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Derivative free optimization

» Unconstrained optimization problem

mianQ f(x)

» Function f € C2is a result of a black box
computation. It is expensive to compute
and no derivative information is available.

» Numerical noise is often present.
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Main idea

» It is common in optimization to exploit structure
of the objective function to improve efficiency of
the methods.

» Often structure manifests itself in the sparsity of
the Hessian.

» In DFO we do not know sparsity structure, but it
does not mean the structure is not there.

» With recent advances in sparse structure
recovery (in particular compressed sensing) we
can hope to exploit the latent structures in black
box optimization.

» This requires a use of randomly sampled models
» Need new convergence theory
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What do we want?

» Get as much curvature information as
possible.

» Economize on function evaluations.

» Have models which we can optimize (i.e
quadratic for now).
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Basic Trust Region Algorithm

Initialize: Choose a class of models, initialize xo, mg(x), Ag. Choose n > 0
and other parameters.

Criticality step: If |[gx(z1)|| < €. then make sure we have a good model in
B(xk, px) for some py < pl|gr ().

Compute Step: Compute s; from minj g <a, mi(Tk + )
evaluate f(xr + sg) and rp, = (f(xx) — f(xr + sk))/(m(xg) — m(xk + sg)).

Accept step: If rp, > n then xx 1 = x + Sk.

TR Update: If rp < m and the model is good, decrease A. If ry < n; and
the model is not good, improve the model. Otherwise may increase Ay.
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What is a “good” model?
We need Taylor-like behavior of first or second order models
A model is called fully linear in B(xz, A) if
[Vf(z+s)—Vm(x+s)|| < kegl, Vse B(0;A),

f(z+5) —m(z+3)| < ker A%, Vs e B(0;A),

for some fixed ke, and k.r independent of x and A.
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Convergence results

Fully linear models — “first order methods”
and convergence to a stationary point

Fully quadratic models - “second order
methods” and convergence to the local
minimum

Conn, S. and Vicente, 2008.
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Underdetermined quadratic model
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Consider p<(n+1)(n+2)/2 interpolation points!!!

Interpolation model: Interpolation model is not
unique — many choices,
ol s Do = Ji) which to pick?
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Convergence result for MFN models

Minimum Frobenius norm quadratic
models are fully linear under appropriate
conditions, hence can guarantee
convergence to the stationary point.

Conn, S. and Vicente, 2008.
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Usefulness and limitation

In practice using MFN quadratic models is by far superior
to using fully quadratic models, since good second order
information can be recovered from just a few extra
interpolation points.

In theory MFN quadratic models have not been shown to
be better than linear models, unless p=(n+1)(n+1)/2.

Question: can we consistently build fully quadratic
interpolation models with p<(n+1)(n+1)/2 points?
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Example

model

m(e) = (6] 35) (o) — Tavier

(ar, ap) has only 2n+n nonzeros

3n points are enough to recover the fully quadratic model
Colson, Toint, 2004
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But usually we do not the sparsity
structure of the Hessian. Moreover, it
may depend of the region of local
approximation...

We want to recover the sparse model
by using few sample points

Sounds familiar? — use compressed
sensing ideas!

12/02/207)| NYY, NA serrirzlr



12/02/207)1 NY U, NA serririzlr




12/02/207)1 NY U, NA serririzlr




12/02/207)1 NYU, NA serririzr




Recovery by using the |,-norm

Recovering sparse solution, x such that Ax=b
given matrix Ac R™", m<<n

The system is underdetermined, but if card(x)=s<m, can
recover signal,
min ||z||q

s.t. Ax =0.

Under certain conditions of matrix A (RIP) recover x from

min ||z||;

S.T. ACB == b Candes, Tao,
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Partial recovery by the |,-norm

Assume x, is dense and but if card(x,)=s-r<m-r, then

recover signal, .
min ||zs]|o

s.t. Aix1+ Asxo = 0.
Under modified conditions of matrix A (partial RIP) recover
x from
min ‘ |£132 | |1

S.t. Alxl -+ AQZCQ — b.

RIP => Partial RIP  vaswavisLu’ 10
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Sparse recovery for interpolation

We want to recover (partially) sparse vector o such that

M(¢,Y)a = f(Y) (%)

We need M(¢,Y) to satisfy (partial) RIP. How can
this be done? Choose appropriate Y and ¢

Definition 1. A 7suitable basis” ¢ = {¢p1,...,Pq} is an orthonormal basis, in
the domain D for the measure i, satisfying the K-boundedness condition; i.e.,

/D bi(2) 65 (2)dp(x) = 8

and maxzep |¢j(x)| < K, for alli,j =1,...,q, for which the solution of (*) is
expected to be sparse.
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Sparse quadratic interpolation models

m 2
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Sparse interpolation model
1,..T T
: m(x)=sx Hrxr+qg =+ kK
min  agl: @) =3 7
st.  Mpap+ Moag = f(Y) @ = k9)
® 0 — H

We should not assume that interpolation model is exactly sparse
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Sparse quadratic approximation models

We assume that there exists a fully quadratic
model m’(x) of f(x) with sparse Hessian.

m*(x) = ) _ aj¢(z)

i=0
where |M(¢,Y)a™* — f(Y)|| < O(A?®), and Qg is sparse

We seek a: (o may not equal o)

min gl

S.t. MLOéL + MQ()&Q ~ f(Y)H § O(AS)

12/02/20°] NYU, NA sgeninzr




12/02/207)1 NY U, NA serririzlr




Main theorem

Theorem 1. Let m(x) = ). opi(x) be an s-sparse fully quadratic model of f
on A € (0, Anax]. Given p random points, Y = {y,...,yP}, chosen uniformly
in Boo(0; A), with

D
logp

>c(s+n+1)log?(s+n+1)logn, (1)

with probability larger than 1 —n~7198P  the solution m* to the {1-minimization
problem is a fully quadratic model of f on By, (0;A).

Conclusion: we can construct fully quadratic models of
functions with sparse Hessians with O(n) sample points

(with high probability).
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New paradigm for “good” models

Probabilistic Taylor-like behavior of first or second order models

A random model is called fully linear in B(xz, A)
if with probability 1 — ¢

[Vf(z+s)—Vm(x+s)|| < kegA, Vse B(0;A),

f(z+s)—m(x+s)| < ﬁ:efA2, Vs € B(0; A),

for some fixed k.4, and ks independent of z, A and 9.
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What is a “better” model?

We need Taylor-like behavior of first or second order models

A model is called fully quadratic in B(x, A) if
with probability at least 1 — ¢

V2 f(z +5) — Vim(z + 5)|| < kend, Vs e B(0;A),

IVF(z+35)— Vm(z+8)|| < keg A%, Vs € B(0; A),
1f(x+35)—m(z+5)| < kepA®, Vse B(0;4),

for some fixed Kep, Keg, Kef independent of x, A and 9.
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So what about convergence?

The previous theory does not apply as it
relies on knowing if the model is “good”.
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Consider a simple TR Algorithm

Initialize: Choose a class of models, initialize zy, mg(x), Ag. Choose n; > 0,
e > 0 and v > 1.

Model selection step Build a random model my(x) which is fully-linear in
B(zy, Ag) with probability 1 — é.

Compute Step: Compute s; from minj g <a, mi(Tx + )
evaluate f(xg + sx) and rrx = (f(xx) — f(xk + sk))/(m(xx) — m(xk + sk)).

Successful step: If r, > m; and Vmy(xr) > 12A, then zgxy1 = zx + sk and

A1 = vAg.
Unsuccessful step: If rpy < m; or Vmyg(zr) < m72A, then 11 = xx and
Apt1 =7 1A
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Work to do

» Complete convergence theory based on random
models.

» Improving the results using new partial recovery
results.

» Extending to different models.
» Recovering other types of structure.
» Efficient implementation.
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