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Derivative free optimization

» Unconstrained optimization problem
mianQ f (33 )

» Function f is computed by a black box, no
derivative information is available.

» Numerical noise is often present, but we
do not account for it in this talk!

» f € C'or C? and is deterministic.
» May be expensive to compute.
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Outline

» Review with illustrations of existing methods as
motivation for using models.

» Polynomial interpolation models and motivation
for models based on random sample sets.

» Structure recovery using random sample sets
and compressed sensing in DFO.

» Algorithms using random models and conditions
on these models.

» Convergence theory for TR framework based on
random models.
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Random directions on Rosenbrock

Polyak, Yuditski, Nesterov, Lan, Nemirovski, Audet & Dennis, etc
Better progress, but very sensitive to step size choices
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Moral:

» Building and using models is a good idea.
» Randomness may offer speed up.

» Can we combine randomization and
models successfully and what would we
gain?
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Sample sets and models for f(x)=cos(x)+sin(y)
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ample sets and models for f(x)=cos(x)+sin(y)

08

071

05

04

03

02r

03

0.4

05

06

SV

N>

0y

N>

09

08

07

06

05

0.4

03

02

0.1

0.1

02

03

0.4

05

06

07

08

08




Sample sets and models for f(x)=cos(x)+sin(y)
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Observations:

» Building and maintaining good models is needed.

> But it requires computational and implementation
effort and many function evaluations.

» Random sample sets usually produce good
models, the only effort required is computing the
function values.

» This can be done in parallel and random sample
sets can produce good models with fewer points.

How?
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Sparse linear Interpolation

We have an (underdetermined) system of
linear equations with a sparse solution

1 yﬁl’ 3/(21)
1 Yy Yo
MY)a=fY) MY)= .
CLow w

Can we find correct sparse o using less than n+1
sample points in Y?
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Using celebrated compressed sensing
results and random matrix theory

(CandeseTao, Donono, Raunui, gic)

] y? y% y% ]
L yi v - Yy
Does vv)=| . °= 7  ° have RIP?
Loy oy o b

Yes, with high prob., when Yis random and p=0(|S|/log n)

Note: O(|S|log n)<<n
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Using results from random matrix theory

(Raunut, Bandeira, S. & Vincenie)

= N ~
T 1y vp  s(wi)?  wivd - Lwh)? 7]

M($Y)=M=| S .
I 2 S 7S YC/L O R £ 7 SRR X €75 L

Yes, with high probability, when Y is random
and p=0((n+s)(log n)*)

Note: p=O((n+s)(log n)?)<<n? (sometimes)

For more detailed analysis

see Afonso Bandeira’s talk
0&/20/2011 2 ISP 2012 Tue 15:15 - 16:45, room: H 3503



Model-based method on 2-dimensional Rosenbrock
function lifted into 10 dimensional space

Consider f(x,, X,, ..., X;9)=R0osenbrock(x,, X,)

To build full quadratic interpolation we need 66 points. We
test two methods:

1. Deterministic model-based TR method: builds a model
using whatever points it has on hand up to 66 in the
neighborhood of the current iterate, using MFN Hessian
models (standard reliable good approach).

2. Random model based TR method: builds sparse models
using 31 randomly sampled points.
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Algorithms based on
random models

- We now forget about sample sets and
how we build the models.

-  We focus on properties of the models
that are essential for convergence.

- Ensure that those properties are
satisfied by models we just discussed.
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What do we need from a deterministic
model for convergence?

We need Taylor-like behavior of first-order models

A model is called x-fully-linear in B(xz,A), for kK = (Kef, Keg) if
|Vf(z+s)—Vm(z+s)|| < kegd, Vse B(0;A),

f(x+8)—m(z+3s)| < key A%, Vs € B(0;A),
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What do we need from a model to
explore the curvature?

We may want Taylor-like behavior of second-order models

A model is called x-fully-quadratic in B(z,A) for kK = (Kef, Keg, Ken) if
V2 f(z+s) — Vim(z +3)|| £ ken A, Vs € B(0;A),

IVFf(z+8) — Vm(z +35)|| < key A%, Vs € B(0;A),
|f(z+8) —m(x+3)| < ke A®, Vs e B(0;A),
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What do we need from a random model
for convergence?

We need likely Taylor-like behavior of first-order models

A random model is called (k, §)-fully-linear in B(z, A) if
IVf(z+s)—Vm(z+s)|| < kegd, Vse B(0;A),

|f(z+8) —m(x+35)| < Kkep A%, Vs e B(0;A),
with probability at least 1 — 0.

08/20/20°12 ISMP 2012



What do we need from a random model
to explore curvature?

We need likely Taylor-like behavior of second order models

A random model is called (x, J)-fully-quadratic in B(x, A) if
V2 f(z +5) — V'm(z +s)|| < kenq, Vs B(0;A),

IVFf(z+3) — Vm(z +3)|| < keg A%, Vs € B(0;A),
1f(x+3)—m(z+8)| < ke A®, Vs € B(0;A),
with probability at least 1 — 0.
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What random models have such properties?

»

»

»

»

>

»

Linear interpolation and regression models based on
random sample sets of n+1 points are (x, é)-fully-linear.

Quadratic interpolation and regression models based on
random sample sets of (n+1)(n+1)/2 points are (x, 4)-
fully-quadratic.

Sparse linear interpolation and reg. models based on
smaller random sample sets are (x, d)-fully-linear.

Sparse quadratic interpolation and reg. models based on
smaller random sample sets are (x, é)-fully-quadratic.

Taylor models based on finite difference derivative
evaluations with asynchronous faulty parallel function
evaluations are (x, é)-FL or FQ.

Gradient sampling models? Other examples?
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Basic Trust Region Algorithm

Model selection
Pick a random model my(x) which is s-fully-linear in B(xy, Ax) w.p. 1—9.

Compute potential step
Compute a point 7 which minimizes (reduces) m(z) in B(zg, Ag).
Compute f(zT) and check if f is reduced comparably to m by x™.

Successful step

If yes and if the radius Ay is not too big compared to Vmy(x)) then we
take the step and increase Ay by a constant factor.

Unsuccessful step
Otherwise, decrease Ay by the constant factor and repeat the iteration.
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Convergence results for the basic TR framework

If models are fully linear with prob. 1-6 > 0.5
then with probability one lim ||V f(x,)|| =0

If models are fully quadratic w. p. 1-60 > 0.5
then with probability one
liminf max {|| V f(x ||, A,,.,.( VZf(x,))}=0

For lim result  need to For details see Afonso

decrease occasionally Bandeira’s talk on Tue
15:15 - 16:45, room: H 3503
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When m(x) is linear ~ line search
instead of A, use a, ||V m,(x)||

Model selection step
Pick a random model my(x) = f(zx) + g, (x — x1)
k-fully-linear in B(z, apllgr|) w.p. 1 —46.

Compute Step
T =z, — aggr. Check if f is sufficiently reduced an z ™.

Successful step
If yes accept 7 as the new iterate.
Increase . by a constant factor if not too large.

Unsuccessful step
Otherwise decrease . by the constant factor.
Repeat the iteration.

08/20/20°12 ISMP 2012



08/20/20 2 ISP 2072




08/20/20 2 ISP 2072




08/20/20 2 ISP 2072




08/20/20 2 ISP 2072




Analysis via martingales

Analyze two stochastic processes: X, and Y,:

L min{C,yXg} w.p.1-96
A . ¢ w.p. 0

v Yi + Xp0c?/4 wop.1-96
k1 = Yk W.p. )

We observe that

If random models are independent of the past, then X, and Y, are
random walks, otherwise they are submartingales if § < 1/2.
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Analysis via martingales

Analyze two stochastic processes: X, and Y,:

L min{C,yXy} w.p.1-94
A . ¢ w.p. 0

v Yi + Xp0c?/4 wop.1-96
k1 = Yk W.p. )

We observe that

X, does not converge to O w.p. 1 => algorithm converges
Expectations of Y, and X, will facilitate convergence rates.
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Future work

» Convergence rates theory based on random
models.

» Extend algorithmic random model frameworks.
» Extending to new types of models.

» Recovering different types of function structure.
» Efficient implementations.
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