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l  The field of convex optimization has been extensively 
developed since Khachian showed in 1979 that ellipsoid 
method has polynomial complexity when applied to LP. 

l  General theory of interior point algorithms for convex 
optimization was developed by Nesterov and Nemirovskii.  

l  Any convex optimization problem can be solved in 
polynomial time by an IPM. For some known classes (LP, 
QP, SDP) the IPMs are readily available. 

l  For decades optimization methods relied of the fact that the 
problem data, when large, is typically sparse. 

l  Second-order methods (IPM) have good convergence rate, 
but  high per iteration complexity. They  exploit sparsity 
structure to facilitate linear algebra. 

l  First-order methods (gradient based) have slow 
convergence and were considered inefficient. 

 

          

Introduction 



l  At the core of many statistical machine learning problems 
lies an optimization problem, often convex, from a well-
studied class (LP, QP, SDP). 

l  These problems are very large and dense in terms of data. 
l  IPMs are often too expensive to use. ML community initially 

assumed that traditional optimization methods have to be 
abandoned. 

l  However, often  structure (sparsity) is present in the solution.  
l  This structure can be well exploited by first-order 

approaches to convex optimization. 
l  Recent advances in complexity results give rise to very 

significant interest in  first-order methods. 
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Sparse inverse covariance selection 

6/13/12 Temple University 



Neuroimaging: MRI, fMRI, PET 

 
 

Detecting Alzheimer, Schizophrenia, etc by constructing and 
exploring connectivity network of the brain.   

•  AD: Grady et al. 2001, Heun et al. 2006, 
Celone et al 2006, Rombouts et al. 2005, 
Lustig et al. 2006.  

•  Schizophrenia: Cecchi, G. et al (2009), 
Carroll, M. K., et al(2009) Neuroimage,  M. 
Plaze et al. (2006),  Schizophrenia 
Research, . V.M. Eguiluz et al(2005),  
Phys. Rev. Letters ,  Y. Liu et al. (2008).  
Brain, Feb. 2008. 

 



From Shuai Huang, Jing Li, Liang Sun, Jieping Ye, Adam Fleisher, Teresa 
Wu, Kewei Chen, and Eric Reiman. Learning Brain Connectivity of 

Alzheimer's Disease by Sparse Inverse Covariance Estimation. 
NeuroImage, 50, 935-949, 2010. 

•  There is significant, quantifiable difference in brain 
connectivity between AD and normal brains.  

AD                            MCI                        NC 

frontal, parietal, occipital, and temporal  lobes in order 



Sparse Inverse Covariance Estimation 

•  Given the observations xi~N(µ, Σ), the empirical 
covariance matrix S 2 Sp, is 

•  We can estimate                by solving the following 
maximum likelihood problem 

•  By penalizing the L1-norm, we can obtain the sparse 
inverse covariance matrix 
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From Jieping Ye, KDD’09 presentation 



Why Sparse Inverse Covariance? 

•  Employ sparse inverse covariance estimation for brain 
region connectivity identification.  

•  The covariance matrix can be estimated robustly when 
many entries of the inverse covariance matrix are zero. 

•  The sparse inverse covariance matrix can be interpreted 
from the perspective of undirected graphical model. 
–  If the ijth component of Θ is zero, then variables i and j are 

conditionally independent, given the other variables in the 
multivariate Gaussian distribution. 

•  Many real-world networks are sparse. 
–  Gene interaction network From Jieping Ye, KDD’09 presentation 



Example: Gene Network 

Rosetta Inpharmatics 
Compendium of gene 
expression profiles 
described by Hughes et al. 
(2000) 



Example: Senate Voting Records Data (2004-06) 

Republican senators Democratic senators 

O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection 
through sparse maximum likelihood estimation for multivariate 
Gaussian or binary data. Journal of Machine Learning Research, 
9:485–516, 2008. 



How to ensure that £ is sparse? 

•  Maximum likelihood formulation  

 
•  Strictly convex problem, hence unique solution 

•  But never sparse! 
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Similar to sparse signal recovery 

•  We seek sparse signal x, which satisfies underdetermined system 
Ax=b.  

•  Recently it was shown by Candes & Tao and Donoho that under 
certain conditions on matrix A the sparse signal 

is recovered exactly by solving the convex relaxation 
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Why ||·||1 norm? 

`1 ball

`2 ball

Ax= b
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Why ||·||1 norm? 

Ax= b
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Why ||·||1 norm? 

Ax= b
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Sparsity inducing formulation 

•  NP-hard formulation  

•  Convex relaxation 

•  Convex optimization problem with unique solution for each  ̧

•  Number of variables is p2/2.  
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Convex constrained  formulation  

Primal problem 

 

Reformulate as a smooth convex constrained problem 
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Primal-dual pair of problems 

Primal problem 

Dual problem 

Interior point method – O(p6) operations/iter 
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Similar to  Lasso and sparse signal recovery 

Primal-Dual pair of problems 
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First Order Methods 
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•  Consider: 

•  Linear lower approximation 

•  Quadratic upper approximation 

          

First-order proximal gradient methods 
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•  Minimize quadratic upper approximation on each  iteration 

 
 
 
•   If µ· 1/L then 

First-order proximal gradient method 
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•  Minimize quadratic upper approximation on each  iteration 

 
  

•  If µ· 1/L then in O(L||x0-x*||/²) iterations finds solution       

Complexity of  proximal gradient method 

Compare to O(log(L/²)) of interior point methods.  

                              Can we do better? 
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•   Minimize upper approximation at an intermediate point.  

•  If µ· 1/L then 

Accelerated first-order method 
Nesterov, ’83, ‘00s, 

Beck&Teboulle ‘09 
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First order methods for 
composite functions 
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•  Lasso or CS: 

•  Group Lasso or MMV 

•  Matrix Completion 

•  Robust PCA 
 

•  SICS 
          

Examples 
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•  Consider: 

•  Quadratic upper approximation 

          

Prox method with nonsmooth term 

Assume that g(y) is such that the above 
function is easy to optimize over y 
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•  Minimize upper approximation function Qf,µ(x,y) on each  iteration 

Example 1 (Lasso and SICS) 

Closed form 
solution! 

O(n) effort 
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•  Minimize quadratic upper approximation on each  iteration 

•  Problem: does not work for SICS: log det(X) is not defined when X is 
not positive definite, hence there is an additional constraint on xk+1 

 
  

ISTA/Gradient prox method 
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Splitting, alternating linearization 
and alternating direction 

methods 

6/13/12 Temple University 



Augmented Lagrangian 

Augmented Lagrangian method 

Augmented Lagrangian function 
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•  Consider: 

 

•  Relax constraints via Augmented Lagrangian technique 

          

Alternating directions (splitting) method 

Assume that f(x) and g(y) are both such that the  
above functions are easy to optimize in x or y  
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Alternating direction method (ADM) 

Widely used method without complexity bounds 

Combettes and Wajs, ‘05 

Eckstein and Bertsekas, ‘92, 

Eckstein and Svaiter, ’08 

Glowinski and Le Tallec, ‘89 

Kiwiel, Rosa, and Ruszczynski, ’99 

Lions and Mercier ‘79 
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A slight modification of ADM 

This turns out to be equivalent to…… 

Goldfarb, Ma and S, ’10 6/13/12 Temple University 



 

 

 

          

Alternating linearization method (ALM) 

Goldfarb, Ma, S, ‘10 
6/13/12 Temple University 



 

 

 

          

Convergence rate for ALM 

Th: If µ·1/L then in O(L/²) iterations finds ² -optimal solution 

Goldfarb, Ma, S, ’10 
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No need to compute the gradient for f and g 



Th: If µ·1/L then in                  iterations finds ² -optimal solution 

 

 

 

          

Can accelerate ALM 

Goldfarb, Ma, S, ’10 
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But now need to compute the gradient of g at z^k 



Applications of  alternating 
linearization method to SICS 
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Sparse Inverse Covariance Selection 

Shrinkage  O(p2) ops 

Eigenvalue decomposition  O(p3) ops. Same as one gradient of f(X) 

f(x) g(x) 
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Sparse Inverse Covariance Selection 

Eigenvalue decomposition  O(p3) ops. Same as one gradient of f(X) 

f(x) g(x) 
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Numerical comparisons 
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Gene expression networks using the five data sets from  Li and Toh(2010)  
(1) Lymph node status 
(2) Estrogen receptor;  
(3) Arabidopsis thaliana; 
(4) Leukemia;  
(5) Hereditary breast cancer. 

PSM by Duchi et al (2008) and VSM by Lu (2009)  



Coordinate descent approach 
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Updating one-two elements of X at a time 
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Consider changing only Xij=Xji at each step for some i and j.  

Then the objective function becomes a function of one variable, µ 

Using SMW formula we can write  



Main idea for primal coordinate descent 
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Given, current X and W, or each i and j maximize f(µ) as  a function of µ 
  

Each step takes O(1) operations, hence in O(p2) ops we can try all pairs of i,j. 

After we try all pairs we can choose the “best” (biggest improvement???) 

Perform the update of X and W in O(p2) operations 

Each step introduces one nonzero at most, can be easily parallelized.  



Conclusions and future directions 

•  First order optimization methods can be highly effective 
for structured large scale convex optimization problems. 

•  They can exploit specific structure of the problem and 
the solution. 

•  Second order methods can improve the convergence 
substantially, but have to be applied with care probably 
as a second stage. This avenue can be further exploited. 

•  Further improvement should be achieved via 
parallelization of these methods.  

•  New optimization models for graphical models can be 
explored and the existing methods extended.   
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Thank you! 
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Block coordinate ascent  
Update one row and one column of the dual matrix W at each step 
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Block coordinate ascent subproblem 
Update one row and one column of the dual matrix W at each step 
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Subproblem reformulation 

w12 =W11¯
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Dual subproblem  

w12 =W11¯

The dual subproblem is the Lasso problem 
6/13/12 Temple University 



Remember coordinate descent for Lasso 

 
 
 
 
 
 
 
 
 
 
 

Soft-thresholding operator 
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Remember coordinate descent for Lasso 

 
 
 
 
 
 
 
 
 
 
 

No need to compute W1/2 
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