Fast first-order methods for convex optimization with line search

Katya Scheinberg

Lehigh University

(joint work with X. Bai, D. Goldfarb and S. Ma)

Introduction

 The field of convex optimization has been extensively developed since Khachian showed in 1979 that ellipsoid method has polynomial complexity when applied to LP.

- General theory of interior point algorithms for convex optimization was developed by Nesterov and Nemirovskii.
- Any convex optimization problem can be solved in polynomial time by an IPM. For some known classes (LP, QP, SDP) the IPMs are readily available.
- For decades optimization methods relied of the fact that the problem data, when large, is typically sparse.
- Second-order methods (IPM) have good convergence rate, but high per iteration complexity. They exploit sparsity structure to facilitate linear algebra.
- First-order methods (gradient based) have slow convergence and were considered inefficient.

Introduction

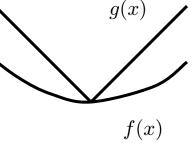
- At the core of many statistical machine learning problems lies an optimization problem, often convex, from a wellstudied class (LP, QP, SDP).
- These problems are very large and dense in terms of data.
- IPMs are often too expensive to use. ML community initially assumed that traditional optimization methods have to be abandoned.
- However, often structure (sparsity) is present in the solution.
- This structure can be well exploited by first-order approaches to convex optimization.
- Recent advances in complexity results give rise to very significant interest in first-order methods.

Problem under consideration

Problem:

$$\min_{x} F(x) = f(x) + g(x),$$

Assumptions:



$$|\nabla f(x) - \nabla f(y)| \le L||x - y||$$
, for some $L, \forall x, y$

• g(x) is convex, possibly nonsmooth and "easy" (in some sense).

Many applications involve optimization of this form

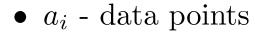
Support vector machine classification

- Breast cancer diagnostics
 - Test results of a group of patients, some have been diagnosed with cancer, other do not have it. Find how the test can predict high risk patients.
- Spam filter
 - From a list of spam and nonspam labeled emails learn to detect spam automatically.
- Genetic disease
 - find away to identify high risk individuals based on gene expression data.
- Target customer groups
 - By demographic data and past purchases find customers most likely to buy certain products.

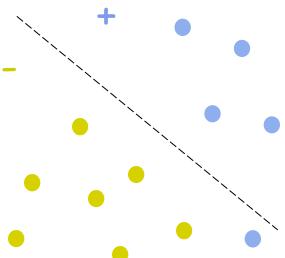
Support Vector Machines

Problem:

$$\min_{w,\beta} \rho ||w||^2 + \sum_{i} \min\{0, (1 - b_i(w^{\top} a_i + \beta))\}$$



•
$$b_i = \{+1, -1\}$$
 - data label

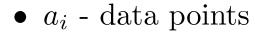


6/26/12

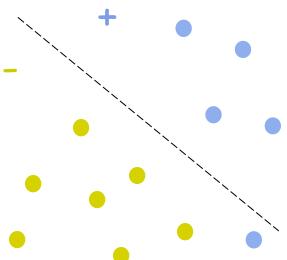
Linear Support Vector Machines

Problem:

$$\min_{w,\beta} \rho ||w||_1 + \sum_i \min\{0, (1 - b_i(w^{\top} a_i + \beta))\}$$



•
$$b_i = \{+1, -1\}$$
 - data label



6/26/12

Sparse models

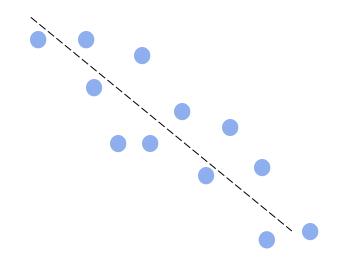
- Compresses sensing, MRI
 - Recover sparse signal x, which satisfies Ax=b.
- Sparse least square regression (Lasso)
 - Find linear regression models while selecting important features.
- Regression models using polynomials with variable selection
 - birthweight dataset from Hosmer and Lemeshow (1989), weight of 189 babies and 8 variables per mother. Predictive models for birthweight.

Lasso regression

• Problem:

$$\min_{x} \frac{1}{2} ||Ax - b||^2 + \rho ||x||_1$$

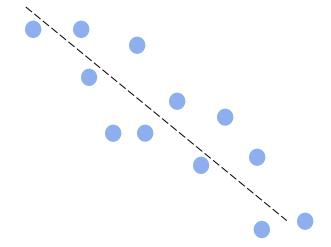
- Rows of A, a_i data points
- $b_i \in R$ labels
- $x^{\top}a = \beta$ linear model
- x is sparse



Group Lasso regression

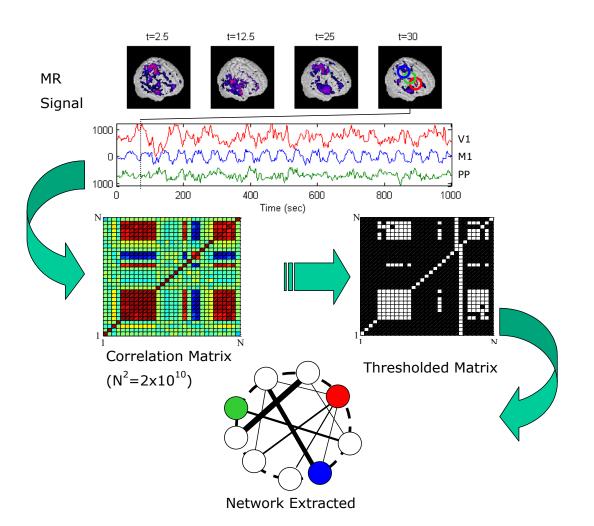
• Problem:

$$\min_{x} \frac{1}{2} ||Ax - b||^{2} + \rho \sum_{i} ||x_{i}||_{2}$$



- Assume that columns of A form groups of correlated features.
- Find sparse vector x where nonzeros are selected according to groups
- x_i is a subvector of x corresponding to the i-th group of features.

FMRI Analysis and schizophrenia prediction



Measuring blood oxigination in voxels of the brain.

Construct predictive models based on FMRI data, use to predict/diagnose schizophrenia or classify "states of mind".

Sparse Inverse Covariance Selection

Problem:

Given n random varibles $p = \{p_1, ..., p_n\}$

Find multivariate Gaussian probability density function:

$$P(\mathbf{x}) = (2\pi)^{-\frac{n}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{p} - \boldsymbol{\mu})^T \Sigma^{-1}(\boldsymbol{p} - \boldsymbol{\mu})\right)$$

Formulation:

$$\max_{X} \frac{m}{2} (\log \det X - Tr(AX)) - \rho ||X||_1$$

$$(\|X\|_1 = \sum_{ij} |X_{ij}|, A = \frac{1}{m}BB^{\top})$$

• $(\Sigma^{-1})_{ij}$ is zero if p_i and p_j are conditionally independent.

Summary and add'l examples

Lasso or CS:

$$\min_{x} \frac{1}{2} ||Ax - b||^2 + \rho ||x||_1$$

Group Lasso or MMV

$$\min_{x} \frac{1}{2} ||Ax - b||^2 + \rho \sum_{i \in J} ||x_i||$$

Matrix Completion

$$\min_{X \in \mathbb{R}^{n \times m}} \rho \sum_{(i,j) \in I} (X_{ij} - M_{ij})^2 + ||X||_*$$

Robust PCA

$$\min_{X \in \mathbb{R}^{n \times m}} \rho \|X_{ij} - M_{ij}\|_1 + ||X||_*$$

SICS

$$\max_{X} \frac{m}{2} (\log \det X - Tr(AX)) - \rho ||X||_{1}$$

6/26/12

ERGO seminar, The University of Ediburgh

First-order methods applied to problems of the form f(x)+g(x)

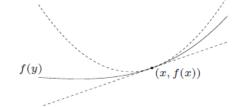
Prox method with nonsmooth term

Consider:

$$\min_{x} F(x) = f(x) + g(x)$$

$$|\nabla f(x) - \nabla f(y)| \le L||x - y||$$

Quadratic upper approximation



$$f(y) + g(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2\mu} ||y - x||^2 + g(y) = Q_f(x, y)$$

Assume that g(y) is such that the above function is easy to optimize over y

ISTA/prox gradient projection

$$\min_{x} F(x) = f(x) + g(x)$$

Minimize quadratic upper approximation on each iteration

$$x^{k+1} = \operatorname{argmin}_{y} Q_{f,\mu}(\mathbf{x}^{k}, y)$$

• $O(L/\epsilon)$ complexity: If $\beta/L \le \mu \le 1/L$ then in k iterations finds solution

$$x^k: F(x^k) - F(x^*) \le \frac{2L\|x^k - x^*\|^2}{k}$$

6/26/12

Fast first-order method

Nesterov, Beck & Teboulle

$$\min_{x} F(x) = f(x) + g(x)$$

Minimize upper approximation at a "shifted" point.

$$x^{k} = \operatorname{argmin}_{y} Q_{f,\mu}(y^{k}, y)$$

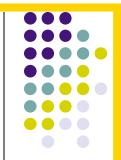
$$t_{k+1} := (1 + \sqrt{1 + 4t_{k}^{2}})/2$$

$$y^{k+1} := x^{k} + \frac{t_{k-1}}{t_{k+1}} [x^{k} - x^{k-1}]$$

• $O(\sqrt{L/\epsilon})$ complexity: If $\beta/L \le \mu \le 1/L$ then in k iterations finds solution

$$x^k: F(x^k) - F(x^*) \le \frac{2L\|x^k - x^*\|^2}{k^2}$$

Specifically for CS setting and Lasso



$$\min_{x} ||Ax - b||^2 + \rho ||x||_1$$

$$f(x)$$
 $g(x)$

$$\nabla f(x) = A^{\top} (Ax - b)$$

$$x^{k+1} = \min_{y} \frac{1}{2\mu} ||(y^k - \mu A^{\top} (Ay^k - b)) - \mathbf{y}||^2 + \rho ||\mathbf{y}||_1$$

2 matrix/vector multiplications + shrinkage operator per iteration

$$\sqrt{\frac{2\|x^0-x^*\|^2}{\mu\epsilon}}$$
 iteration bound

Choosing prox parameter via backtracking

Iterative Shrinkage Threshholding Algorithm (ISTA)

Minimize quadratic upper relaxation on each iteration

$$x^{k+1} = \operatorname{argmin}_{y} Q_{f,\mu_{k}}(x^{k}, y) = f(x^{k}) + \nabla f(x^{k})^{\top} (y - x^{k}) + \frac{1}{2\mu_{k}} ||x^{k} - y||^{2} + g(y)$$

• Using backtracking find μ_k such that

$$F(x^{k+1}) \le Q_{f,\mu_k}(\mathbf{x}^k, x^{k+1})$$

In k iterations finds solution

$$F(x^k) - F(x^*) \le \frac{2\|x^k - x^*\|^2}{\sum_k \mu_k} = \frac{2\|x^k - x^*\|^2}{\bar{\mu}(k)k} \quad \bar{\mu}(k) = \frac{\sum \mu_k}{k}$$

Beck&Teboulle, Tseng, Auslender&Teboulle, 2008

6/26/12

Fast Iterative Shrinkage Threshholding Algorithm (FISTA)

Minimize quadratic upper relaxation on each iteration

$$x^{k+1} = \operatorname{argmin}_{y} Q_{f,\mu_{k}}(y^{k}, y) = f(y^{k}) + \nabla f(y^{k})^{\top} (y - y^{k}) + \frac{1}{2\mu_{k}} ||y^{k} - y||^{2} + g(y)$$

Using backtracking find $\mu_k \leq \mu_{k-1}$ such that

$$F(x^{k+1}) \le Q_{f,\mu_k}(y^k, x^{k+1})$$

$$t_{k+1} := (1 + \sqrt{1 + 4t_k^2})/2$$

$$y^{k+1} := x^k + \frac{t_k - 1}{t_{k+1}}[x^k - x^{k-1}]$$

In *k* iterations finds solution

$$x^k: F(x^k) - F(x^*) \le \frac{2L\|x^k - x^*\|^2}{k^2}$$

Beck&Teboulle, Tseng, 2008

Fast Iterative Shrinkage Threshholding Algorithm (FISTA)

Minimize quadratic upper relaxation on each iteration

$$x^{k+1} = \operatorname{argmin}_{y} Q_{f,\mu_{k}}(\mathbf{y}^{k}, y) = f(\mathbf{y}^{k}) + \nabla f(\mathbf{y}^{k})^{\top} (y - \mathbf{y}^{k}) + \frac{1}{2\mu_{k}} ||\mathbf{y}^{k} - y||^{2} + g(y)$$

Using backtracking find $\mu_k \leq \mu_{k-1}$ such that

$$t_k := (1 + \sqrt{1 + 4t_{k-1}^2})/2$$

$$y^k := x^k + \frac{t_{k-1}-1}{t_k} [x^k - x^{k-1}]$$

$$F(x^{k+1}) \le Q_{f,\mu_k}(y^k, x^{k+1})$$

In *k* iterations finds solution

$$x^k: F(x^k) - F(x^*) \le \frac{2L\|x^k - x^*\|^2}{k^2}$$

6/26/12

Find $\mu_k \leq \mu_{k-1}$ such that

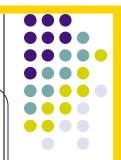
$$t_k := (1 + \sqrt{1 + 4t_{k-1}^2})/2$$

$$y^k := x^k + \frac{t_{k-1}-1}{t_k} [x^k - x^{k-1}]$$

Need to compute Ax-b

Convergence rate:

$$F(x^k) - F(x^*) \le \frac{2\|x^0 - x^*\|^2}{\mu_k t_k^2}$$



Find μ_k such that

 $\mu_{k-1}t_{k-1}^2 \ge \mu_k t_k (t_k - 1)$

$$y^k := x^k + \frac{t_{k-1}-1}{t_k} [x^k - x^{k-1}]$$

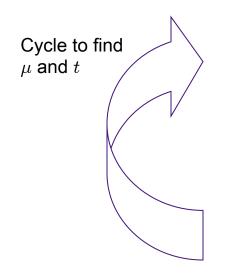
ERGO seminar, The University of Ediburgh

Goldfarb & S. 2010

To allow for larger $\mu_{\mathbf{k}}$ we need to reduce t_k

and vice versa

Find μ_k such that



$$t_{k+1} := (1 + \sqrt{1 + 4\frac{\mu_k}{\mu_{k-1}}t_k^2})/2$$

$$y^k := x^k + \frac{t_{k-1}-1}{t_k}[x^k - x^{k-1}]$$

$$x^{k+1} = \operatorname{argmin}_y Q_{f,\mu_k}(y^k, y)$$

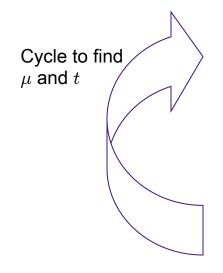
$$F(x^{k+1}) \le Q_{f,\mu_k}(y^k, x^{k+1})$$

$$F(x^k) - F(x^*) \le \frac{\|x^0 - x^*\|^2}{2\mu_k t_k^2}$$

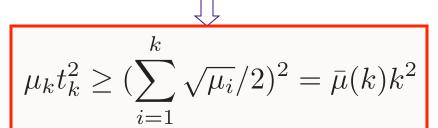
Goldfarb & S. 2010

FISTA with full backtracking

Find μ_k such that



Bla-bla-bla....



$$\bar{\mu}(k) = ((\sum_{i=1}^{k} \sqrt{\mu_i})/k)^2$$

$$F(x^k) - F(x^*) \le \frac{2\|x^0 - x^*\|^2}{\bar{\mu}(k)k^2}$$

ERGO seminar, The University of Ediburgh

Goldfarb & S. 2010

- Spear1 (1024 × 512), with $\rho = 1$.
- Dynamic range is 3.02e+4.
- Sparsity is 18 (i.e. 18 nonzero elements in the true solution).
- Optimal tolerance is set to be 1e-12. FISTA(100) = 5.3839e + 5. FISTA(500) = 1.2799e + 5. FISTA(1000) = 1.0035e + 5.

solver	iter	mult	iter	mult	iter	mult	final iter	mult	final Obj.
FISTA	100	206	500	1006	1000	2006	1361	2728	9.996e + 4
FISTA_bt	69	170	283	619	627	1343	711	1527	9.996e+4
SpaRSA	98	196	1487	2974	1689	3378	1704	3408	9.996e+4
YALL1	18	55	30	91	89	268	197	592	9.997e + 4

- Spear1 (1024 × 512), with $\rho = 0.01$.
- Dynamic range is 3.02e+4.
- Sparsity is 18 (i.e. 18 nonzero elements in the true solution).
- Optimal tolerance is set to be 1e-12. FISTA(100) = 6.0980e + 3. FISTA(500) = 5.8943e + 3. FISTA(1000) = 5.4176e + 3.

solver	iter	mult	iter	mult	iter	mult	final iter	mult	final Obj.
FISTA	100	206	500	1006	1000	2006	19872	39750	999.4
FISTA_bt	79	190	372	804	746	1607	13655	30005	999.4
SpaRSA	30	60	687	1374	5024	10048	-	-	-
YALL1	65	196	65	196	66	199	257	772	1015.3

- Spear3 (1024 × 512), with $\rho = 0.1$.
- Dynamic range is 2.7535e+4.
- Sparsity is 6 (i.e. 6 nonzero elements in the true solution).
- Optimal tolerance is set to be 1e-12. FISTA(100) = 1.1825e + 4. FISTA(500) = 1.1793e + 4. FISTA(1000) = 1.1784e + 4.

solver	iter	mult	iter	mult	iter	mult	final iter	mult	final Obj.
FISTA	100	211	500	1011	1000	2011	28539	57089	7.33e + 3
FISTA_bt	220	490	265	580	316	687	6077	14069	7.33e + 3
SpaRSA	5	10	264	528	1215	2430	-	-	Failed
YALL1	541	1624	541	1624	541	1624	1661	4984	7.33e + 3

- Bdata1 (1036 × 1036), with $\rho = 0.1$
- Dynamic range is 5.9915.
- Sparsity is 16 (i.e. 16 nonzero elements in the true solution).
- Optimal tolerance is set to be 1e-12. FISTA(10) = 3.490836e+002. FISTA(50) = 3.490804e+002. FISTA(100) = 3.490804e+002.

solver	iter	mult	iter	mult	iter	mult	final iter	mult	final Obj.
FISTA	10	23	50	103	100	203	105	213	349.08
FISTA_bt	8	21	44	111	76	181	90	212	349.08
SpaRSA	4	8	34	68	70	140	80	160	349.08
YALL1	11	34	108	325	233	700	2263	6790	349.08

- Sparco $2(2048 \times 1024)$, with $\rho = 0.1$
- Dynamic range is 2.
- Sparsity is 2 (i.e. 16 nonzero elements in the true solution).
- Optimal tolerance is set to be 1e-12. FISTA(10) = 13.07180. FISTA(50) = 8.187212. FISTA(100) = 2.710062.

solver	iter	mult	iter	mult	iter	mult	final iter	mult	final Obj.
FISTA	10	24	50	104	100	204	207	418	2.22278
FISTA_bt	6	18	38	97	78	187	173	387	2.22278
SpaRSA	7	14	11	22	72	144	99	198	2.22278
YALL1	10	31	10	31	19	58	262	787	2.22278

Complexity bounds on alternating linearization methods

Alternating directions method

Consider:

$$\min_{x} F(x) = f(x) + g(x)$$

Relax constraints via Augmented Lagrangian technique

$$\min_{x,y} f(x) + g(y) + \lambda^{\top}(y - x) + \frac{1}{2\mu}||y - x||^2 = Q_{\lambda,\mu}(x,y)$$

Assume that f(x) and g(y) are both such that the above functions are easy to optimize in x or y

Sparse Inverse Covariance Selection

$$\max_{X \succ 0} (\operatorname{Indet}(X) - Tr(AX)) - \rho ||X||_1$$

$$f(x)$$
 $g(x)$

$$X^{k+1} := \operatorname{argmin}_X \{ f(X) + \frac{1}{2\mu_{k+1}} \| X - (Y^k + \mu_{k+1} \Lambda^k) \|_F^2 \}$$

Eigenvalue decomposition $O(n^3)$ ops. Same as one gradient of f(X)

$$Y^{k+1} := \operatorname{argmin}_{Y} \{ g(Y) + \frac{1}{2\mu_{k+1}} \| Y - (X^{k+1} - \mu_{k+1}(A - (X^{k+1})^{-1})) \|_{F}^{2} \}$$

Shrinkage O(n²) ops

Lasso or group Lasso

$$\min_{x} ||Ax - b||^2 + \rho ||x||_1$$

$$f(x)$$
 $g(x)$

$$x^{k+1} := \operatorname{argmin}_{x} \{ f(x) + \frac{1}{2\mu_{k+1}} \| x - (y^k + \mu_{k+1}\lambda^k) \|^2 \}$$

Matrix inverse, can take $O(n^3)$ ops. But can also be $O(n \ln n)$ for special A.

$$y^{k+1} := \operatorname{argmin}_{y} \{ g(y) + \frac{1}{2\mu_{k+1}} \| y - (x^{k+1} - \mu_{k+1} A^{\top} (Ax - b)) \|^{2} \}$$

Shrinkage O(n²) ops

Alternating direction method (ADM)

•
$$x^{k+1} = \min_x Q_{\lambda,\mu}(x, \mathbf{y}^k)$$

•
$$y^{k+1} = \min_{y} Q_{\lambda,\mu}(\mathbf{x}^{k+1}, y)$$

•
$$\lambda^{k+1} = \lambda^k + \frac{1}{\mu} (y^{k+1} - x^{k+1})$$

Widely used method without complexity bounds

A slight modification of ADM

Goldfarb, Ma, S, '09-'10

•
$$x^{k+1} = \min_x Q_{\lambda,\mu_g}(x, \mathbf{y}^k)$$

•
$$\lambda^{k+\frac{1}{2}} = \lambda^k + \frac{1}{\mu_g} (y^k - x^{k+1})$$

•
$$y^{k+1} = \min_{y} Q_{\lambda,\mu_f}(\mathbf{x}^{k+1}, y)$$

•
$$\lambda^{k+1} = \lambda^{k+\frac{1}{2}} + \frac{1}{\mu_f} (y^{k+1} - x^{k+1})$$

This turns out to be equivalent to.....

Alternating linearization method (ALM)

Goldfarb, Ma, S, '09-'10

•
$$x^{k+1} = \min_x Q_{g,\mu_g}(x, \mathbf{y}^k)$$

•
$$y^{k+1} = \min_{y} Q_{f,\mu_f}(\mathbf{x}^{k+1}, y)$$

$$Q_g(x, \mathbf{y}) = f(x) + \nabla g(\mathbf{y})^{\top} (x - y) + \frac{1}{2\mu_g} ||y - x||^2 + g(y)$$

$$Q_f(\mathbf{x}, y) = f(x) + \nabla f(\mathbf{x})^{\top} (y - x) + \frac{1}{2\mu_f} ||y - x||^2 + g(y)$$

Fast ALM (FALM)

Goldfarb, Ma, S, '09-'10

- $\bullet \ x^{k+1} := \min_x Q_{g,\mu_g}(x, \mathbf{z}^k)$
- $y^{k+1} := \min_{y} Q_{f,\mu_f}(\mathbf{x}^{k+1}, y)$
- $t_{k+1} := (1 + \sqrt{1 + 4t_k^2})/2$
- $z^{k+1} := y^{k+1} + \frac{t_k 1}{t_{k+1}} [y^{k+1} y^k]$

Complexity results

FISTA

$$F(y^k) - F(x^*) \le \frac{2L(f)\|x^0 - x^*\|^2}{k^2}$$

FALM

$$F(x^k) - F(x^*) \le \frac{2L(f)L(g)\|x^0 - x^*\|^2}{(L(f) + L(g))k^2}.$$

Experiments on SICS

Gene expression networks using the five data sets from Li and Toh(2010)

- (1) Lymph node status
- (2) Estrogen receptor;
- (3) Arabidopsis thaliana;
- (4) Leukemia;
- (5) Hereditary breast cancer.

PSM by Duchi et al (2008) and VSM by Lu (2009)

			A	LM			Р	SM		VSM			
prob.	n	iter	Dgap	Rel.gap	CPU	iter	Dgap	Rel.gap	CPU	iter	Dgap	Rel.gap	CPU
(1)	587	60	9.41e-6	5.78e-9	35	178	9.22e-4	5.67e-7	64	467	9.78e-4	6.01e-7	273
(2)	692	80	6.13e-5	3.32e-8	73	969	9.94e-4	5.38e-7	531	953	9.52e-4	5.16e-7	884
(3)	834	100	7.26e-5	3.27e-8	150	723	1.00e-3	4.50e-7	662	1097	7.31e-4	3.30e-7	1668
(4)	1255	120	6.69e-4	1.97e-7	549	1405	9.89e-4	2.91e-7	4041	1740	9.36e-4	2.76e-7	8568
(5)	1869	160	5.59e-4	1.18e-7	2158	1639	9.96e-4	2.10e-7	14505	3587	9.93e-4	2.09e-7	52978

Experiments in CS

Comparison of algorithms on image recovery problem. Here matrix inverse take O(n ln n) ops, as do mat-vec multiplications.

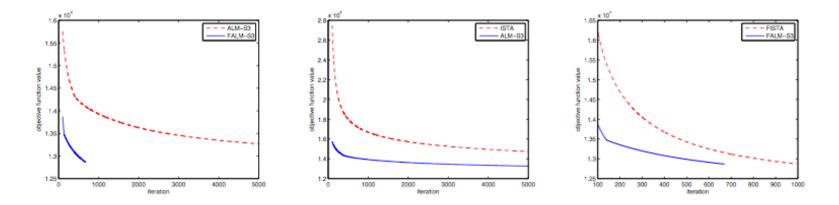


Fig. 4.1. The comparison of objective function values versus number of iterations for Algorithms ISTA, FISTA, ALM-S3, FALM-S3 for $\rho = 0.001$

FALM with backtracking

Goldfarb, S, '10

•
$$x^{k+1} := \operatorname{argmin}_x Q_{g,\mu_k^g}(x, z^k), F(x^{k+1}) \le Q_{f,\mu_k}(z^k, x^{k+1})$$

•
$$y^{k+1} := \operatorname{argmin}_{y} Q_{f,\mu_{k}^{f}}(x^{k+1}, y) \ F(y^{k+1}) \le Q_{f,\mu_{k}}(x^{k+1}, y^{k+1})$$

•
$$t_{k+1} := (1 + \sqrt{1 + 4 \frac{\bar{\mu}_{k+1}}{\bar{\mu}_k} t_k^2})/2$$

•
$$z^{k+1} := y^{k+1} + \frac{t_k - 1}{t_{k+1}} [y^{k+1} - y^k]$$

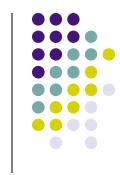
$$F(x^k) - F(x^*) \le \frac{2\|x^0 - x^*\|^2}{\bar{\mu}(k)k^2}.$$

$$\sqrt{\bar{\mu}(k)} = (\sum_{i=1}^k \sqrt{\bar{\mu}_i})/k, \ \bar{\mu}_i = \frac{\mu_i^f + \mu_i^g}{2}$$

6/26/12

Conclusion and Future work

- Performing backtracking carefully is possible and desirable in accelerated first order methods.
- The trade-offs are different and need to be explored for particular applications beyond CS.
- Accelerated alternating direction methods can utilize the same ideas.
- Careful implementation is being considered.
- Combining backtracking with inexact evaluations may be beneficial.
- Seeking problems where average behavior differs greatly from the worst case.



Thank you!