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Derivative free optimization 

Ø Unconstrained optimization problem 
 
 
Ø Function f 2 C2 is a result of a black box 

computation. It is expensive to compute 
and no derivative information is available. 

Ø Numerical noise is often present. 
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Main idea 
Ø  It is common in optimization to exploit structure 

of the objective function to improve efficiency of 
the methods. 

Ø  Often  structure manifests itself in the sparsity of 
the Hessian.  

Ø  In DFO we do not know sparsity structure, but it 
does not mean the structure is not there.  

Ø  With recent advances in sparse structure 
recovery (in particular compressed sensing) we 
can hope to exploit the latent structures in black 
box optimization. 

Ø  This requires a use of randomly sampled models 
Ø  Need new convergence theory 
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Algorithms 
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Nelder-Mead method (1965) 
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Nelder-Mead method (1965) 

The simplex changes shape during the 
algorithm to adapt to curvature. But the 
shape can deteriorate and NM gets stuck 
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Direct Search methods (early 1990s) 
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Direct Search method 

Fixed pattern, never deteriorates: 
theoretically convergent, but slow 
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Model based trust region methods (late 90s) 
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Model based trust region methods 



12/02/2011 NYU, NA seminar 

Model based trust region methods 
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Model Based trust region methods 

Exploits curvature, flexible efficient steps, uses 
second order models. 
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What do we want? 

Ø Get as much curvature information as 
possible. 

 
Ø Economize on function evaluations. 
 
Ø Have models which we can optimize (i.e 

quadratic for now). 
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Basic Trust Region Algorithm 
 

 

test
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What is a “good” model? 

We need Taylor-like behavior of first or second order models 
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What is a “better” model? 

We need Taylor-like behavior of first or second order models 
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Convergence results 

Fully linear  models – “first order methods” 
and convergence to a stationary point  

Fully quadratic models  - “second order 
methods”  and convergence to the local 
minimum 

Conn, S. and  Vicente, 2008. 
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Polynomial models  
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Polynomial Interpolation  
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Special case - monomial quadratic basis 

 
Interpolation model: 
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Fully quadratic model 

 
Interpolation model: 

Need p=(n+1)(n+2)/2 interpolation points!!! 
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Underdetermined quadratic model  

 
find ® : M®= f(Y )

Interpolation model: 

Consider  p<(n+1)(n+2)/2 interpolation points!!! 

Interpolation model is not 
unique – many choices, 
which to pick? 
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Regularized quadratic models 

 “Robust” interpolation model  

              p<(n+1)(n+2)/2 – underdetermined system 
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Minimum Frobenius Norm models 

 
Minimum Frob norm of 
the Hessian model 

ML MQ 
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Convergence result for MFN models 

   Minimum Frobenius norm quadratic 
models are fully linear under appropriate 
conditions, hence can guarantee 
convergence to the stationary point.  

Conn, S. and  Vicente, 2008. 
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Usefulness and limitation 

    In practice using MFN quadratic models is by far superior 
to using fully quadratic models, since good second order 
information can be recovered from just a few extra 
interpolation points.  

    In theory MFN quadratic models have not been shown to 
be better than linear models, unless p=(n+1)(n+1)/2.  

    Question:  can we consistently build fully quadratic 
interpolation models with p<(n+1)(n+1)/2 points? 
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Example 

 

3n points are enough to recover the fully quadratic model 
Colson, Toint, 2004 

(®L, ®Q) has only 2n+n nonzeros 

Taylor 
model 
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But usually we do not the sparsity 
structure  of the Hessian. Moreover, it 
may depend of the region of local 
approximation… 

We want to recover the sparse model 
by using few sample points 

Sounds familiar? – use compressed 
sensing ideas! 
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Minimum Frobenius Norm models 

 
Minimum Frob norm of 
the Hessian model 

ML MQ 
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Sparse quadratic interpolation models 

 
Sparse interpolation model 

ML MQ 



12/02/2011 NYU, NA seminar 

Sparse interpolation 
model recovery 
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Recovery by using the  l1-norm 
Recovering sparse solution,  x  such that Ax=b  
given matrix A2 Rmxn, m<<n 
 
The system is underdetermined, but if card(x)=s<m, can 

recover signal, 
 
 
 
Under certain conditions of matrix A (RIP) recover x from 
 
 
  

Candes, Tao, 
Donoho….. 
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Partial recovery by the  l1-norm 
 
Assume x1 is dense and  but if card(x2)=s-r<m-r,  then 

recover signal, 
 
 
Under modified conditions of matrix A (partial RIP) recover 

x from 
 
 
  

Vaswavi &Lu’10, 

Bandeira, S and Vicente’10 

RIP => Partial RIP 
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Sparse recovery for interpolation 

 

We want to recover (partially) sparse vector ® such that 

 

We need M(Á,Y) to satisfy (partial) RIP. How can 
this be done? Choose appropriate Y and Á  
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Random matrix property 

 

Rauhut’10 
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Suitable basis 

 

Ã(x) is K-bounded and orthonormal on a hypercube 
or radius ¢ centered at zero.  
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Sparse quadratic interpolation models 

 
Sparse interpolation model 

ML MQ 

We should not assume that interpolation model is exactly sparse 



12/02/2011 NYU, NA seminar 

Sparse quadratic approximation models 

 

We assume that there exists a fully quadratic 
model m*(x) of f(x) with sparse Hessian.  

We seek ®:  (® may not equal ®*) 
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Noisy recovery using random points 

 

Rauhut’10 
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Main theorem 

 

Bandeira, S and Vicente’10 

Conclusion: we can construct fully quadratic models of 
functions with sparse Hessians with O(n) sample points
(with high probability). 
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New paradigm for “good” models 

Probabilistic Taylor-like behavior of first or second order models 
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What is a “better” model? 

We need Taylor-like behavior of first or second order models 
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So what about convergence?  
 
The previous theory does not apply as it 
relies on knowing if the model is “good”. 
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Consider a simple TR Algorithm 
 

 

test



12/02/2011 NYU, NA seminar 

Result: if ± <0.5 then with probability 1     
                  liminf r f(xk) =0 
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Comparison for ¢min=10-6 
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Comparison for ¢min=10-4 
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Work to do 
 
Ø  Complete convergence theory based on random 

models. 
Ø  Improving the results using new partial recovery 

results.  
Ø  Extending to different models. 
Ø  Recovering other types of structure.  
Ø  Efficient implementation. 
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Thank you! 


