisher, Marshall L. 1981. The Lagrangian relaxation method for solving integer
programming problems. Management Science 27, no. 1: 1-18.

[58] Fisher, Marshall L. 1985. An applications oriented guide to Lagrangian relaxation.
Interfaces 15, no. 2: 10-21.

[59] Fortz, B. and M. Labbé. 2002. Polyhedral results for two-connected networks with
bounded rings. Mathematical Programming Series A 93, no. 1: 27-54.

[60] Frank, H. 1966. Optimum locations on a graph with probabilistic demands. Opera-
tions Research 14, no. 3: 409-421.

[61] Frank, H. 1967. Optimum locations on graphs with correlated normal demands.
Operations Research 15, no. 3: 552-557.

[62] França, P. M. and H. P. L. Luna. 1982. Solving stochastic transportation-location
problems by generalized Benders decomposition. Transportation Science 16, no. 2:
113-126.

[63] Gendreau, Michel, Gilbert Laporte, and René Séguin. 1996. A tabu search heuristic
for the vehicle routing problem with stochastic demands and customers. Operations
Research 44, no. 3: 469-477.

[64] Geoffrion, A. M. and G. W. Graves. 1974. Multicommodity distribution system
design by Benders decomposition. Management Science 20, no. 5: 822-844.

[65] Geoffrion, A.M. 1974. Lagrangean relaxation for integer programming. Mathematical
Programming Study 2: 82-114.

[66] Geoffrion, A. and R. McBride. 1978. Lagrangean relaxation applied to capacitated
facility location problems. AIIE Transactions 10, no. 1: 40-47.

[67] Glover, Fred. 1975. Surrogate constraint duality in mathematical programming. Op-
erations Research 23, no. 3: 434-451.

[68] Glover, Fred. 1986. Future paths for integer programming and links to artificial
intelligence. Computers and Operations Research 13: 533-549.

[69] Graves, S.C., A.H.G. Rinnooy Kan, and P.H. Zipkin. 1993. Logistics of production
and inventory. Amsterdam: Elsevier Science Publishers.



261

[70] Grötschel, M., C. L. Monma, and M. Stoer. 1995. Polyhedral and computational
investigations for designing communication networks with high survivability require-
ments. Operations Research 43, no. 6: 1012-1024.

[71] Guignard, Monique and Siwhan Kim. 1987. Lagrangean decomposition: A model
yielding strong Lagrangean bounds. Mathematical Programming 39: 215-228.

[72] Gupta, Shiv K. and Jonathan Rosenhead. 1968. Robustness in sequential investment
decisions. Management Science 15, no. 2: B18-B29.

[73] Gutiérrez, Genaro J. and Panagiotis Kouvelis. 1995. A robustness approach to in-
ternational sourcing. Annals of Operations Research 59: 165-193.

[74] Gutiérrez, Genaro J., Panagiotis Kouvelis, and Abbas A. Kurawarwala. 1996. A
robustness approach to uncapacitated network design problems. European Journal
of Operational Research 94: 362-376.

[75] Haight, Robert G., Katherine Ralls, and Anthony M. Starfield. 2000. Designing
species translocation strategies when population growth and future funding are un-
certain. Conservation Biology 14, no. 5: 1298-1307.

[76] Hakimi, S.L. 1964. Optimum locations of switching centers and the absolute centers
and medians of a graph. Operations Research 12: 450-459.

[77] Hakimi, S.L. 1965. Optimum distribution of switching centers in a communication
network and some related graph theoretic problems. Operations Research 13: 462-
475.

[78] Hanink, Dean M. 1984. A portfolio theoretic approach to multiplant location anal-
ysis. Geographical Analysis 16, no. 2: 149-161.

[79] Hanjoul, Pierre and Dominique Peeters. 1985. A comparison of two dual-based pro-
cedures for solving the p-median problem. European Journal of Operational Research
20, no. 3: 387-396.

[80] Hobbs, Benjamin F., Michael H. Rothkopf, Richard P. O’Neill, and Hung-po Chao,
eds. 2001. The next generation of electric power unit commitment models. Inter-
national series in operations research and management science. Boston: Kluwer
Academic Publishers.

[81] Hodder, James E. 1984. Financial market approaches to facility location under un-
certainty. Operations Research 32, no. 6: 1374-1380.

[82] Hodder, James E. and James V. Jucker. 1985. A simple plant-location model for
quantity-setting firms subject to price uncertainty. European Journal of Operational
Research 21: 39-46.



262

[83] Holmberg, Kaj. 1998. Creative modeling: Variable and constraint duplication in
primal-dual decomposition methods. Annals of Operations Research 82: 355-390.

[84] Hooker, J.N. and R.S. Garfinkel. 1989. On the vector assignment p-median problem.
Transportation Science 23, no. 2: 139-140.

[85] Huchzermeier, Arnd and Morris A. Cohen. 1996. Valuing operational flexibility un-
der exchange rate risk. Operations Research 44, no. 1: 100-113.

[86] Hurter, Arthur P. and Joseph Stanislaus Martinich. 1989. Facility location and the
theory of production. Boston: Kluwer Academic Publishers.

[87] Jaillet, Patrick. 1988. A priori solution of a traveling salesman problem in which a
random subset of the customers are visited. Operations Research 36, no. 6: 929-936.

[88] Jaillet, Patrick. 1992. Shortest path problems with node failures. Networks 22: 589-
605.

[89] Jornsten, Kurt and Mette Bjorndal. 1994. Dynamic location under uncertainty. Stud-
ies in Regional and Urban Planning 3: 163-184.

[90] Jucker, James V. and Robert C. Carlson. 1976. The simple plant-location problem
under uncertainty. Operations Research 24, no. 6: 1045-1055.

[91] Killmer, K.A., G. Anandalingam, and S.A. Malcolm. 2001. Siting noxious facilities
under uncertainty. European Journal of Operational Research 113: 596-607.

[92] Klincewicz, John G. and Hanan Luss. 1986. A Lagrangian relaxation heuristic for ca-
pacitated facility location with single-source constraints. Journal of the Operational
Research Society 37, no. 5: 495-500.

[93] Kogut, Bruce and Nalin Kulatilaka. 1994. Operating flexibility, global manufactur-
ing, and the option value of a multinational network. Management Science 40, no.
1: 123-139.

[94] Kouvelis, Panagiotis, Abbas A. Kurawarwala, and Genaro J. Gutiérrez. 1992. Al-
gorithms for robust single and multiple period layout planning for manufacturing
systems. European Journal of Operational Research 63: 287-303.

[95] Kouvelis, Panagiotis and Gang Yu. 1997. Robust discrete optimization and its appli-
cations. Boston: Kluwer Academic Publishers.

[96] Laguna, Manuel, Pilar Lino, Angeles Pérez, Sacramento Quintanilla, and Vicente
Valls. 2000. Minimizing weighted tardiness of jobs with stochastic interruptions in
parallel machines. European Journal of Operational Research 127: 444-457.

[97] Laporte, Gilbert, François V. Louveaux, and Luc van Hamme. 1994. Exact solution
to a location problem with stochastic demands. Transportation Science 28, no. 2:
95-103.



263

[98] Larson, Richard C. 1974. A hypercube queuing model for facility location and redis-
tricting in urban emergency services. Computers and Operations Research 1: 67-95.

[99] Larson, Richard C. 1975. Approximating the performance of urban emergency ser-
vice systems. Operations Research 23, no. 5: 845-868.

[100] Louveaux, François and Jacques-François Thisse. 1985. Production and location of
a network under demand uncertainty. Operations Research Letters 4, no. 4: 145-149.

[101] Louveaux, F. V. 1986. Discrete stochastic location models. Annals of Operations
Research 6: 23-34.

[102] Louveaux, François V. and D. Peeters. 1992. A dual-based procedure for stochastic
facility location. Operations Research 40, no. 3: 564-573.

[103] Lowe, Timothy J., Richard E. Wendell, and Gang Hu. 1999. Screening location
strategies to reduce exchange rate risk. Preprint.

[104] Lynn, Barry. 2002. Unmade in America: The true cost of a global assembly line.
Harper’s, 33-41.

[105] Manne, Alan S. 1961. Capacity expansion and probabilistic growth. Econometrica
29, no. 4: 632-649.

[106] Maŕın, Alfredo and Blas Pelegŕın. 1999. Applying Lagrangian relaxation to the
resolution of two-stage location problems. Annals of Operations Research 86: 179-
198.

[107] Mausser, Helmut E. and Manuel Laguna. 1999a. A heuristic to minimax absolute
regret for linear programs with interval objective function coefficients. European
Journal of Operational Research 117: 157-174.

[108] Mausser, Helmut E. and Manuel Laguna. 1999b. Minimising the maximum relative
regret for linear programmes with interval objective function coefficients. Journal of
the Operational Research Society 50, no. 10: 1063-1070.

[109] Mirchandani, Pitu B. and Amedeo R. Odoni. 1979. Locations of medians on stochas-
tic networks. Transportation Science 13, no. 2: 85-97.

[110] Mirchandani, Pitu B. 1980. Locational decisions on stochastic networks. Geograph-
ical Analysis 12, no. 2: 172-183.

[111] Mirchandani, Pitu B., Aissa Oudjit, and Richard T. Wong. 1985. ‘Multidimen-
sional’ extensions and a nested dual approach for the m-median problem. European
Journal of Operational Research 21, no. 1: 121-137.

[112] Monma, Clyde L. and David F. Shallcross. 1989. Methods for designing commu-
nications networks with certain two-connected survivability constraints. Operations
Research 37, no. 4: 531-541.



264

[113] Monma, Clyde L., Beth Spellman Munson, and William R. Pulleyblank. 1990.
Minimum-weight two-connected spanning networks. Mathematical Programming 46,
no. 2: 153-171.

[114] Mulvey, John M., Robert J. Vanderbei, and Stavros A. Zenios. 1995. Robust opti-
mization of large-scale systems. Operations Research 43, no. 2: 264-281.

[115] Nahmias, Steven. 2001. Production and operations analysis. Boston: McGraw-Hill
Irwin.

[116] Nakagawa, Y., M. Kitao, M. Tsuji, and Y. Teraoka. 2001. Calculating the upper
bound of the multiple-choice knapsack problem. Electronics and Communications in
Japan Part 3 84, no. 7: 22-27.

[117] Nauss, Robert M. 1978a. The 0-1 knapsack problem with multiple choice con-
straints. European Journal of Operational Research 2: 125-131.

[118] Nauss, Robert M. 1978b. An improved algorithm for the capacitated facility loca-
tion problem. Journal of the Operational Research Society 29, no. 12: 1195-1201.

[119] Nemhauser, George L. and Laurence A. Wolsey. 1988. Integer and combinatorial
optimization. New York: Wiley.

[120] Nozick, Linda K. and Mark A. Turnquist. 1998. Integrating inventory impacts into
a fixed-charge model for locating distribution centers. Transportation Research Part
E 34, no. 3: 173-186.

[121] Nozick, Linda K. and Mark A. Turnquist. 2001. Inventory, transportation, service
quality and the location of distribution centers. European Journal of Operational
Research 129: 362-371.

[122] Nozick, Linda K. and Mark A. Turnquist. 2001. A two-echelon inventory allocation
and distribution center location analysis. Transportation Research Part E 37: 421-
441.

[123] Nozick, L.K. 2001. The fixed charge facility location problem with coverage restric-
tions. Transportation Research Part E 37: 281-296.

[124] Owen, Susan Hesse and Mark S. Daskin. 1998. Strategic facility location: A review.
European Journal of Operational Research 111, no. 3: 423-447.

[125] Owen, Susan Hesse. 1999. Scenario planning approaches to facility location: Models
and solution methods. Ph.D. diss., Northwestern University.

[126] Paraskevopoulos, Dimitris, Elias Karakitsos, and Berc Rustem. 1991. Robust ca-
pacity planning under uncertainty. Management Science 37, no. 7: 787-800.



265

[127] Pisinger, David. 1995. A minimal algorithm for the multiple-choice knapsack prob-
lem. European Journal of Operational Research 83, no. 2: 394-410.

[128] Raghavan, P and C.D. Thompson. 1987. Randomized rounding. Combinatorica 7:
365-374.

[129] ReVelle, C.S. and R.W. Swain. 1970. Central facilities location. Geographical Anal-
ysis 2: 30-42.

[130] ReVelle, Charles and Kathleen Hogan. 1989. The maximum availability location
problem. Transportation Science 23, no. 3: 192-200.

[131] ReVelle, C. and J. C. Williams. 2001. Reserve design and facility siting. In Facility
location: Applications and theory, ed. Zvi Drezner and H. W. Hamacher, 310-330.
New York: Springer-Verlag.

[132] Rolland, Eric, David A. Schilling, and John R. Current. 1996. An efficient tabu
search procedure for the p-median problem. European Journal of Operational Re-
search 96: 329-342.

[133] Rosenblatt, Meir J. and Hau L. Lee. 1987. A robustness approach to facilities
design. International Journal of Production Research 25, no. 4: 479-486.

[134] Rosenhead, Jonathan, Martin Elton, and Shiv K. Gupta. 1972. Robustness and
optimality as criteria for strategic decisions. Operational Research Quarterly 23, no.
4: 413-431.

[135] Schilling, David A. 1982. Strategic facility planning: The analysis of options. De-
cision Sciences 13: 1-14.

[136] Schrage, Linus. 1975. Implicit representation of variable upper bounds in linear
programming. Mathematical Programming Study 4: 118-132.

[137] Serra, D., S. Ratick, and C. ReVelle. 1996. The maximum capture problem with
uncertainty. Environment and Planning B 23: 49-59.

[138] Serra, Daniel and Vladimir Marianov. 1998. The p-median problem in a changing
network: The case of Barcelona. Location Science 6: 383-394.

[139] Sheffi, Yossi. 2001. Supply chain management under the threat of international
terrorism. International Journal of Logistics Management 12, no. 2: 1-11.

[140] Shen, Zuo-Jun Max. 2000. Efficient algorithms for various supply chain problems.
Ph.D. diss., Northwestern University.

[141] Shen, Zuo-Jun Max, Collette R. Coullard, and Mark S. Daskin. 2003. A joint
location-inventory model. Transportation Science 37, no. 1: 40-55.



266

[142] Sheppard, E. S. 1974. A conceptual framework for dynamic location-allocation
analysis. Environment and Planning A 6: 547-564.

[143] Shier, Douglas R. 1991. Network reliability and algebraic structures. Oxford:
Clarendon Press.

[144] Shooman, Martin L. 2002. Reliability of computer systems and networks: Fault
tolerance, analysis, and design. New York: John Wiley and Sons.

[145] Shu, Jia, Chung-Piaw Teo, and Zuo-Jun Max Shen. 2001. Stochastic
transportation-inventory network design problem. Preprint.

[146] Simchi-Levi, D., L.V. Snyder, and M. Watson. 2002. Strategies for uncertain times.
Supply Chain Management Review 6, no. 1: 11-12.

[147] Sinha, Prabhakant and Andris A. Zoltners. 1979. The multiple-choice knapsack
problem. Operations Research 27, no. 3: 503-515.

[148] Sridharan, R. 1991. A Lagrangian heuristic for the capacitated plant location prob-
lem with side constraints. Journal of the Operational Research Society 42, no. 7:
579-585.

[149] Swamy, Chaitanya and David B. Shmoys. 2003. Fault-tolerant facility location.
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms:
735-736.

[150] Teitz, Michael B. and Polly Bart. 1968. Heuristic methods for estimating the gen-
eralized vertex median of a weighted graph. Operations Research 16, no. 5: 955-961.

[151] Teo, Chung-Piaw, Jihong Ou, and Mark Goh. 2001. Impact on inventory costs with
consolidation of distribution centers. IIE Transactions 33, no. 2: 99-110.

[152] Trafalis, Theodore B., Tsutomu Mishina, and Bobbie L. Foote. 1999. An interior
point multiobjective programming approach for production planning with uncertain
information. Computers and Industrial Engineering 37: 631-648.

[153] Vairaktarakis, George L. and Panagiotis Kouvelis. 1999. Incorporation dynamic
aspects and uncertainty in 1-median location problems. Naval Research Logistics 46,
no. 2: 147-168.

[154] Van Roy, Tony J. 1983. Cross decomposition for mixed integer programming. Math-
ematical Programming 25: 46-63.

[155] Van Roy, Tony J. 1986. A cross decomposition algorithm for capacitated facility
location. Operations Research 34, no. 1: 145-163.

[156] Verter, Vedat and M. Cemal Dincer. 1992. An integrated evaluation of facility
location, capacity acquisition, and technology selection for designing global manu-
facturing strategies. European Journal of Operational Research 60: 1-18.



267

[157] Vladimirou, Hercules and Stavros A. Zenios. 1997. Stochastic linear programs with
restricted recourse. European Journal of Operational Research 101: 177-192.

[158] Weaver, Jerry R. and Richard L. Church. 1983. Computational procedures for
location problems on stochastic networks. Transportation Science 17, no. 2: 168-
180.

[159] Weaver, Jerry R. and Richard L. Church. 1985. A median location model with
nonclosest facility service. Transportation Science 19, no. 1: 58-74.

[160] Yu, Gang. 1997. Robust economic order quantity models. European Journal of
Operational Research 100: 482-493.

[161] Yu, Gang and Jian Yang. 1998. On the robust shortest path problem. Computers
and Operations Research 25, no. 6: 457-468.

[162] Yu, Chian-Son and Han-Lin Li. 2000. A robust optimization model for stochastic
logistics problems. International Journal of Production Economics 64: 385-397.

[163] Zipkin, P.H. 1997. Foundations of inventory management. Burr Ridge, Ill.: Irwin.


